
PHYSICAL REVIEW E 104, 014137 (2021)

Neuronal avalanches in Watts-Strogatz networks of stochastic spiking neurons
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Networks of stochastic leaky integrate-and-fire neurons, both at the mean-field level and in square lattices,
present a continuous absorbing phase transition with power-law neuronal avalanches at the critical point. Here we
complement these results showing that small-world Watts-Strogatz networks have mean-field critical exponents
for any rewiring probability p > 0. For the ring (p = 0), the exponents are the same from the dimension d = 1
of the directed-percolation class. In the model, firings are stochastic and occur in discrete time steps, based
on a sigmoidal firing probability function. Each neuron has a membrane potential that integrates the signals
received from its neighbors. The membrane potentials are subject to a leakage parameter. We study topologies
with a varied number of neuron connections and different values of the leakage parameter. Results indicate that
the dynamic range is larger for p = 0. We also study a homeostatic synaptic depression mechanism to self-
organize the network towards the critical region. These stochastic oscillations are characteristic of the so-called
self-organized quasicriticality.
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I. INTRODUCTION

Criticality in the brain is a vastly reported phenomenon
[1–3]. It implies that the networks of neurons can produce
avalanches of spikes with both size and duration distributed
according to power laws. The operation near a critical state
has been presented as a sign of brain health [4,5], besides opti-
mization of information transmission and storage, metastable
states, computational power, and dynamic range, as revealed
by experiments and modeling [6–15].

Although the leaky integrate and fire (LIF) model is one of
the most studied models for simulating neural systems [16],
experiments have shown that cortical neurons respond reliably
to time-dependent input, with small trial-to-trial variations if
the same stimulus is repeated [17,18]. That is a motivation for
using stochastic LIF models.

Discrete-time stochastic neurons have a history since the
1980s (Boltzman machines, Hopfield networks with stochas-
tic neurons). In 1992, Gerstner and van Hemmen introduced a
discrete time stochastic spiking neuron model [19], which is
very similar to the model used here, with a different (exponen-
tial) spike probability function. This model is also discussed
in a well-known book [20]. After that, several groups have
been studying stochastic neurons [21–26].

Systems belonging to the same universality class share the
same behavior near the critical point, particularly the criti-
cal exponents [27,28]. One may group even very different
systems into a reduced number of universality classes due
to similarities at the microscopic level. Recently, it has been
shown that a class of the stochastic LIF neurons present a con-
tinuous absorbing phase transition in the directed percolation
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(DP) universality class [24,29]. Such transition is typical of
self-organized critical models (SOCs) and it has been used to
explain neuronal avalanche experiments [1,9,30,31].

An important question refers to the mechanism that could
tune the networks to the critical region. In a seminal paper,
Levina, Hermann, and Geisel (LHG) [32] proposed depress-
ing and recovering synapses as such a mechanism. The LHG
model was analyzed in depth by Bonachela et al. [33]. They
found that the achieved state is not true SOC: The system
hovers around the critical point with stochastic oscillations,
which has been called self-organized quasicriticality or SOqC.
Indeed, this is typical for any nonconservative system like
earthquake, forest fire, and neuronal network models [34].

It also has been shown that other biologically plausible
mechanisms (dynamic neuronal gains [26,29] and adaptive
firing thresholds [35]) can lead to SOqC. In all these studies,
however, all-to-all (complete graph) networks have been used.
The motivation for that was to compare results with mean-
field calculations. However, this topology is not biologically
realistic. Also, complete graphs present problems for compu-
tational simulation of dynamic synapses, since a network with
N neurons has N (N − 1) synaptic equations, preventing the
work with large systems.

In this respect, random networks are a bit more realistic
and computationally tractable. Indeed, random networks of
stochastic cellular automata with dynamic synapses have been
studied [36,37]. However, such cellular automata do not have
important biological features of integrate-and-fire neurons,
like a continuous state variable (membrane potential), a leak-
age parameter, or a firing threshold.

In this work, we use networks one step further in terms
of complexity: The Watts-Strogatz (WS) graphs [38]. This
topology combines both short- and long-range connections,
presenting a small average shortest path length and a large
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clustering coefficient. Indeed, these features are recognized
properties that mimic biological neuronal networks [39–42].
Here, we study phase transitions and critical avalanches in WS
networks of stochastic discrete-time leaky integrate-and-fire
neurons. The parameters varied are the probability of rewiring
p, the leakage parameter μ, and the number of neighbors K .
We also report preliminary results of a homeostatic mecha-
nism that lead to SOqC in WS networks.

II. METHODS

Our system is a network of discrete-time stochastic
integrate-and-fire neurons. The network follows the WS topol-
ogy [38], constructed using the package NETWORKX for
Python. The function creates a ring over N neurons, and each
one is connected with its K nearest neighbors (we assume
even values for K). Then shortcuts are created by replacing
some edges in the follow way: For each connection of the ring,
with probability p, replace it with a new connection i- j with a
uniformly random choice of an existing neuron j.

The membrane potential of a neuron i (i = 1, . . . , N)
evolves as

Vi[t + 1] = μiVi[t] + Ii[t] + 1

ki

ki∑
j=1

Wi jXj[t] , (1)

where μ is the leakage parameter, Ii[t] is an external input,
and ki is the number of connections for neuron i. Notice
the neurons can have a different number of connections after
rewiring. The element Wi j gives the synaptic weight between
the jth presynaptic neuron and the ith postsynaptic neuron
(Wi j = 0 if the neurons are not connected). The jth presynap-
tic neuron can be any site j ∈ {1, ..., N} with j �= i.

If at a time step t the neuron fires, its membrane potential is
reset as Vi[t + 1] = 0; otherwise, the neuron follows Eq. (1).
The stochastic firing is implemented as

P(Xi[t] = 1 | Vi[t]) ≡ �(Vi[t]) , (2)

in which �(V ) is the firing function that governs the prob-
ability of a neuron to emit an action potential. The model
incorporates an absolute refractory period of one time step by
imposing �(0) = 0. In principle, any sigmoidal �(V ) func-
tion works, but for convenience we use the so called rational
function [26,29]:

�i(V ) = �i(Vi − θi )

1 + �i(Vi − θi )
�(Vi − θi ), (3)

where �(x) is the Heaviside step function. Here, θi is a fir-
ing threshold value of the membrane potential, below which
the neuron cannot fire, i.e., �(Vi ) = 0 for Vi < θi. The �i in
Eq. (3) is the neuronal gain. The firing threshold is a param-
eter experimentally related to the phenomenon of firing rate
adaptation [43–45]. Notice the limit �(V ) → 1 for large V ,
as it should be for a well-behaved probability function.

The activity of a system with N neurons is, at any time step,

ρ[t] = 〈Xi[t]〉 ≡ 1

N

N∑
i=1

Xi[t] , (4)

where 〈. . .〉 is the average over sites. A control parameter
for this model is the average synaptic weight W = 〈Wi j〉. We
assume here that the distribution P(Wi j ) has finite variance and
well-defined average. The same is assumed for the leakage
parameters μi, gains �i, inputs Ii, and firing thresholds θi, so
that μ = 〈μi〉, � = 〈�i〉, I = 〈Ii[t]〉, and θ = 〈θi〉 can be also
considered as control parameters.

Discarding a transient period tt , the time-averaged network
activity is

ρ = 〈ρ[t]〉t ≡ 1

t f − tt

t f∑
t=tt

ρ[t] , (5)

where t f is a large time period. We assume that, given constant
parameters I, μ, θ, �, and W , there is a stationary activity
(fixed point) ρ(W |�, I, μ, θ ). This activity or firing density is
our order parameter.

However, the closer to the probability p = 1 for the WS
topology, the closer to an Erdös and Rényi network, which in
the limit K = N − 1 → ∞ corresponds to the mean-field case
[46,47]. In this sense, we can gain insight by calculating ρ

as [24]

ρ[t + 1] =
∫

�(V )P(V )[t] dV , (6)

where P(V )[t] is the distribution of membrane potentials at
time t . If μ > 0, there is an efficient numerical method to
calculate this integral [24,26,29]. However, for μ = 0, a very
simple analytic solution is available because the potential den-
sity corresponds to only two Dirac peaks, P(V )[t] = ρδ(V ) +
(1 − ρ)δ(V − W ρ[t] − I ). Together with Eq. (3), this leads to
the mean-field map:

ρ[t + 1] = (W ρ[t] + h)(1 − ρ[t])�

1 + (W ρ[t] + h)�
�(W ρ + h) , (7)

where h = I − θ is the suprathreshold current.
Studying the stationary states of Eq. (7) we see that

the system presents a continuous phase transition for h = 0
[26,29,35]. When the field is h < 0 we have a first order phase
transition, and when h > 0 there is no transition. Here, to set
h = 0 seems to be less natural than to set zero magnetic field
for spin systems because I and θ must be fine tuned. Later we
discuss how a self-organizing mechanism for θi[t] (adaptive
firing thresholds) can tune h toward zero in average. By now,
we assume h = 0 and study the continuous phase transition.

III. RESULTS

A. Phase transitions

In statistical physics, we usually have two versions of a
model to study: quenched and annealed. In the quenched case,
the network is randomly created just once at the beginning and
is kept throughout the simulation; case annealed, on the other
hand, implies a new random definition of the network each
time step. Although the quenched case is more realistic, the
annealed one is often studied because it is more comparable
to theoretical mean-field calculations [37,48].

We first show a comparison of quenched and annealed
cases for the dependence of ρ on W for different values
of rewiring probabilities p in Fig. 1. In the Watts-Strogatz
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FIG. 1. (a) Quenched and (b) annealed phase transitions of ρ(W |p) for several rewiring probabilities p. Parameters K = 4 and N = 10 000.

topology, one observes a continuous absorbing-state phase
transition if h = 0. Close to the critical point Wc(p), for μ = 0,
we have

ρ(W |p) = C(p)

(
W − Wc(p)

W

)β

. (8)

Figure 1 shows no qualitative differences between
quenched and annealed. The quantitative differences of the
respective critical points vary from 0 to 9.5% in the figure.
These differences are coherent, increasing for larger p. When
p = 0 we have always the same network (the ring) in both
quenched and annealed cases. The more long-range interac-
tions, the larger the difference between the critical points. For
Erdös and Rényi networks (equivalent to p = 1 WS topology),
approximately 10% of variation has already been found for
the two cases applied to another neuron network model [37].
These variations can be carefully studied in a future work.

So, from now on, the figures correspond to the annealed case,
given the similarity to mean-field calculations.

In the mean-field case, when h = 0 the stationary map of
Eq. (7) (in which ρ[t + 1] = ρ[t] = ρ) provides

ρ(W, �) = 1

2

(
W − Wc(�)

W

)
, (9)

Wc(�) = 1/� , (10)

where ρ = 0 (absorbing state) for W < Wc. The hyperbolae
Wc(�) is a critical line in the plane W × �, but we can absorb
the variables �,W into a single one, i.e., W = �W . Absorbing
the gain parameter � in W is equivalent to setting � = 1,
without loss of generality. So, we fix � = 1, which means
W = W .

FIG. 2. Curves ρ(W |μ) for several values of the rewiring probability p with K = 4 and N = 10 000. (a) p = 0, (b) p = 0.3, (c) p = 0.6,
(d) p = 1.0.
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FIG. 3. Collapse of ρ(W |μ) for (a) p = 0.0 and (b) p = 1.0. N = 10 000 and K = 4.

Recently it has been found for a square lattice of stochastic
neurons [49]

ρ(W |μ) = C(μ)

(
W − Wc(μ)

W

)β

, (11)

with dimension d = 2 DP exponent β = 0.583. Here we have
similar results for ρ(W |μ, p) (Fig. 2), but with β = 1 for
p > 0 and β = 0.276 for p = 0, as one might expect [50,51].
We find the exponents by applying the data collapse ρ(x) =
1
2 x with x = (W − Wc)/W in Eq. (8); see Fig. 3. In general,
the collapse means that a system or function is the same if
the scales of length, energy, or other variables are multiplied
by a common factor (i.e., if they are rescaled). It represents
universality. This property, also found in studies of the brain
[52,53], is called scale invariance.

The results suggest that any fraction (>0) of long-range
links makes the network behave as a mean-field one, irrespec-
tive of the clustering coefficient of the WS topology. We see

that it is possible to generalize it including the dependence not
only on μ but also for K and p, i.e., ρ(μ, K, p). The form is

ρ(W |p, μ, K ) = C(p, μ, K )

(
W − Wc(p, μ, K )

W

)β

; (12)

see Figs. 4 and 5.
It means that, in principle, we can obtain total data col-

lapse, showing that the parameters p, μ, K do not change the
universality class of the transition (directed percolation) and
only the case p = 0 (d = 1) affects the value of the critical
exponent.

At the mean-field level, it is possible to calculate the pref-
actor C(μ) for moderate μ, exact to O(μ2) [29]:

C(μ) = 1

2 + μ + μ2/(1 − μ)
. (13)

FIG. 4. Curves ρ(W |K ) for several values of p with μ = 0 and N = 10 000. (a) p = 0, (b) p = 0.3, (c) p = 0.6, (d) p = 1.0.
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FIG. 5. Collapse of ρ(W |K ) for (a) p = 0.0 and (b) p = 1.0 with N = 10 000 and μ = 0.

B. Neuronal avalanches

In the Watts-Strogatz topology we have two types of
neuronal avalanches: those with p = 0 (d = 1) and those
with p > 0 (mean-field like with long range connections). To
extract the avalanche critical exponents from our integrate-
and-fire stochastic network, we made a finite size study of
avalanche size and duration.

As a function of N , we calculate the avalanche size com-
plementary cumulative distribution function:

F (s) =
∞∑

x=s

Ps(x) ; (14)

see Fig. 6. We expect a power law F (s) ∝ s1−τ since the
avalanche size distribution is Ps(x) ∝ x−τ .

We also see a clear N-dependent finite size cutoff. So,
we scale the horizontal axis as s/Nc and the vertical axis as
F (s)sτ−1 (Fig. 7). Data collapse leads to a cutoff exponent c =
1, and avalanche exponents τ = 1.11 for p = 0 and τ = 1.5

for p > 0. They are compatible with the d = 1 DP avalanche
exponent τ = 1.108 and the mean-field result τ = 3/2, re-
spectively (see Table I).

We do the same for avalanche durations (d). The comple-
mentary cumulative distribution function is

F (d ) =
∞∑

x=d

Pd (x) , (15)

presented in Fig. 8. We expect a power law F (d ) ∝ s1−τd since
Pd (x) ∝ d−τd . The collapsed data (Fig. 9) give c = 1/2, τd =
1.16 for p = 0 and τd = 2 for p > 0, which is also compatible
with the d = 1 DP value τd = 1.159 and the mean-field value
τd = 2; see Table I.

The case p = 0 has only technical interest, since the ex-
ponents observed experimentally never correspond to d =
1 but to mean-field DP [54]. For p > 0, due to the pres-
ence of long-range links, all results obtained are compatible
with the statistics of mean-field DP, the usual result for
neuronal avalanches [1,24,35–37,50,55–58]. In other words,

FIG. 6. Avalanche size distribution F (s) for several values of N . Leakage μ = 0 and K = 4. (a) p = 0, (b) p = 0.3, (c) p = 0.6, (d)
p = 1.0.
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FIG. 7. Data collapse of the avalanches presented in Fig. 6. (a) p = 0, (b) p = 0.3, (c) p = 0.6, (d) p = 1.0.

even if WS graphs really describe neuronal networks, the
experimental data are unable to constrain the random link
fraction p. Indeed, any complex network model such as Erdös-
Renyi, scale-free Barabasi-Albert, hierarquical models, etc.,
is subdetermined by the mean-field-like exponents found in
experiments [59].

C. Self-organized quasicriticality

We now propose a homeostatic mechanism to tune the sys-
tem around the critical region (self-organized quasicriticality
or SOqC [24,26,29,33–35,59]). In this sense, we introduce
depressing-recovering synapses in a simplified way (we call
it the constant drive model [59]):

Wi j[t + 1] = Wi j[t] + 1

τw

− uWi j[t]Xj[t] , (16)

where we remember that the synaptic weight average is
W [t] ≡ 〈Wi j[t]〉.

This synaptic mechanism has a recovery time τw and a
synaptic depressing fraction 0 < u < 1. Note that this dynam-
ics is simpler than the LHG one [32,33].

TABLE I. Order parameter critical exponent β and avalanche
exponents τ and τd . The case p = 0 corresponds to d = 1 and for
p > 0 we find mean-field values [50].

Exponent d = 1 d = 2 d = 3 MF

β 0.276 0.583 0.805 1
τ 1.108 1.268 1.395 3/2
τd 1.159 1.450 1.730 2

The fixed point condition of Eq. (17) is

W ∗ρ∗ = 1

τwu
, (17)

Now we make a mean-field calculation, valid for complete
graphs, which gives some intuition for the WS case. We also
have the quasicritical activity ρ∗ = O[1/(τwu)] ≈ 0. For any
initial conditions, after a transient, the coordinates (W [t])
finally hover around the quasicritical fixed point (W ∗), char-
acterizing a SOqC system. The same happens for different τw

values.
We remember that the above mean-field calculations are

valid for an infinite complete graph and are reported here
only to give some intuition about the self-organization process
in the model. We reserve a full study of the homeostatic
dynamics for a future paper. Here we only give preliminary
results for a WS network with p = 0.6, μ = 0, I = 0, K = 4,
u = 0.1, and N = 10 000; see Fig. 10.

In this self-organized quasicritical system we have a
fixed point focus that loses stability for τw → ∞. This fo-
cus, perturbed by finite-size (demographic) noise, creates
the stochastic oscillations which, however, have decreasing
amplitude as a function of N [26]. Regardless, if noise is
environmental, which is more realistic in terms of biology, it
does not decrease with N and stochastic oscillations would
be always present (to be studied deeply in a future work).
Interestingly, with our time step δt = 1 ms, the quasiperiodic
oscillations lie in the range δ-γ EEG brain waves, the fre-
quency being controlled by the recovery time τw [29].

IV. DISCUSSION

The order parameter behaves as ρ(W = Wc, h) ∝ h1/δh ,
where δh is the field critical exponent [35]. Here, h is the
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FIG. 8. Avalanche duration distribution F (d ) for several values of N . (a) p = 0, (b) p = 0.3, (c) p = 0.6, (d) p = 1.0. Leakage μ = 0 and
K = 4.

previously defined field h = I − (1 − μ)θ (for μ = 0 this is
the suprathreshold current). This means that the network re-
sponse has a very large dynamic range at criticality; because
of the so called Stevens’s psychophysical exponent m = 1/δh

is small and ρ(h) is a very compressing function [8,48,49,60–
62]. On the other hand, out of the critical point, we have a

linear relation ρ(h) ∝ h and the network mapping between the
input h and the network output ρ(h) is very limited [8,49].

When p > 0, we have the mean-field value δh = 2 so that
the compressing exponent is m = 1/2 [8]. This means that,
say, an O(102) order of magnitude input h can be mapped to
an O(10) output activity ρ. More interestingly, for the ring

FIG. 9. Data collapse: avalanche duration distribution F (d ) for (a) p = 0, (b) p = 0.3, (c) p = 0.6, (d) p = 1.0. Leakage μ = 0 and K = 4.
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FIG. 10. Time series of the homeostatic variables for (a) W [t] for several initial conditions W [0] (with τw = 800); (b) W [t] for several τw;
(c) trajectory of the homeostatic system in the plane ρ vs W . Parameters: p = 0.6, μ = 0, I = 0, K = 4, u = 0.1, and N = 10 000.

of neurons (p = 0), we have the DP value m = 1/δh = 0.111
[50,51], which means that an O(109) signal can be com-
pressed to an O(10) output. This extreme performance seems
to be excessive even for biological sensors: The difference
between luminosity at noon and at moonlight is about 1012

and this dynamic range is dealed by the human eye with sev-
eral complementary systems, including adaptive firing rates.
However, it could be interesting to search if other biological
or artificial d = 1 sensors, based in excitable elements, could
achieve this performance.

One suggestion could be that linear sensory organs, like
the lateral line system of fishes [63,64], could be tuned to
criticality to optimize their dynamic range. By now, this is
only a conjecture for a future work. Anyway, artificial sensors
with this principle [8,65,66] could be constructed.

V. CONCLUSION

The case p = 0 (large world) corresponds to a one-
dimensional system and presents the corresponding d = 1 DP
critical exponents. In this case, avalanches are very large when
compared to N , meaning not only that finite size effects are
important but also that the same neuron participates of the
avalanche several times, in contrast with avalanches for p > 0.

If we include the small-world shortcuts (p > 0), we have
networks that present mean-field exponents compatible with
neuronal avalanche experiments. It is worth mentioning we
considered only sparse networks (K � N) and the phase
transition also depends on the leakage parameter μ, that is,

Wc = Wc(p, K, μ). Anyway, we have showed that full data
collapse can be achieved if we use ρ(x) with the variable
x = [W − Wc(p, K, μ)]/W .

In the context of SOqC, we are aware of only two studied
topologies: random networks of cellular automata with K
neighbors [36,37] and complete graphs of continuous-time
LIF neurons [32,33] or discrete-time stochastic LIF neurons
[24,26,29,35,67]. Hence, our examination of SOqC behavior
in the Watts-Strogatz topology is a welcome addition to this
literature.

As a future work, we intend to make extensive simulations
on homeostatic mechanisms to verify their stability and the
dependence on N for the stochastic oscillation amplitude
caused by environmental noise [26]. Finally, it is possible
to characterize the frequency spectrum of the stochastic
oscillations, applying this to the modeling of brain waves.
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