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Networks of stochastic leaky integrate-and-fire neurons, both at the mean-field level and in square lattices,
present a continuous absorbing phase transition with power-law neuronal avalanches at the critical point. Here we
complement these results showing that small-world Watts-Strogatz networks have mean-field critical exponents
for any rewiring probability p > 0. For the ring (p = 0), the exponents are the same from the dimension d = 1
of the directed-percolation class. In the model, firings are stochastic and occur in discrete time steps, based
on a sigmoidal firing probability function. Each neuron has a membrane potential that integrates the signals
received from its neighbors. The membrane potentials are subject to a leakage parameter. We study topologies
with a varied number of neuron connections and different values of the leakage parameter. Results indicate that
the dynamic range is larger for p = 0. We also study a homeostatic synaptic depression mechanism to self-
organize the network towards the critical region. These stochastic oscillations are characteristic of the so-called

self-organized quasicriticality.

DOI: 10.1103/PhysRevE.104.014137

I. INTRODUCTION

Criticality in the brain is a vastly reported phenomenon
[1-3]. It implies that the networks of neurons can produce
avalanches of spikes with both size and duration distributed
according to power laws. The operation near a critical state
has been presented as a sign of brain health [4,5], besides opti-
mization of information transmission and storage, metastable
states, computational power, and dynamic range, as revealed
by experiments and modeling [6—15].

Although the leaky integrate and fire (LIF) model is one of
the most studied models for simulating neural systems [16],
experiments have shown that cortical neurons respond reliably
to time-dependent input, with small trial-to-trial variations if
the same stimulus is repeated [17,18]. That is a motivation for
using stochastic LIF models.

Discrete-time stochastic neurons have a history since the
1980s (Boltzman machines, Hopfield networks with stochas-
tic neurons). In 1992, Gerstner and van Hemmen introduced a
discrete time stochastic spiking neuron model [19], which is
very similar to the model used here, with a different (exponen-
tial) spike probability function. This model is also discussed
in a well-known book [20]. After that, several groups have
been studying stochastic neurons [21-26].

Systems belonging to the same universality class share the
same behavior near the critical point, particularly the criti-
cal exponents [27,28]. One may group even very different
systems into a reduced number of universality classes due
to similarities at the microscopic level. Recently, it has been
shown that a class of the stochastic LIF neurons present a con-
tinuous absorbing phase transition in the directed percolation
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(DP) universality class [24,29]. Such transition is typical of
self-organized critical models (SOCs) and it has been used to
explain neuronal avalanche experiments [1,9,30,31].

An important question refers to the mechanism that could
tune the networks to the critical region. In a seminal paper,
Levina, Hermann, and Geisel (LHG) [32] proposed depress-
ing and recovering synapses as such a mechanism. The LHG
model was analyzed in depth by Bonachela et al. [33]. They
found that the achieved state is not true SOC: The system
hovers around the critical point with stochastic oscillations,
which has been called self-organized quasicriticality or SOqC.
Indeed, this is typical for any nonconservative system like
earthquake, forest fire, and neuronal network models [34].

It also has been shown that other biologically plausible
mechanisms (dynamic neuronal gains [26,29] and adaptive
firing thresholds [35]) can lead to SOqC. In all these studies,
however, all-to-all (complete graph) networks have been used.
The motivation for that was to compare results with mean-
field calculations. However, this topology is not biologically
realistic. Also, complete graphs present problems for compu-
tational simulation of dynamic synapses, since a network with
N neurons has N(N — 1) synaptic equations, preventing the
work with large systems.

In this respect, random networks are a bit more realistic
and computationally tractable. Indeed, random networks of
stochastic cellular automata with dynamic synapses have been
studied [36,37]. However, such cellular automata do not have
important biological features of integrate-and-fire neurons,
like a continuous state variable (membrane potential), a leak-
age parameter, or a firing threshold.

In this work, we use networks one step further in terms
of complexity: The Watts-Strogatz (WS) graphs [38]. This
topology combines both short- and long-range connections,
presenting a small average shortest path length and a large
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clustering coefficient. Indeed, these features are recognized
properties that mimic biological neuronal networks [39—42].
Here, we study phase transitions and critical avalanches in WS
networks of stochastic discrete-time leaky integrate-and-fire
neurons. The parameters varied are the probability of rewiring
p, the leakage parameter w, and the number of neighbors K.
We also report preliminary results of a homeostatic mecha-
nism that lead to SOqC in WS networks.

II. METHODS

Our system is a network of discrete-time stochastic
integrate-and-fire neurons. The network follows the WS topol-
ogy [38], constructed using the package NETWORKX for
Python. The function creates a ring over N neurons, and each
one is connected with its K nearest neighbors (we assume
even values for K). Then shortcuts are created by replacing
some edges in the follow way: For each connection of the ring,
with probability p, replace it with a new connection i-j with a
uniformly random choice of an existing neuron j.

The membrane potential of a neuron i (i=1,...,N)
evolves as
Vilt + 11 = wVilt] + Lit] + — ZWUX (1)

where p is the leakage parameter, [;[¢] is an external input,
and k; is the number of connections for neuron i. Notice
the neurons can have a different number of connections after
rewiring. The element W;; gives the synaptic weight between
the jth presynaptic neuron and the ith postsynaptic neuron
(W;; = 0 if the neurons are not connected). The jth presynap-
tic neuron can be any site j € {1, ..., N} with j # i.

If at a time step ¢ the neuron fires, its membrane potential is
reset as V;[t 4+ 1] = 0; otherwise, the neuron follows Eq. (1).
The stochastic firing is implemented as

PX[t] = 1| Vilt]) = Vi[t]) , 2

in which ®(V) is the firing function that governs the prob-
ability of a neuron to emit an action potential. The model
incorporates an absolute refractory period of one time step by
imposing ®(0) = 0. In principle, any sigmoidal ®(V') func-
tion works, but for convenience we use the so called rational
function [26,29]:

Li(Vi = 6)

*V =T rwi—e)

O — 6, 3)
where ®(x) is the Heaviside step function. Here, 6; is a fir-
ing threshold value of the membrane potential, below which
the neuron cannot fire, i.e., ®(V;) = 0 for V; < 6;. The I'; in
Eq. (3) is the neuronal gain. The firing threshold is a param-
eter experimentally related to the phenomenon of firing rate
adaptation [43—-45]. Notice the limit (V) — 1 for large V,
as it should be for a well-behaved probability function.

The activity of a system with N neurons is, at any time step,

ka )

plt] = (Xilt]) =

where (...) is the average over sites. A control parameter
for this model is the average synaptic weight W = (W;;). We
assume here that the distribution P(W;;) has finite variance and
well-defined average. The same is assumed for the leakage
parameters u;, gains I';, inputs ;, and firing thresholds 6;, so
that u = (w;), ' = (I'y), I = {[;[t]), and 6 = (6;) can be also
considered as control parameters.

Discarding a transient period ¢, the time-averaged network
activity is

p = {plt]),

_,Z%W 5)

where #; is a large time period. We assume that, given constant
parameters I, u, 0, I', and W, there is a stationary activity
(fixed point) p(W|I', I, u, 8). This activity or firing density is
our order parameter.

However, the closer to the probability p = 1 for the WS
topology, the closer to an Erdos and Rényi network, which in
the limit K = N — 1 — oo corresponds to the mean-field case
[46,47]. In this sense, we can gain insight by calculating p
as [24]

pn+u=f¢wwwmwv, ©)

where P(V)[¢] is the distribution of membrane potentials at
time ¢. If u > 0, there is an efficient numerical method to
calculate this integral [24,26,29]. However, for u = 0, a very
simple analytic solution is available because the potential den-
sity corresponds to only two Dirac peaks, P(V)[t] = p§(V) +
(1 = p)s(V — Wplt] — I). Together with Eq. (3), this leads to
the mean-field map:

Wplt] + (A — pltDI
I+ Wplt]+mI

where h = I — 0 is the suprathreshold current.

Studying the stationary states of Eq. (7) we see that
the system presents a continuous phase transition for 2 = 0
[26,29,35]. When the field is & < O we have a first order phase
transition, and when A > O there is no transition. Here, to set
h = 0 seems to be less natural than to set zero magnetic field
for spin systems because I and 6 must be fine tuned. Later we
discuss how a self-organizing mechanism for 6;[¢] (adaptive
firing thresholds) can tune 4 toward zero in average. By now,
we assume 4 = 0 and study the continuous phase transition.

plt +1]1= OWp+h), ()

III. RESULTS
A. Phase transitions

In statistical physics, we usually have two versions of a
model to study: quenched and annealed. In the quenched case,
the network is randomly created just once at the beginning and
is kept throughout the simulation; case annealed, on the other
hand, implies a new random definition of the network each
time step. Although the quenched case is more realistic, the
annealed one is often studied because it is more comparable
to theoretical mean-field calculations [37,48].

We first show a comparison of quenched and annealed
cases for the dependence of p on W for different values
of rewiring probabilities p in Fig. 1. In the Watts-Strogatz
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FIG. 1. (a) Quenched and (b) annealed phase transitions of p(W |p) for several rewiring probabilities p. Parameters K = 4 and N = 10 000.

topology, one observes a continuous absorbing-state phase
transition if 4 = 0. Close to the critical point W,(p), for u = 0,
we have

W —W, b
(p)> . ®)

p(Wip) = C(p)< W

Figure 1 shows no qualitative differences between
quenched and annealed. The quantitative differences of the
respective critical points vary from 0 to 9.5% in the figure.
These differences are coherent, increasing for larger p. When
p =0 we have always the same network (the ring) in both
quenched and annealed cases. The more long-range interac-
tions, the larger the difference between the critical points. For
Erdos and Rényi networks (equivalent to p = 1 WS topology),
approximately 10% of variation has already been found for
the two cases applied to another neuron network model [37].
These variations can be carefully studied in a future work.
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So, from now on, the figures correspond to the annealed case,
given the similarity to mean-field calculations.

In the mean-field case, when & = 0 the stationary map of
Eq. (7) (in which p[t + 1] = p[¢] = p) provides

_ (W= WD)
W.(') = 1/T", (10

where p = 0 (absorbing state) for W < W,. The hyperbolae
W,(I") is a critical line in the plane W x I', but we can absorb
the variables I, W into a single one, i.e., W =TW. Absorbing
the gain parameter I in W is equivalent to setting I' =1,
without loss of generality. So, we fix I' = 1, which means
wW=W.

(d)os
0.4
03

Q
0.2

0.1

0.0 1

(d) o5
0.4
03

Q
0.2

Hu=0.3
pu=0

® ¢ B 4«

(J
01{ v ™ « &
. °®
..
0.0 {remmesssmsossse>
0 1 2 3 4 5 6
W

FIG. 2. Curves p(W|u) for several values of the rewiring probability p with K =4 and N = 10000. (a) p =0, (b) p = 0.3, (c) p = 0.6,

@ p=10.
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FIG. 3. Collapse of p(W|ur) for (a) p = 0.0 and (b) p=1.0. N = 10000 and K = 4.

Recently it has been found for a square lattice of stochastic
neurons [49]

(11

W —W.()\’
)

pWin) = C(M)(

with dimension d = 2 DP exponent 8 = 0.583. Here we have
similar results for p(W|u, p) (Fig. 2), but with 8 =1 for
p > 0and g = 0.276 for p = 0, as one might expect [50,51].
We find the exponents by applying the data collapse p(x) =
%x with x = (W — W,)/W in Eq. (8); see Fig. 3. In general,
the collapse means that a system or function is the same if
the scales of length, energy, or other variables are multiplied
by a common factor (i.e., if they are rescaled). It represents
universality. This property, also found in studies of the brain
[52,53], is called scale invariance.

The results suggest that any fraction (>0) of long-range
links makes the network behave as a mean-field one, irrespec-
tive of the clustering coefficient of the WS topology. We see
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that it is possible to generalize it including the dependence not
only on u but also for K and p, i.e., p(u, K, p). The form is

_ B
w Wc(p,M,K)) (1)

p(WIp,M,K)ZC(p,M,K)( W

see Figs. 4 and 5.

It means that, in principle, we can obtain total data col-
lapse, showing that the parameters p, i, K do not change the
universality class of the transition (directed percolation) and
only the case p =0 (d = 1) affects the value of the critical
exponent.

At the mean-field level, it is possible to calculate the pref-
actor C(u) for moderate u, exact to O(u?) [29]:

1
24 pu+ /(1 —p)’

Clu) =

13)

(b)os
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FIG. 4. Curves p(W|K) for several values of p with u =0 and N = 10000. (a) p=0, (b) p=10.3,(c) p=10.6,(d) p = 1.0.
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FIG. 5. Collapse of p(W|K) for (a) p = 0.0 and (b) p = 1.0 with N = 10000 and p = 0.

B. Neuronal avalanches

In the Watts-Strogatz topology we have two types of
neuronal avalanches: those with p =0 (d = 1) and those
with p > 0 (mean-field like with long range connections). To
extract the avalanche critical exponents from our integrate-
and-fire stochastic network, we made a finite size study of
avalanche size and duration.

As a function of N, we calculate the avalanche size com-
plementary cumulative distribution function:

F(s)=Y Px): (14)

see Fig. 6. We expect a power law F(s) oc s'~7 since the
avalanche size distribution is P;(x) oc x 7.

We also see a clear N-dependent finite size cutoff. So,
we scale the horizontal axis as s/N¢ and the vertical axis as
F(s)s*! (Fig. 7). Data collapse leads to a cutoff exponent ¢ =
1, and avalanche exponents T = 1.11 for p=0and t = 1.5
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for p > 0. They are compatible with the d = 1 DP avalanche
exponent T = 1.108 and the mean-field result v = 3/2, re-
spectively (see Table I).

We do the same for avalanche durations (d). The comple-
mentary cumulative distribution function is

Fd)=) Pix), (15)
x=d

presented in Fig. 8. We expect a power law F (d) oc s'~% since
P;(x) oc d7%. The collapsed data (Fig. 9) give c = 1/2, 15 =
1.16 for p = 0 and 7; = 2 for p > 0, which is also compatible
with the d = 1 DP value t; = 1.159 and the mean-field value
Ty = 2; see Table 1.

The case p = 0 has only technical interest, since the ex-
ponents observed experimentally never correspond to d =
1 but to mean-field DP [54]. For p > 0, due to the pres-
ence of long-range links, all results obtained are compatible
with the statistics of mean-field DP, the usual result for
neuronal avalanches [1,24,35-37,50,55-58]. In other words,
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S

FIG. 6. Avalanche size distribution F(s) for several values of N. Leakage =0 and K =4. (a) p=0, (b) p=0.3, (c) p= 0.6, (d)

p=1.0.
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FIG. 7. Data collapse of the avalanches presented in Fig. 6. (a) p =0, (b) p = 0.3, (¢) p = 0.6, (d) p = 1.0.

even if WS graphs really describe neuronal networks, the
experimental data are unable to constrain the random link
fraction p. Indeed, any complex network model such as Erdos-
Renyi, scale-free Barabasi-Albert, hierarquical models, etc.,
is subdetermined by the mean-field-like exponents found in
experiments [59].

C. Self-organized quasicriticality

We now propose a homeostatic mechanism to tune the sys-
tem around the critical region (self-organized quasicriticality
or SOqC [24,26,29,33-35,59]). In this sense, we introduce
depressing-recovering synapses in a simplified way (we call
it the constant drive model [59]):

1
Wijlr + 1] =Wij[t]~l-T——uWij[t]Xj[t], (16)

w

where we remember that the synaptic weight average is
Wt] = (Wy[r)).

This synaptic mechanism has a recovery time t,, and a
synaptic depressing fraction 0 < u < 1. Note that this dynam-
ics is simpler than the LHG one [32,33].

TABLE 1. Order parameter critical exponent 8 and avalanche
exponents T and ;. The case p = 0 corresponds to d = 1 and for
p > 0 we find mean-field values [50].

Exponent d=1 d=2 d=3 MF
B 0.276 0.583 0.805 1
T 1.108 1.268 1.395 3/2
T 1.159 1.450 1.730 2

The fixed point condition of Eq. (17) is

W*p* — L ,
Tyl

7)

Now we make a mean-field calculation, valid for complete
graphs, which gives some intuition for the WS case. We also
have the quasicritical activity p* = O[1/(7,u)] ~ 0. For any
initial conditions, after a transient, the coordinates (W{¢])
finally hover around the quasicritical fixed point (W*), char-
acterizing a SOqC system. The same happens for different 7,
values.

We remember that the above mean-field calculations are
valid for an infinite complete graph and are reported here
only to give some intuition about the self-organization process
in the model. We reserve a full study of the homeostatic
dynamics for a future paper. Here we only give preliminary
results for a WS network with p = 0.6, u =0, =0, K =4,
u = 0.1, and N = 10000; see Fig. 10.

In this self-organized quasicritical system we have a
fixed point focus that loses stability for 7,, — oo. This fo-
cus, perturbed by finite-size (demographic) noise, creates
the stochastic oscillations which, however, have decreasing
amplitude as a function of N [26]. Regardless, if noise is
environmental, which is more realistic in terms of biology, it
does not decrease with N and stochastic oscillations would
be always present (to be studied deeply in a future work).
Interestingly, with our time step 6¢ = 1 ms, the quasiperiodic
oscillations lie in the range §-y EEG brain waves, the fre-
quency being controlled by the recovery time t,, [29].

IV. DISCUSSION

The order parameter behaves as p(W = W,, h) oc h!/%,
where §;, is the field critical exponent [35]. Here, & is the
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FIG. 8. Avalanche duration distribution F'(d) for several values of N. (a) p =0, (b) p = 0.3, (c) p = 0.6, (d) p = 1.0. Leakage = 0 and
K =4.

previously defined field h =7 — (1 — u)@ (for u = O this is linear relation p(#) o & and the network mapping between the
the suprathreshold current). This means that the network re- input /2 and the network output p(#) is very limited [8,49].

sponse has a very large dynamic range at criticality; because When p > 0, we have the mean-field value &, = 2 so that
of the so called Stevens’s psychophysical exponent m = 1/6, the compressing exponent is m = 1/2 [8]. This means that,
is small and p(h) is a very compressing function [8,48,49,60— say, an O(10%) order of magnitude input 4 can be mapped to
62]. On the other hand, out of the critical point, we have a  an O(10) output activity p. More interestingly, for the ring

a
10°
©o
~
=] o
° <
S e N =2000 T 10-1{ © N=2000
T v N =4000 v N =4000
10-2{ ¢ N =28000 ¢ N =8000
¢ N =16000 A ¢ N =16000 AC4
L]
% N = 32000 %. 10-2{ * N=32000 v
1072 107! 10° 10! 102 103 107! 10° 10!
d/N1/2 d/NIIZ
(c) (d)
100 100
= =
\:i | n=2000 \E 1071{ o
10 v N =4000 v
¢ N =8000 .
¢ N =16000 We . oo
# N = 32000 10721 « N =32000 v
1072 ve °
1071 10° 10t 107! 10° 10!
d/N/2 d/N/2

FIG. 9. Data collapse: avalanche duration distribution F'(d) for (a) p = 0, (b) p = 0.3, (¢c) p = 0.6, (d) p = 1.0. Leakage x = 0 and K = 4.
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FIG. 10. Time series of the homeostatic variables for (a) W[¢] for several initial conditions W [0] (with ,, = 800); (b) W [¢] for several 7,,;
(c) trajectory of the homeostatic system in the plane p vs W. Parameters: p = 0.6, u =0,/ =0, K =4,u = 0.1, and N = 10 000.

of neurons (p = 0), we have the DP value m = 1/, = 0.111
[50,51], which means that an (O(10%) signal can be com-
pressed to an O(10) output. This extreme performance seems
to be excessive even for biological sensors: The difference
between luminosity at noon and at moonlight is about 10
and this dynamic range is dealed by the human eye with sev-
eral complementary systems, including adaptive firing rates.
However, it could be interesting to search if other biological
or artificial d = 1 sensors, based in excitable elements, could
achieve this performance.

One suggestion could be that linear sensory organs, like
the lateral line system of fishes [63,64], could be tuned to
criticality to optimize their dynamic range. By now, this is
only a conjecture for a future work. Anyway, artificial sensors
with this principle [8,65,66] could be constructed.

V. CONCLUSION

The case p=0 (large world) corresponds to a one-
dimensional system and presents the corresponding d = 1 DP
critical exponents. In this case, avalanches are very large when
compared to N, meaning not only that finite size effects are
important but also that the same neuron participates of the
avalanche several times, in contrast with avalanches for p > 0.

If we include the small-world shortcuts (p > 0), we have
networks that present mean-field exponents compatible with
neuronal avalanche experiments. It is worth mentioning we
considered only sparse networks (K < N) and the phase
transition also depends on the leakage parameter u, that is,

W, = W.(p, K, ). Anyway, we have showed that full data
collapse can be achieved if we use p(x) with the variable
x=[W —W.p, K, W)l/W.

In the context of SOqC, we are aware of only two studied
topologies: random networks of cellular automata with K
neighbors [36,37] and complete graphs of continuous-time
LIF neurons [32,33] or discrete-time stochastic LIF neurons
[24,26,29,35,67]. Hence, our examination of SOqC behavior
in the Watts-Strogatz topology is a welcome addition to this
literature.

As a future work, we intend to make extensive simulations
on homeostatic mechanisms to verify their stability and the
dependence on N for the stochastic oscillation amplitude
caused by environmental noise [26]. Finally, it is possible
to characterize the frequency spectrum of the stochastic
oscillations, applying this to the modeling of brain waves.
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