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Phase transitions in Schloegl’s second model for autocatalysis on a Bethe lattice
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Schloegl’s second model (also known as the quadratic contact process) on a lattice involves spontaneous
particle annihilation at rate p and autocatalytic particle creation at empty sites with n � 2 occupied neighbors.
The particle creation rate for exactly n occupied neighbors is selected here as n(n−1)/[z(z−1)] for lattice
coordination number z. We analyze this model on a Bethe lattice. Precise behavior for stochastic models on
regular periodic infinite lattices is usually surmised from kinetic Monte Carlo simulation on a finite lattice with
periodic boundary conditions. However, the persistence of boundary effects for a Bethe lattice complicates this
process, e.g., by inducing spatially heterogenous states. This motivates the exploration of various boundary
conditions and unconventional simulation ensembles on the Bethe lattice to predict behavior for infinite size. We
focus on z = 3, and predict a discontinuous transition to the vacuum state on the infinite lattice when p exceeds
a threshold value of around 0.053.

DOI: 10.1103/PhysRevE.104.014135

I. INTRODUCTION

There remain fundamental challenges in understanding
nonequilibrium phase transitions in stochastic lattice-gas
models where the rates for processes defining the model do
not satisfy a detailed-balance condition [1–3]. Perhaps the op-
timal prototype for analysis of discontinuous nonequilibrium
phase transitions is Schloegl’s second model [4] involving
spontaneous particle annihilation at rate p, and autocatalytic
particle creation at empty sites with two or more occupied
neighbors [5,6]. This model is equivalent to the quadratic
contact process on a lattice where infected sites spontaneously
recover, and healthy sites can be infected if they have two or
more sick neighbors [5]. Different prescriptions are possible
for the particle creation rates, e.g., a “threshold” choice with
a single creation rate of r = 1 for all configurations with
n � 2 occupied neighbors [7,8], or a “combinatorial” choice
of creation rate

rn =
(

n
2

)/(
z
2

)
= n(n − 1)

z(z − 1)
(1)

for empty sites with n occupied neighbors (out of a total of
z neighbors) [9]. Here, z corresponds to the lattice coordina-
tion number. The latter choice has some advantages allowing
simplification of the exact master equations [9]. However,
qualitative behavior of the model does not seem to depend
on the specific choice of creation rates.

Since an exact solution of the corresponding master equa-
tions is not possible, precise assessment of model behavior on
conventional (Euclidean) periodic lattices in the limit of infi-
nite size is usually surmised from kinetic Monte Carlo (KMC)
simulation on finite lattices with periodic boundary conditions
(BCs). Such analysis for various versions of Schloegl’s second

model on a square lattice reveals the presence of a discontinu-
ous phase transition to the trivial absorbing vacuum state (with
no particles) for sufficiently high p [6,8,9]. There are also
some subtleties such as the existence of generic two-phase
coexistence which are described elsewhere and not discussed
further here [6,8,9].

Bethe lattices [10], finite versions of which correspond to
regular Cayley trees [11], have played a significant role in
statistical mechanics. Sometimes exact solution of interacting
particle systems or percolation problems on Bethe lattices is
possible being facilitated by the lack of closed loops or cycles
on the lattice [11–15]. Bethe lattices also constitute a special
case of more general networks for which there is extensive
interest in analysis of cooperative phenomena [15]. Thus, it is
natural to consider the behavior of Schloegl’s second model
on Bethe lattices, our focus here. We will consider primarily
the case of coordination number z = 3. Indeed, there have
been previous analyses in the mathematical statistics litera-
ture for discrete and continuous time threshold versions of
the model [16,17], as well as an analysis on more complex
random graph type networks [18].

However, a significant complication for the use of KMC
analysis on finite Bethe lattices to extract behavior for infinite
lattice is the persistence of boundary effects [15,19,20]. We
address this issue by exploring various BCs in an attempt
to identify the optimal choices which minimize finite size
effects. We also exploit unconventional simulation ensembles
which aid assessment of behavior for an infinite system.

Site labeling for the Bethe lattice used for Schloegl model
analysis is described in Sec. II. The hierarchical version of
the exact master equations for the Schloegl model which
describe heterogeneous (as well as homogeneous) states, and
truncation approximations to these equations, are described in
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FIG. 1. Schematic of Bethe lattice for z = 3. Rings (or shells) are
labeled k = 1, 2, … Site labels are in red.

Sec. III. So-called constant-coverage (CC) KMC simulations
of steady-state behavior in the model are described in Sec.
IV. Refined versions of these CC simulations, as well as
conventional continuous time constant-p simulations of time
evolution, are presented in Sec. V. Some insights from an
analytic treatment are presented in Sec. VI. Conclusions are
provided in Sec. VII.

II. BETHE LATTICE SITE LABELING FOR SCHLOEGL
MODEL ANALYSIS

We represent either finite or infinite Bethe lattices as having
a central site R0 labeled j = 1; R0 is surrounded by a ring
or shell R1 of z sites labeled j = 2, 3, . . . , z + 1; R1 is sur-
rounded by second ring R2 with a total of z(z−1) sites labeled
j = z + 2, . . . , 1 + z2 such that each site in R1 is connected
to z−1 sites in R2; etc. More generally, the kth ring, Rk, has
z(z−1)k−1 sites, where the site labels j satisfy

[z(z − 1)k−1 − 2]/(z − 2) < j

� [z(z − 1)k − 2]/(z − 2) for ring Rk. (2)

With this labeling system, it is straightforward to identify
the z neighbors of any site, a requirement for developing a
KMC simulation algorithm. See the Supplemental Material
(SM) [21]. Figure 1 illustrates the above geometry and site
labeling for z = 3.

We consider the combinatorial version of Schloegl’s sec-
ond model described in Sec. I on such Bethe lattices. Our
ultimate goal is to characterize behavior on an infinite Bethe
lattice. However, our simulation analysis is performed on a
finite Bethe lattice (or Cayley tree) where particles are an-
nihilated and created on the first k∗ rings Rk for 1 � k � k∗
subject to boundary conditions (BCs) imposed on ring Rk∗+1.
The BCs are described in detail in Sec. IV. Note that for large

k∗, the number of boundary sites, Bk∗+1, in ring Rk∗+1 and the
total number of sites Nk∗ in rings R1 through Rk∗ are given by

Bk∗+1 = z(z − 1)k∗
and

Nk∗ = [z(z − 1)k∗ − 2]/(z − 2) ∼ z(z − 2)−1(z − 1)k∗
.

(3)

These quantities are comparable for z = 3, and Bk∗+1 actu-
ally exceeds Nk∗ for z > 3.

III. HETEROGENEOUS HIERARCHICAL
MASTER EQUATIONS

An exact analytic formulation of behavior of the stochastic
model on finite or infinite lattices can be based on the appro-
priate master equations. We present the hierarchical version
of these equations [22,23] where the evolution equation for
the probability that a specific site is occupied couples to
probabilities for ensembles of multiple sites with various con-
figurations. Evolution equations for those multisite ensemble
probabilities couple to probabilities for even larger ensembles.
Analysis of this hierarchy of equations generally requires
the application of some type of hierarchical truncation ap-
proximation, where probabilities of larger ensembles or sites
are written in terms of probabilities for smaller ensembles
[1,24,25].

In presenting these equations, we also allow for the possi-
bility of spatially heterogeneous states [22,23], but only states
with “circular symmetry” wherein all sites in a given ring
are equivalent. Such states will occur on a finite lattice for
choices of boundary conditions incorporating this symmetry,
as applies for all our choices. The probability, P•k, for a site
in ring k to be occupied (•), i.e., the particle “concentration”
in ring k, satisfies

d/dtP•k = −pP•k(spontaneous annihilation)

+ gain terms (autocatalytic creation). (4)

The gain terms account for all possible (z
n) configurations

of the z neighboring sites of an empty (o) site in ring k with n
populated sites and z−n empty sites, where the number n of
populated sites ranges over 2 � n � z. The overall gain term
involves a sum over the probability of these configurations
times the appropriate creation rates rn. Thus, this “primitive”
form of the master equations is somewhat unwieldy involving
a sum over a large number of particle creation terms for 2 �
n � z occupied sites neighboring the empty site. However,
due to our special combinatorial choice of rates, rn, these
gain terms can be simplified or exactly reduced to involve a
sum over probabilities of just triples of sites where the site
in ring k is empty, and one considers all possible pairs of
occupied neighbors of that site. This exact reduction uses
conservation of probability relations, and is described in detail
for the combinatorial version of Schloegl’s second model in
Ref. [9]. As an aside, we note that an analogous exact reduc-
tion of particle creation terms is also possible in the master
equations for Durrett’s version of Schloegl’s second model, as
described in detail in Refs. [22,23]. Then, accounting for the
equal probabilities of many of these configurations, (4) adopts
the form shown in Fig. 2(a). Separate treatment is naturally
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FIG. 2. Low-order hierarchical master equations for heteroge-
neous states. (a) Evolution equation for the probability of an
occupied site, P•k, in ring k � 1. (b) Evolution equation, Pok−1ok for
the probability of a neighboring empty pair of sites, one in ring k−1
and the other in ring k. Note that the second loss term with the factor

(z−2
2 ) is absent for z = 3. Notation: P•k−1 − ok (or more concisely

P•k−1ok) denotes the probability of a neighboring filled site in ring
k−1 and an empty site in ring k; P•k−1 − ok − •k+1 (or P•k−1ok•k+1)
denotes the probability a triple of sites with a filled site in ring k, an
empty site in ring k−1, and an empty site in ring k + 1, where sites
in adjacent rings are neighbors; etc. Thin lines are included in the
figure to indicate bonds between neighboring sites and thus indicate

lattice structure. Note that (z
2)−1 = k2 is the rate for particle creation

at an empty site with exactly two occupied neighbors.

needed for site j = 1 in R0, and also for the outer boundary
sites for a finite lattice.

The simplest mean-field (MF) or site approximation fac-
torizes multisite probabilities as a product of single-site
probabilities. Introducing the notation Ck = P•k for the con-
centration of particles in ring k, then in the MF approximation
one has for example that

P•k−1ok•k+1 ≈ Ck−1(1 − Ck )Ck+1. (5)

Then, the MF version of the equations in Fig. 2(a) become
a set of lattice differential equations (also known as discrete
reaction-diffusion equations or dRDEs),

d/dtCk = −pCk + (1 − Ck )Ck+1[2Ck−1 + (z − 2)Ck+1]/z,

for k � 1, (6)

supplemented by

d/dtC0 = −pC0 + (1 − C0)(C1)2, for k = 0. (7)

In a MF analysis of the special case of a spatially ho-
mogenous state (i.e., a state which is spatially uniform in an
ensemble or statistically averaged sense) where Ck = C inde-
pendent of k, (6) and (7) reduce to the familiar MF kinetics
for Schloegl’s second model where [4,23]

d/dtC = −pC + (1 − C)C2 independent of z, (8)

with corresponding steady states [4,23],

C±(site) = 1

2
± 1

2
(1 − 4p)1/2 for

0 � p � ps(site) = 1

4
, and Cvac = 0. (9)

Here C+ and Cvac are stable, and C− is an unstable steady
state. C± are populated states, and Cvac is the trivial absorb-
ing vacuum state. C+ and C− disappear beyond the spinodal

point ps, a sn bifurcation. We caution, however, that MF site
approximation predictions provide a poor description of exact
model behavior [9].

Despite their neglect in the MF treatment, there do exist
significant spatial correlations in the model. More specifically,
autocatalytic particle creation naturally induces clustering
of particles on the lattice, and consequently also clustering
of empty sites. Thus, a more effective higher-level hier-
archical truncation approximation is provided by the pair
approximation [8,22,23] which attempts to incorporate these
correlations. One starts with the evolution equations for
P•k = Ck and for the probability of an adjacent empty pair
of sites, Pok−1ok = Dk−1,k, say, as shown in Figs. 2(a) and
2(b), respectively. One then factorizes probabilities of triplets
and larger ensembles of sites as a product of constituent pair
probabilities, also compensating for overcounting of sites.
Thus, for example, one obtains

P•k−1ok•k+1 ≈ P•k−1okPok•k+1/Pok, (10)

where the right-hand side can be written in terms of Ck,
Dk−1,k, and Dk,k+1 utilizing conservation of probability rela-
tions. Applying this procedure to the equations indicated in
Fig. 2 generates a closed coupled set of lattice differential
equations for the Ck and for Dk−1,k. See Appendix A for
details.

As an aside, we note that rather than pair probabilities,
Pok−1ok, P•k−1ok, etc., for some analyses it is natural to
introduce as alternative variables the conditional probabilities
or concentrations, Kk|k−1 = Pok−1 − •k/Pok−1 or Kk|k+1 =
P•k − ok+1/Pok+1 for finding an occupied site in ring k given
an adjacent empty site in ring k−1 or ring k + 1, respectively.

In a pair approximation analysis of the special case of
a spatially homogenous state or a “spatially uniform” state,
not just C = Ck is independent of k, but all pair, triplet, etc.,
probabilities are also independent of location in the system. A
consequence of the latter is that there is a unique conditional
concentration

K = Kk|k−1 = Kk|k+1 = P • o/Po (11)

of finding an occupied site adjacent to a specified empty site
(which is independent of k). Indeed, K is a natural variable
for our analysis, as will be clear from the following. The pair
approximation [23] for homogeneous states yields

d/dtC = −pC + (1 − C)K2 and

d/dt Poo = 2P • o[p − (z − 2)K (1 − K )/z].
(12)

Analysis of steady state behavior finds a stable populated
steady state with

K±(pair) = 1

2
± 1

2
[1 − 4zp/(z − 2)]1/2 (13)

and

C±(pair) = (K±)2/[p + (K±)2]

= 1/{1 + 1/[K±/p−z/(z−2)]}

= 1−1

2
{−1 + 4p/(z − 2) ± [1 − 4zp/(z − 2)]1/2}/

[1 + 4p/(z − 2)2], (14)
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for 0 � p � ps(pair) = (z−2)/(4z), the spinodal point.
Again, C+ and C− correspond to stable and unstable populated
steady states, respectively, as do K+ and K−. There also exists
a vacuum steady state Cvac(pair) = Kvac(pair) = 0. For our
subsequent analysis, it is also instructive to note that the con-
ditional probability or concentration in the pair approximation
satisfies both

K = (z − 2)C/(z − 2C) and K = [pC/(1 − C)]1/2,

(15)
for the stable and unstable populated states. The above-
mentioned clustering of particles implies anticlustering of
filled-empty pairs which means that K < C, consistent with
the first relation in (15). We note that the same pair approx-
imation results apply for a hypercubic lattice with (even)
coordination number z [23]. Also, as expected in this spatially
homogenous case, the pair approximation recovers MF behav-
ior in the limit as z → ∞.

Higher-order truncation approximations are also possible
including the triplet approximation which retains probabilities
of adjacent triples of sites (as well as probabilities of pairs and
single sites), the quartet approximation which retains proba-
bilities of adjacent quartets of sites, etc. However, while there
is generally a substantial improvement in predictive capability
going from the site to the pair approximation, only relatively
minor improvements are seen for higher-order approxima-
tions. Thus, we do not discuss the latter further in this study.

IV. CC-ENSEMBLE SIMULATION ANALYSIS FOR FINITE
z = 3 BETHE LATTICES

KMC simulations for our combinatorial version of
Schloegl’s second model are performed on finite Bethe lat-
tices where particles are created and annihilate on rings R1

through Rk∗ , and boundary conditions (BCs) are imposed at
ring Rk∗+1. Conventional (constant p) simulation of evolution
in this continuous-time Markovian model implements particle
creation and annihilation processes with probabilities propor-
tional to their rates. Since there is not a significant spread in
rates for the model, we do not use a rejection-free algorithm
but rather a basic algorithm. In this case, sites are selected
at random and events implemented with probabilities propor-
tional to the relevant rates for a specified particle annihilation
rate, p. For analysis of time evolution of the model in Sec.
V, we perform such simulation tracking time in terms of
the number of Monte Carlo steps per site (with a suitable
normalization based upon the maximum rate). When such
simulations are run for sufficient time to reach a stable steady
state, and where this process is repeated for a number of differ-
ent p values, one can extract the variation of the steady-state
C = C(p) for such states.

Indeed, most of our analysis focuses on characterization of
steady-state behavior. However, it is convenient and efficient
to utilize instead a constant-coverage (CC) simulation ensem-
ble, or some modification thereof. In a standard CC ensemble
simulation [26], a target concentration C = Ct for the entire
system is selected, and particle annihilation (creation) is at-
tempted if the actual concentration is above (below) the target.
When particle creation is attempted, it occurs with probabil-
ities reflecting the prescribed rates, rn, in our combinatorial

version of Schloegl’s second model. From the fraction of at-
tempts at annihilation, one extracts the p value corresponding
to the target value C = Ct . Thus, running such simulations for
a number of different target Ct , one can extract p = p(C) for
the steady state. This functional relationship can be inverted
to obtain C = C(p). For an infinite system, the constant-p and
CC simulation ensemble produce identical results analogous
to canonical versus grand canonical simulation of equilibrium
systems. This equivalence of ensembles for nonequilibrium
models is discussed and confirmed in Ref. [27] for standard
Euclidean lattices, but previous analysis for Bethe lattices is
lacking. For finite systems, some differences arise, as dis-
cussed below.

We consider five choices of BCs as a way to provide addi-
tional insight, and to better assess behavior in the limit of an
infinite lattice. All these choices utilize information on parti-
cle concentration and spatial correlations obtained on-the-fly
from the CC simulation itself. An extreme active choice of
BCs [BCact], which assigns all sites of ring Rk∗+1 to be perma-
nently occupied, most strongly “enhances” populated states.
This BC clearly precludes a transition to the vacuum state.
A different mean-field type choice of BCs [BCMF] randomly
assigns sites in ring Rk∗+1 to be occupied with probability 〈C〉,
where 〈C〉 is the mean population of sites in rings R1 through
Rk∗ . The MF choice neglects all spatial correlations, which are
significant in the model. Thus, we also consider a set of refined
“correlated” choices of BCs [BCPa, BCPb, BCPc], described
below, which attempts to account for spatial correlations esti-
mated at the level of the pair (P) approximation in determining
the occupancy of sites in ring Rk∗+1.

Noting that the state of sites in ring Rk∗+1 is only relevant
when attempting to create a particle at an empty site in ring
Rk∗ , correlated choices of BCs randomly assign sites in ring
Rk∗+1 to be populated with probability K = P • o/Po using
some estimate of this conditional probability. Two of these
choices estimate K from either

K = Ka = 〈C〉/(3 − 2〈C〉) [BCPa],

or K = Kb = [p〈C〉/(1 − 〈C〉)]1/2 [BCPb],
(16)

motivated by the pair approximation relations (15). Plausibly,
BCPb is more effective than BCPa as it incorporates an esti-
mate of K = Kb which is based upon the exact steady-state
relation, pC = (1−C)Q, where Q is the conditional probabil-
ity of a pair of occupied sites adjacent to a specified empty
site [cf. Fig. 2(a)]. Thus, the only approximation in determin-
ing Kb is the assumption that Q = K2. We anticipate that a
treatment [BCPc] superior to either BCPa or BCPb comes from
determining the conditional probability, K = Kc, exactly from
simulated configurations.

Next, we present KMC simulation results for model behav-
ior when z = 3 with different BCs, thereby revealing a strong
dependence on BCs. As an aside, we note that the “best”
choice of BC should be the one where behavior in the finite
system most closely mimics that of an infinite system. In this
respect, we anticipate that BCact is the worst, and BCPc is the
best BC. Figure 3 shows the results from CC simulations for
the steady-state C versus p on a Bethe lattice with k∗ = 16
rings (i.e., BC are imposed on R17) for the various BCs. Also
shown are the site and pair approximation predictions for an
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C

p

pair approx.

site approx.

site approx.

BCPb BCPc BCPa

BCact

BCMF

FIG. 3. CC-ensemble KMC simulation results for the global
steady-state concentration C versus p for Schloegl’s second model
on a finite Bethe lattice with z = 3 and BC at R17. Each data point
is obtained as an average over 104 Monte Carlo steps (MCSs).
Also shown are results for the site and pair approximation for an
infinite homogeneous system corresponding to Eqs. (9) and (14),
respectively.

infinite system corresponding to (9) and (14), respectively.
A prominent feature of all approximations, except BCact, is
an apparent regime of bistability for some 0 � p � ps with
coexisting stable high-concentration populated and vacuum
states, in addition to a steady state with intermediate con-
centration. Traditionally, the intermediate concentration state
would be identified as unstable, noting that the CC ensemble
has the advantage of automatically probing stable as well as
unstable steady states [28,29]. Such bistability is in contrast
to a discontinuous transition (with associated metastability
and hysteresis) anticipated for the model on an infinite Bethe
lattice. (Such discontinuous transitions are also realized for
infinite regular Euclidean lattices.)

The extent of the bistable loops in Fig. 3 is substantial, and
the intermediate concentration steady state seems robust in
CC simulations. These features are reminiscent of those seen
in analytic mean-field type treatments, and also in CC simula-
tions of so-called hybrid stochastic lattice-gas models, where
for the monomer-dimer reaction, the monomer concentration
is treated as a global variable due to high monomer mobility,
but dimers are treated explicitly in the lattice-gas modeling
[28–32]. The origin of the strong bistability in such hybrid
models lies in the feature that the critical radius of a droplet of
the more stable phase embedded in the less stable phase scales
like the diffusion length [29,33–35]. Thus, the critical droplet
has a macroscopic size for high mobility, thereby inducing
bistability (or more precisely very long-lived mestastability).
A spatially uniform unstable steady state is stabilized in CC
simulations, whereas for conventional constant p simulations
on a finite lattice, the system makes transitions between the
two stable steady states [30–32].

The presence of a global monomer concentration in the
hybrid monomer-dimer reaction model is reminiscent of our
use of a BC for the Schloegl model on the Bethe lattice with
C or K determined as a global average. This type of BC could
facilitate the strong bistability observed in our CC simulations

Ct

C k

Decreasing Ct

Ct = 0.911
0.898

0.886

0.873

0.847
0.797

0.746
0.619

FIG. 4. CC-ensemble KMC simulation results for ring concen-
trations Ck versus ring index k for Schloegl’s second model on a finite
Bethe lattice with z = 3 and BCPc imposed at R18.

for a Bethe lattice. However, more detailed analysis reveals
distinct behavior between the hybrid monomer-dimer model
on a Euclidean lattice with a homogeneous unstable steady-
state hybrid and the Schloegl model on the finite Bethe lattice
which has a heterogeneous unstable steady state. Figure 4
shows the variation of ring concentration with ring label k
for different target concentrations Ct in our simulations of
Schloegl’s second model with boundary condition BCPc. For
all Ct < 0.9 corresponding to the unstable state, there is a
strong decrease in ring concentration approaching the central
ring R0 or site k = 0.

For the active boundary condition BCact, there is no bista-
bility, and instead a unique stable populated steady state
persists for all p. For large p, it is clear that the dominant
contribution to the particle population (not including the spec-
ified populated boundary sites) will come from ring Rk∗ where
there is a rough balance between the rate of creation of parti-
cles, Rcreate = r2(1 − Ck∗ ) = (1 − Ck∗ )/3 induced by the two
populated sites in ring k∗ + 1, noting that the neighboring site
in ring k∗ − 1 is typically empty, and the rate of spontaneous
annihilation Rannih = pCk∗ , so that

Ck∗ ≈ 1/(1 + 3p), for large p. (17)

Then, using Ck ≈ 0 for k < k∗, and accounting for the number
of sites in various rings, implies that the mean concentration
for the entire system satisfies

C ≈ 3 × 2k∗−1[3 × 2k∗ − 2]−1Ck∗ ≈ 1/(2 + 6p)

for large k(and p). (18)

Figure 3 just captures the onset of this decrease in C with
increasing p for BCact.

As noted above, the model does display significant spatial
correlations. These are quantified in Fig. 5 comparing simu-
lation results for the exact K = Kc and for Kb versus C with
the analytic estimate Ka versus C. Thus, we anticipate that
behavior for correlated BCs, BCPa−c, gives the best indication
of stochastic model behavior for an infinite Bethe lattice.
One caveat is that we expect bistability will be replaced in
the stochastic model by a discontinuous transition occurring
somewhat below the spinodal points for these approximations

014135-5



LIU, WANG, AND EVANS PHYSICAL REVIEW E 104, 014135 (2021)

C

K 
or

C

C
Ka

= Kc

Kb

FIG. 5. KMC simulation results for the conditional concen-
trations, K = Kc and Kb versus C, compared with the analytic
prediction, Ka versus C, from the pair approximation.

which are in the range ps ≈ 0.063–0.068. This scenario is
realized in Schloegl’s second model on Euclidean lattices
where the location of the transition is determined in analytic
approximations by a kinetic analog of a Maxwell construction
[8,22,29].

V. SIMULATIONS USING OTHER ENSEMBLES FOR
FINITE z = 3 BETHE LATTICES

Further insight into model behavior for an infinite system
comes from the expectation that the BC will most strongly
impact behavior in the outer rings of a finite system, but
less so for the more central rings. Here, we are exploiting
the observation that the steady states generated in the CC
ensemble can be heterogeneous. This observation motivates
development and implementation of modified CC simulation
algorithms where the concentration which is compared with
the target value is just obtained by sampling a specific ring
or subset of central rings in the system (rather than sampling

the entire system). Figure 6 shows the results of implement-
ing this procedure where a specific ring Rk with k = kCC is
sampled. Behavior is compared for BCMF and BCPc. Similar
results are obtained if instead of sampling a single ring with
k = kCC, a subset of rings Rj with j = 1 to kCC are sampled.
See Appendix B. Despite the very different behavior for these
BCs using the standard CC algorithm, more similar features
emerge when selecting kCC = 8−10 for k∗ = 16, i.e., when
just sampling the central rings. Resulting behavior is less
impacted by special BC-induced behavior at outer rings near
the boundary. Using inner rings for small kCC seems to lead to
anomalous behavior, perhaps in part due to larger fluctuations
from sampling few sites, but possibly also due to special
behavior at the inner most rings.

Inspection of Fig. 6 focusing on behavior for kCC = 6−10
furthermore suggests that a discontinuous transition for the
model on an infinite Bethe lattice would occur around pc ≈
0.05–0.06. For BCPc, results for C versus p display a near-
vertical line expected for a discontinuous transition around
this p range for kCC = 8−10. Even results for BCMF are trend-
ing toward this behavior. Generally, discontinuous transitions
in these models occur slightly below the corresponding spin-
odal point ps [6,8]. As for regular Euclidean lattices, the MF
site approximation estimate of the spinodal point of ps(site) =
1
4 = 0.25 is far too high. However, the pair approximation
estimate of ps(pair) = 1/12 ≈ 0.0833 is more reasonable.

Finally, we present some results from conventional
constant-p simulation where particle annihilation and cre-
ation events are implemented with probabilities proportional
to their rates. These simulations enable assessment of time
evolution, and specifically the development of heterogeneous
steady states. First, we present results in Fig. 7 for BCMF start-
ing with a completely occupied lattice. Figure 7(a) shows that
choosing p = 0.090 just inside the regime of bistability based
on the CC ensemble analysis, ring concentrations Ck initially
decrease, but then stabilize to values for a heterogeneous
steady state with inner rings having lower concentrations.
Similar behavior occurs for lower p also in the regime
of bistability, as shown in Appendix C and the SM [21].

C C

p p

(a) BCMF

(b) BCPc

kCC = 6 8 10
12

14
16

kCC = 6 8 10

121416

FIG. 6. Results from refined CC simulation where the concentration is just obtained by averaging over ring Rk with k = kCC. Behavior for
(a) BCMF, (b) BCPc. Each data point is obtained as an average over 104 Monte Carlo steps (MCSs).
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C C

t t

(a) p = 0.090 (b) p = 0.095

BCMF BCMF

k = 20

k = 18

k = 16

k = 14
k = 12, 10, 8

k = 20

k = 18

k = 16
k = 14

k = 8,10,12

FIG. 7. Evolution of ring concentrations Ck with time t (in MCS) starting with a completely occupied Bethe lattice with k∗ = 20 for MF
BCs. The ring index k is shown in the legend. (a) p = 0.090, (b) p = 0.095.

Figure 7(b) shows that, choosing p = 0.095 presumably just
above the regime of bistability, ring concentrations Ck ul-
timately all decrease to zero, so the system evolves to the
vacuum state.

Next, we present results in Fig. 8 for correlated BCPc again
starting with a completely occupied lattice. Figure 8(a) shows
that choosing p = 0.053 presumably in the regime of bista-
bility, ring concentrations Ck again initially decrease and then
stabilize, where now outer rings have lower concentrations.
Figure 8(b) shows that choosing higher p = 0.054 which from
the CC ensemble analysis could plausibly be just above the re-
gion of bistability or the discontinuous transition, one finds an
initial stabilization of ring concentrations, but then a decrease
to zero over longer times as the system evolves to the vacuum
state. Similar behavior also occurs for higher p as shown in
Appendix C and the SM [21].

Again, our results for BCPc are expected to best mimic an
infinite lattice. Behavior for p = 0.054 would be typical for a
p value just above the discontinuous transition in an infinite
system. Here, the system initially evolves to a metastable
populated state, and then more slowly to the stable vacuum
steady state. (Such behavior could also reflect noise-induced
transitions from a less stable to a more stable steady state in
a finite system with bistability, although such transitions tend
to occur more suddenly at “random” times.) Thus, these simu-
lations suggest a discontinuous transition between p = 0.053
and p = 0.054. This result is reasonably consistent with our
interpretation of refined CC ensemble simulations. In addi-
tion, we cannot rule out the presence of a small p window of
generic two-phase coexistence which would lead to slightly
different estimates of pc depending on the simulation protocol
[6,9].

t t

C C

(a) p = 0.053 (b) p = 0.054

BCPc BCPc

k = 8
k = 10

k = 12
k = 14k = 20

k = 16,18
k = 20

k = 18
k = 16 - 8

FIG. 8. Time evolution of ring concentrations Ck starting with a completely occupied Bethe lattice with k∗ = 20 for correlated boundary
conditions BCPc. The ring index k is shown in the legend. (a) p = 0.053, (b) p = 0.054.
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VI. ANALYTIC MF-TYPE ANALYSIS
AND INTERPRETATION

For stochastic lattice-gas models with discontinuous phase
transitions, mean-field and higher-level hierarchical trun-
cation approximations characterizing homogeneous steady
states generally predict a regime of bistability for varying
some control parameter p (the particle annihilation rate in
our model). Assessment of the location of the discontinuous
transition requires consideration of heterogeneous states via
lattice differential equations or dRDEs as discussed in Sec. II.
For regular Euclidean lattices, one explores the propagation of
planar interfaces separating coexisting stable states as a func-
tion of p, stationarity of this interface at p = pc corresponding
to the discontinuous transition in the stochastic model. (There
can be complications due to pinning or propagation failure
and an orientation dependence of pc which we do not discuss
further here [22,36,37].)

For the infinite Bethe lattice in the bistable regime p � ps,
instead of planar interfaces, one can consider the evolution
of a droplet of one stable steady state with circular sym-
metry centered on the origin R0 (site j = 1) embedded in a
background of the other steady state. At the mean-field site
approximation level, evolution is described by Eqs. (6) and
(7). The corresponding more complex equations at the level of
the pair approximation were also discussed in Sec. II and are
presented in Appendix A. For a populated droplet embedded
in the vacuum steady state, it is clear that the droplet cannot
propagate outward filling empty sites as those sites have at
most one filled neighbor. Such droplets eventually shrink.
However, for a vacuum droplet embedded in the populated
steady state, in principle such droplets can either shrink or
grow. We focus on this latter case below. Specifically, one
might anticipate that the vacuum droplet would expand for
large p, shrink for small p, and be stationary for a unique
value of p = pc < ps, where pc plausibly corresponds to the
location of the discontinuous transition.

Note that there is an asymmetry in the dRDE due to the
Bethe lattice structure, so that propagation of the vacuum
droplet outward is distinct from inward propagation. This type
of feature was noted in an earlier mean-field study of bistable
model dynamics on Bethe lattices [38], although in that study
the dRDE had conventional spatial coupling via a discrete
Laplacian in contrast to (6).

Numerical analysis using the MF site approximation equa-
tions (6) for the case z = 3 reveals that an (arbitrarily large)
vacuum droplet embedded in the populated state will shrink
for p < 0.243 503 4(1) and grow for 0.243 504 8(6) < p <

0.25, thus exhibiting a narrow regime of propagation failure
of width �p ≈ 0.000 001 5 (also seen for Schloegl’s second
model on Euclidean lattices [22,23]). The droplet propagation
velocity versus p is shown in Appendix D. This suggests a
site-approximation estimate of the location of the discontinu-
ous transition as pc ≈ 0.2435. However, as indicated above,
site-approximation estimates for both spinodals and phase
transition points are expected to be far too high, as on Eu-
clidean lattices [22,23].

As an aside, we note that a MF analysis for z > 3 reveals
that the vacuum droplet shrinks for all p, i.e., for all 0 � p �
ps. See the SM [21]. One might regard the lack of expansion

as due to an effective curvature of droplets on the Bethe lattice
which is more pronounced for larger z, and which persists
for arbitrarily large droplet size. Here, we note that generally
curvature inhibits expansion [33–35,39]. Another perspective
comes from inspection of (6) which reveals stronger coupling
to outer rings for larger z. Thus, e.g., for a vacuum droplet with
a sharp interface, the concentration of the initially empty site
adjacent to the interface initially grows faster with bigger z.
For z → ∞, inspection of (6) shows trivially that the vacuum
droplet must shrink. Thus, while large z recovers MF kinetics,
front propagation in that regime is nontrivial (as for Euclidean
lattices [23]).

Numerical analysis of the pair approximation for z = 3 ac-
tually reveals that an (arbitrarily large) vacuum droplet shrinks
for all 0 � p � ps = 1/12, suggesting a discontinuous transi-
tion at pc = ps = 1/12 ≈ 0.0833. Analogous behavior is also
found for z > 3. See the SM [21]. Thus, the pair approxi-
mation is not as effective as on Euclidean lattices where it
correctly indicates a discontinuous transition strictly below
the spinodal [8,22,23].

VII. CONCLUSIONS

Our analysis reveals the presence of a discontinuous tran-
sition for Schloegl’s second model on an infinite Bethe lattice
with z = 3 occurring at around p ≈ 0.053. As might be ex-
pected, our correlated choice of boundary conditions, BCPa,
BCPb, or BCPc, for the finite lattice which accounts for strong
spatial correlations in the model can best mimic behavior for
infinite lattice. Also our refined CC ensemble simulations are
plausibly most effective in extracting infinite lattice behavior
from finite lattice simulations. While we have not explicitly
performed simulation analysis for cases with z > 3, we ex-
pect a discontinuous transition also for these cases. Generally,
behavior for bigger z reflects more closely the mean-field pre-
diction of bistability, but the presence of noise in the stochastic
model ensures the presence of a discontinuous transition. This
view is consistent with the results in Ref. [17] which considers
a discrete-time version of Schloegl’s second model.
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APPENDIX A: SPATIALLY HETEROGENEOUS
FACTORIZATION APPROXIMATIONS

In the mean-field site approximation, the coupled lattice
differential equations describing the evolution of ring
concentrations, P•k = Ck, were presented in Sec. III as
Eqs. (6) and (7).

In the pair approximation, we obtain a coupled set of
equations for P•k = Ck and Pok−1ok = Dk−1,k. As noted in
Sec. III, one writes P•k−1ok•k+1 ≈ P•k−1okPok•k+1/Pok,
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FIG. 9. Results from refined CC simulation with concentration obtained by averaging over rings Rk with k = 1 through kCC. Behavior for
BCMF (BCPc) is shown on the left (right).

etc. Applying this factorization to the equations in Fig. 2 yields

d/dtP•k = −pP•k + z−1
[
2P•k−1okPok•k+1 + (z − 2)(Pok•k+1)2

]
/Pok for k � 1, (A1)

d/dtPok−1ok = +pP•k−1ok + pPok−1•k

− (z − 2)z−1(z − 1)−1[2P•k−2ok−1Pok−1•k + (z − 3)(Pok−1•k )2]Pok−1ok/(Pok−1)2

− (z − 2)z−1(Pok•k+1)2Pok−1ok/(Pok )2, for k � 2, (A2)

with separate relations for k = 0 and 1. Using conservation of probability relations such as P•k−1ok + Pok−1ok = Pok, and
Pok−1•k + Pok−1ok = Pok−1, then (A1) and (A2) become

d/dtCk = −pCk + [
2(1 − Ck − Dk−1,k )(1 − Ck − Dk,k+1) + (z − 2)(1 − Ck − Dk,k+1)2

]
/(1 − Ck ) for k � 1, (A3)

d/dtDk−1,k = +p(1 − Ck − Dk−1,k ) + p(1 − Ck−1 − Dk−1,k ) − (z − 2)z−1(z − 1)−1[2(1 − Ck−1 − Dk−2,k−1)

× (1 − Ck−1 − Dk−1,k ) + (z − 3)(1 − Ck−1 − Dk−1,k )2]Dk−1,k/(1 − Ck−1)2 − (z − 2)z−1

× (1 − Ck − Dk,k+1)2Dk−1,k/(1 − Ck−1)2, for k � 2, (A4)

with separate relations for k = 0 and 1.

APPENDIX B: REFINED CC SIMULATION ANALYSIS

Figure 9 shows the results for z = 3 from implementing
a refined CC simulation ensemble procedure where the con-
centration is rings Rk with k = 1 through kCC are sampled
and compared with the target concentration. Thus, the choice
kCC = k∗ sampling over the entire system just corresponds
to the standard CC ensemble. Behavior is compared for the
BCMF and BCPc boundary conditions. Similar results are ob-
tained in Fig. 6 just sampling a single ring with k = kCC.
Again, similar features emerge for the different BCs when se-
lecting kCC = 8−10 for k∗ = 16. Also, again these results are
suggestive of a discontinuous transition in Schloegl’s second
model on an infinite Bethe lattice around pc ≈ 0.055–0.06.

APPENDIX C: CONSTANT-p SIMULATIONS
OF TIME EVOLUTION

We present additional results from conventional constant-p
simulations for time evolution starting from an initially fully
populated state. Figure 10 shows results for BCMF, and Fig. 11
shows results for BCPc for a range of p.

Some additional comments are appropriate for MF BC.
For p � 0.05, the steady state is almost homogeneous. For
0.06 � p � 0.09, the steady state becomes strongly hetero-
geneous with outer rings heavily populated and inner rings
almost empty. This is somewhat reminiscent of coexistence
of populated and vacuum states separated by an interface,
and the feature that it occurs over a range of p is some-
what reminiscent of generic two-phase coexistence. For p �
0.095, the system evolves to the vacuum state. See Fig. 7 and
the SM.
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BCMF
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k = 20

k = 12
k = 14
k = 16
k = 18k = 20

k = 16 - 4

FIG. 10. Evolution of concentrations Ck for various rings, k (labeled in the legend) for BCMF boundary conditions for: (a) p = 0.050;
(b) p = 0.070, with a populated heterogeneous steady state.
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t t
(a) p = 0.056 (b) p = 0.058

BCPc BCPc

Decreasing k Decreasing k

k = 8

k = 20

k = 8

k = 20

FIG. 11. Evolution of concentrations Ck for various rings k (labeled in the legend) with BCPc for: (a) p = 0.056; (b) p = 0.058, above the
discontinuous transition showing evolution to the vacuum state.
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FIG. 12. MF estimate of the propagation velocity V versus p of a large droplet of (a) the populated steady state embedded in the vacuum

state, (b) the vacuum state embedded in the populated steady state.
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FIG. 13. MF estimate of the propagation velocity V versus p of a

large droplet of the vacuum state embedded in the populated steady
state near the propagation failure region. This plot corresponds to a
zoomed-in version of Fig. 12(b) around p = 0.243 504.

APPENDIX D: DROPLET EVOLUTION IN ANALYTIC
TRUNCATION APPROXIMATIONS

Using the MF equations (6) and (7) describing interface
propagation for states with circular symmetry, we analyze
the propagation of a very large droplet of one stable phase
centered on site j = 1 embedded in the other phase. We define
the propagation velocity V of the droplet interface as positive
(V > 0) if the droplet grows, and negative (V < 0) in the
opposite case. Figure 12 shows the results from a MF analysis
for z = 3. Figure 12(a) shows that the populated droplet al-
ways shrinks, a trivial consequence of the model prescription.
Figure 12(b) shows that the vacuum droplet shrinks except
for a small range of p such that roughly 0.243 50 < p � 0.25.
Closer inspection of behavior around the apparent equistabil-
ity point, pc ≈ 0.243 50, actually reveals a narrow regime of
propagation failure for 0.243 503 4(1) < p < 0.243 504 8(6),
as noted in the text. See Fig. 13. Also, as noted in the text,
the pair approximation predicts droplet shrinkage in all cases,
i.e., there is no equistability point or propagation failure in the
case of a vacuum droplet.
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