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Exactly solvable model of a slightly fluctuating ratchet
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We consider the motion of a Brownian particle in a sawtooth potential dichotomously modulated by a spatially
harmonic perturbation. An explicit expression for the Laplace transform of the Green function of an extremely
asymmetric sawtooth potential is obtained. With this result, within the approximation of small potential-energy
fluctuations, the integration of the relations for the average particle velocity is performed in elementary terms.
The obtained analytical result, its high-temperature, low-frequency, and high-frequency asymptotics, as well
as numerical calculations performed for a sawtooth potential of an arbitrary symmetry, indicate that in such
a system, the frequency-temperature controlling the magnitude and direction of the ratchet velocity becomes
possible. We clarify the mechanism of the appearance of additional regions of nonmonotonicity in the frequency
dependence of the average velocity, which leads to the appearance of additional ratchet stopping points. This
mechanism is a consequence of the competition between the sliding time along the steep slope of the highly
asymmetric sawtooth potential and the correlation time of the dichotomous noise.
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I. INTRODUCTION

One of the mechanisms through which nanoparticle trans-
port can be realized is the use of the ratchet effect, the
phenomenon of appearance of directed motion in a nanosys-
tem, being in contact with a thermostat, due to unbiased
nonequilibrium perturbations of various nature under the bro-
ken spatial and (or) temporal symmetry [1–5]. The advantage
of such a mechanism is in the effectiveness of controlling the
motion characteristics that the ratchet effect can provide. One
can control the transport through variations of a number of
parameters, individually or their combinations: particle size,
temperature, medium viscosity, fluctuation frequency of the
nanoparticle potential energy, the form of the dependence of
fluctuations on time and coordinate and, finally, the spatial
shape of a stationary part of a potential relief in which the par-
ticles move. The theoretical linking the change in parameters
of a ratchet system to the direction and magnitude of the in-
duced motion can be important in solving a number of applied
problems, such as studying functioning of protein motors in
a living cell [6], design of molecular machines capable of
manipulating membrane components, proteins, and lipids [7],
which is very important for functional research [8,9]. It is also
important in design (synthesis) of various artificial molecu-
lar analogs of protein motors [10–12]: DNA walkers, which
can jump along substrates and function as programmable
assembly lines [13–18], nanomachines capable of dragging
nanoloads [19], and other synthetic molecular motors, trans-
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lational and rotational [20–22]. Modern computational tools
make it possible to calculate the motion characteristics in
almost any chosen specific conditions, to simulate experi-
mental results, which require a great deal of efforts to be
obtained [23]. However, such calculations are not of high
heuristic value, since too many numerical experimentations
are required to gain knowledge about the factors affecting, in
one way or another, the motion control.

Under these conditions, analytical solutions of complex
equations of motion acquire special value. These solutions
are explicit functions of parameters characterizing the factors
listed above. They allow us to judge which changes in the
control factors can lead to certain (desired) changes in motion
characteristics. Naturally, to obtain analytical solutions, one
should use approximations as well as operate with simplified
shapes of potential reliefs and control signals. At present,
the most fruitful approximations are (i) the approximations
of small or large potential barriers, relative to the thermal
energy, i.e., the so-called high-temperature approximation or
kinetic approach, respectively; (ii) low-frequency (adiabatic)
or high-frequency approximations, in which the disturbance
frequency (inverse correlation time) is small or large in com-
parison with the characteristic frequencies of the system,
respectively; and (iii) the piecewise linear shape of a potential
relief [24]. The disadvantages of all these approximations are
in the limitations of the results that follow from them with
respect to the set of control parameters. For example, the high-
temperature results cannot predict the way in which one could
control the motion characteristics by tuning the temperature,
while the low-frequency and high-frequency results cannot
predict the way to do that by tuning the frequency.
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The approximation of slightly fluctuating potential energy
is able to get over the listed difficulties in developing ana-
lytical approaches to the problems of nanotransport control
[25]. Within this approximation, not the entire potential profile
as a whole, but its fluctuations relative to the thermal energy
are considered small. Main relations of the theory of slightly
fluctuating ratchets are given in the introductory Sec. II (the
detailed derivation is in Appendix A). They are of great
generality, but, at the same time, they are written through a
complex double integral containing the Green function, which
describes diffusion in a given periodic potential relief. An
explicit analytical expression can only be obtained for the
Laplace transform of the Green function of a piecewise linear
potential relief; and this transform is too cumbersome so that
the analytical calculation of the integral is hardly possible
[24]. In this paper, we consider an extremely asymmetric
sawtooth potential modulated by a weak spatially harmonic
perturbation, the time dependence of which is described by a
stochastic dichotomous process. With these simplifications, it
became possible not only to obtain a simple form of the Green
function (Sec. III), but also to take the double integral ana-
lytically. As a result, a rather compact analytical expression
for the average velocity of directed motion has been obtained
(Sec. IV); its asymptotics are given in Sec. V. The temper-
ature and fluctuation-frequency dependences of the obtained
expressions turned out to be nontrivial. The same dependences
obtained numerically for a sawtooth potential of arbitrary
symmetry (Sec. VI) turned out to be even more nontrivial. The
analysis of the results explains how additional stopping points
can originate from the competition of the system characteristic
times (namely the sliding time along the steep slope of the
highly asymmetric sawtooth potential and the correlation time
of the dichotomous noise), when the symmetry parameter of
the sawtooth potential is reaching of its limit value; it also
demonstrates the ways to control the motion direction by
changing the temperature and perturbation frequency values
(Sec. VII). Symmetry analysis (given in Appendix B) al-
lowed us to narrow the definition domains of the parameters
used.

II. SLIGHTLY FLUCTUATING RATCHET

Consider the overdamped motion of a Brownian particle
characterized by the potential energy, the space-time de-
pendence of which has the following additive-multiplicative
form:

U (x, t ) = u(x) + σ (t )w(x). (1)

The stationary potential relief, u(x), and the multiplicative
term, σ (t )w(x), are a main contribution and a small cor-
rection, respectively. Expression (1) covers the majority of
significant, practically and theoretically, cases of potential-
energy changes [1,2,26]. Assuming that the functions u(x)
and w′(x) ≡ dw(x)/dx are L periodic, one can treat flashing
and rocking ratchets, which are the two main models in the
theory of Brownian motors, in a similar fashion by means
of relation (1). In this paper, we will deal only with flashing
ratchets; the function w(x) itself can thus also be considered L
periodic. The function σ (t ) describes the features of temporal
fluctuations of the particle potential energy. As σ (t ) plays

the role of a fluctuation variable, it must have the zero mean
value, 〈σ (t )〉 = 0; the symbol 〈...〉 means the operation of
averaging over fluctuations, the definition of which depends
on the nature of the quantity σ (t ).

The main quantity of interest in the theory of ratchet sys-
tems, including the slightly fluctuating ratchets, is the average
particle velocity, 〈v〉, called the ratchet velocity. Having ap-
plied the perturbation theory for the Smoluchowski equation
with respect to a small value w′(x), one can write this velocity
in the following form [25] (see the detailed derivation in
Appendix A):

〈v〉 = Lβ2D2
∫ L

0
dxρ+(x)w′(x)

∫ L

0
dyS(x, y)

∂

∂y
[w′(y)ρ−(y)],

ρ±(x) = e±βu(x)

/∫ L

0
dxe±βu(x), (2)

where D = (βζ )−1 is the diffusion coefficient, ζ is the friction
coefficient, β = (kBT )−1 is the inverse thermal energy (kB is
the Boltzmann constant, T is the absolute temperature), and
ρ−(x) is the equilibrium Boltzmann distribution in the station-
ary potential profile u(x). The function S(x, y) is determined
by the following relation:

S(x, y) =
∫ ∞

0
dt g(x, y, t )K (t ), (3)

where K (t ) ≡ 〈σ (t0 + t )σ (t0)〉 is the correlation function of
the second order, and g(x, y, t ) is the retarded Green function
[g(x, y, t ) = 0 at t < 0] of diffusion in the stationary potential
relief u(x), satisfying the equation

∂

∂t
g(x, y, t − t ′) + ∂

∂x
[Ĵ (x)g(x, y, t − t ′)]

= −δ(x − y)δ(t − t ′) (4)

with the flux operator

Ĵ (x) = −De−βu(x)(∂/∂x)eβu(x). (5)

The character of the dependence of the average velocity on
parameters of the ratchet system is determined by the features
of the function S(x, y) which describes the process of particle
propagation from a point y to a point x in the potential u(x).
In this paper, we will deal with the particle motion under the
perturbations induced by a stochastic dichotomous process
with an inverse correlation time �; the correlation function
is thus determined as K (t ) = exp(−�|t |). For such a process,
according to relation (3), the function S(x, y) is interpreted as
the Laplace image of the Green function g(x, y, t ). Therefore,
in what follows, for brevity, we will also use the name “the
Green function” for the function S(x, y) itself. Termwise mul-
tiplying Eq. (4) by exp(−�t ), integrating the result over t from
−ε to ∞ (where ε is an infinitely small positive quantity),
and taking into account that the term exp(�ε)g(x, y,−ε) is
zero [because of the fact that g(x, y, t ) is the retarded Green
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function], yields the following equation:[
d

dx
Ĵ (x) + �

]
S(x, y) = −δ(x − y). (6)

For the stochastic dichotomous process, the physical mean-
ing of the function S(x, y) is stated as following: The quantity
−�S(x, y) specifies the probability density of finding a parti-
cle at a point x in the state characterized by the lifetime �−1

and the potential u(x), provided that the particle was originally
placed at a point y. In the high-frequency limit, � → ∞, and
if the potential relief u(x) is described by a smooth function,
Eq. (6) yields the approximate equality −�S(x, y) = δ(x−y),
substitution of which into Eq. (2) gives the following expres-
sion for the average velocity [1,24,27,28]:

〈v〉 = LD2β3

�

∫ L
0 dx u′(x)[w′(x)]2

∫ L
0 dx eβu(x)

∫ L
0 dx e−βu(x)

. (7)

In the next section, we calculate the function S(x, y) for
the extremely asymmetric stationary potential relief u(x); the
result will allow us to develop an analytical expression for the
average velocity defined by the relation (2).

III. GREEN FUNCTION FOR THE CASE OF AN
EXTREMELY ASYMMETRIC SAWTOOTH POTENTIAL

Assume that the Green function S(x, y) satisfying Eq. (6)
is L periodic in both variables, x and y, and has no discon-
tinuities of the second kind. Let us introduce the function
J̃ (x, y) = −Ĵ (x)S(x, y) with the following physical meaning:
The quantity �J̃ (x, y) specifies the particle flux in the state
with the lifetime �−1 through a cross section x in the potential
u(x), provided that originally the particles were placed at a
point y. For brevity, we will call the function J̃ (x, y) the flux.
Termwise integration of Eq. (6) over x from x0 − κ to x0 + κ

with positive κ values which tend to zero leads to the condition

J̃ (x0 + κ, y) − J̃ (x0 − κ, y) →
κ→0

{
1, x0 = y,
0, x0 �= y,

(8)

which means that the flux J̃ (x, y) is continuous for all x �= y
and has the unit jump at x = y.

Among different shapes of potential profiles, piecewise-
linear profiles are those for which an analytical solution of the
differential equation (6) is most easily obtained, and a special
place here belongs to a sawtooth potential, with the widths of
its links l and L−l [24]. Such a potential is a most convenient
choice to introduce an asymmetry into a ratchet model, since
the asymmetry of the sawtooth potential is easily controlled by
changing only the parameter l . The limiting cases l → 0, L
allow studying the singularity properties of system character-
istics introduced by jumps emerging in the potential profile
[25,29–31]. Moreover, a sawtooth shape can be easily realized
experimentally [32]. In numerous experiments on directed
motion of colloidal particles, sawtooth shapes of the ratchet
potential are created by means of interdigitated electrodes, de-
posited on the glass slides using photolithographic techniques
(see, e.g., Chap. 7 in Ref. [4]). In experiments for manipulat-
ing charged components within supported lipid bilayers [33],
such ratchet potential is created by a patterned bilayer (its one
side is of a sawtooth shape while its opposite side is a planar

FIG. 1. Extremely asymmetric sawtooth potential profile u(x),
having a jump u0 at a point l = L, plotted in the interval (ε, L + ε).

surface). An external electric field either drives the charged
lipids into a region of free diffusion or concentrates them in
the teeth.

We will define the extremely asymmetric (l = L) sawtooth
potential u(x) on the interval (ε, L + ε) in such a way that the
jump u0 appears at the point x = L (Fig. 1),

u(x) = u0(x/L − θ (x − L)), x ∈ (ε, L + ε), 0 < ε → 0
(9)

[θ (x) is the theta function equal to 1 for x > 0 and 0 for
x < 0]. Using the definition (5) of the flux operator, we mul-
tiply (term by term) the equation J̃ (x, y) = −Ĵ (x)S(x, y) by
exp[βu(x)] and integrate the result over x from L−ε to L + ε:

eβu(L+ε)S(L + ε, y) − eβu(L−ε)S(L − ε, y)

= D−1
∫ L+ε

L−ε

dxeβu(x)J̃ (x, y). (10)

The integral on the right-hand side of Eq. (10) tends to zero at
ε → 0 not only when y �= L, with the flux J (x, y) continuous
in the vicinity of the point x = L, but also at y = L, when there
exists a jump described by the relation (8) with x0 = L. Taking
into account the designations

u(L − ε) →
ε→0

u0, S(L − ε, y) →
ε→0

S(L − 0, y) (11)

and the periodicity conditions

u(L + ε) = u(ε) →
ε→0

0, S(L + ε, y) →
ε→0

S(+0, y), (12)

we derive the following boundary condition:

S(+0, y) = eαS(L − 0, y), α ≡ βu0. (13)

With the extremely asymmetric sawtooth potential (9) cor-
responding to the state with the lifetime �−1, the original
Eq. (6) becomes a constant-coefficient second-order differen-
tial equation:

L2 ∂2

∂x2
S(x, y) + αL

∂

∂x
S(x, y) + λ2S(x, y) = 0, λ2 = �L2

D
,

(14)
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provided that x �= y, L. Its general solutions in the intervals
x ∈ (+0, y) and x ∈ (y, L−0),

Sl (x, y) =
x<y

Al
1e�1x/L + Al

2e�2x/L,

Sr (x, y) =
x>y

Ar
1e�1x/L + Ar

2e�2x/L
(15)

with parameters

�1,2 = −α

2
±

√
α2

4
+ λ2, (16)

contain four arbitrary constants Al,r
1 , Al,r

2 which can be deter-
mined from the four boundary conditions:

S(y − 0, y) = S(y + 0, y), J̃ (y + 0, y) − J̃ (y − 0, y) = 1,

S(+0, y) = eαS(L − 0, y), J̃ (+0, y) = J̃ (L − 0, y).

(17)

The particular solution of Eq. (14), obtained in this way with
boundary conditions (17), can be represented in the following
compact form:

Sl,r (x, y) = L

D(�1 − �2)Det(1̂ − Ĉ)

∑
k,m=1,2

(−1)m−1al,r
kme�kx/L−�my/L,

âl = Ĉ − 1̂, Ĉ = 1

�1 − �2

(
�1e−�2 − �2e�1 �1(e−�1 − e�2 )
�2(e�1 − e−�2 ) �1e�2 − �2e−�1

)
,

âr = 1̂ − Ĉ−1, Ĉ−1 = 1

�1 − �2

(
�1e�2 − �2e−�1 −�1(e−�1 − e�2 )
−�2(e�1 − e−�2 ) �1e−�2 − �2e�1

)
,

Det(1 − Ĉ) = 4

�1 − �2

(
�2sinh2 �1

2
− �1sinh2 �2

2

)
.

(18)

The surface in Fig. 2 represents the function S(x, y) in the
basic region of values of its arguments x and y. This surface,
described by a dimensionless positive quantity −�LS(x, y),
illustrates the probability density −�S(x, y) of finding a par-
ticle at the point x if it was originally located at the point y. If
the lifetime of the state with the potential u(x) tends to zero
(� → ∞), then −�LS(x, y) → Lδ(x−y). Therefore, at finite
�, the surface contains the line of cusp points corresponding to
x = y. The S(x, y) surface also demonstrates both the jumps at
the boundaries x = 0 and x = L of the region when changing
x values and continuity at the boundaries y = 0 and y = L
when changing y values [see relations (17)]. Note that in the
long-lived potentials (� → 0) the dependence on the initial
particle position disappears, and the function −�S(x, y) tends

FIG. 2. Surface plot for the function −�LS(x, y) at fixed values
of parameters: α = βu0 = 5 (dimensionless inverse temperature) and
λ2 = �L2/D = 25 (the dimensionless inverse correlation time). The
function −�LS(x, y) is the dimensionless probability density of find-
ing a particle at the point x if it was originally located at the point y.

to the equilibrium Boltzmann distribution in the stationary
potential u(x) [see the expression for ρ−(x) in Eq. (2)].

IV. AVERAGE PARTICLE VELOCITY

For the extremely asymmetric sawtooth potential u(x), the
calculating procedure for the average particle velocity by
means of Eq. (2) can be complex due to the presence of a
generalized function in the derivative of the Boltzmann dis-
tribution, ∂ρ−(y)/∂y, in a stepwise potential. Therefore, it is

FIG. 3. Geometry of the components, stationary u(x) and fluc-
tuating w(x), of the nanoparticle potential energy of the additive-
multiplicative form (1), demonstrating the symmetry properties
ul (−x) = uL−l (x), wλ0 (−x) = w1−λ0 (x), wλ0−1/2(x) = −wλ0 (x), and
wλ0 (x + L/2) = wλ0−1/2(x) (the subscripts denote main parameters
in the chosen geometry; L is the period, l and λ0 are the coordinate of
the peak of the sawtooth profile u(x) and the phase shift of the cosine
perturbation w(x), respectively). When l = L, the sawtooth profile
u(x) becomes extremely asymmetric. The symmetry properties are
used in Appendix B for constructing chains of symmetry transfor-
mations of the ratchet average velocity.
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reasonable to integrate the inner integral by parts and apply
the periodicity of all the integrands to rearrange the double
integral to the following form:

〈v〉 = −Lβ2D2
∫ L−0

+0
dxρ+(x)w′(x)

×
∫ L−0

+0
dy w′(y)ρ−(y)

∂

∂y
S(x, y). (19)

Here, the derivative ∂S(x, y)/∂y has a discontinuity of the first
kind (jump) at the point y = x, which does not complicate tak-
ing the inner integral; on the interval (+0, L−0), the functions
ρ±(x) are equal to

ρ±(x) = e±αx/L

L ϕ1(α)
, ϕ1(α) = sinh(α/2)

α/2
(20)

and have no special features.

To control the ratchet motion, we choose a dichotomous
process with the spatially harmonic perturbation of the form
(Fig. 3)

w(x) = w cos[2π (x/L − λ0)]. (21)

The sinusoidal-shaped perturbation w(x) of an amplitude w

and a phase shift λ0 is a reasonable choice to model an external
influence on the system in many cases, when the influence is
of an artificial nature (introduced by man-made mechanisms)
[34].

For the Green function (18) of the extremely asymmetric
sawtooth potential and the coordinate dependence (21) of the
slight perturbation, the integrals in Eq. (19) are reduced to
integrals of the products of exponential and trigonometric
functions, which can be taken analytically. Simplifying the
cumbersome result of the double integration leads us to the
following expression:

〈v〉
v0

= 2π2α3γ

ϕ2
1 (α) f (α, γ )

{
cosh δ − cosh(α/2)

�(α, γ )
ϕ1(α)

[
cos 4πλ0 − 1 + 8π2α2

f (α, γ )

]
+ 1

}
,

f (α, γ ) = (
�2

1 + (2π )2
)(

�2
2 + (2π )2

)
, �1,2 = −α

2
± δ, δ =

√(α

2

)2
+ αγ ,

�(α, γ ) = cosh δ cosh
α

2
− 1 − α

2δ
sinh δ sinh

α

2
.

(22)

Here, the main parameters are α ≡ βu0 (dimensionless in-
verse temperature) and γ ≡ �τL (dimensionless fluctuation
frequency). The average ratchet velocity is measured in units
v0 = (w/u)2(L/τL ), where τL ≡ ζL2/u0 is the sliding time
along the gentle slope of the extremely asymmetric sawtooth
potential.

Relationship (22) is the main analytical result of this pa-
per; in the subsequent sections we will analyze it in detail
and in different contexts. Here, we only note that the phase
shift λ0 enters the expression (22) by means of the function
cos 4πλ0, invariant under the transformation λ0 → 1/2 − λ0.
In Appendix B, it is shown [see Eq. (B10)] that this symmetry
property is inherent in general solutions of the considered
model as a model describing the overdamped motion (that is,
the property is not a consequence of the used approximation
of slight fluctuations) and valid for arbitrary time dependences
of fluctuations of the universal symmetry type.

V. ASYMPTOTIC EXPRESSIONS

Within the above model, extended additionally by the as-
sumption about arbitrary values of the widths l and L−l , an
asymptotic expression for the average velocity valid for high
temperatures (α → 0) can be obtained [34]:

〈v〉
v0

→
α→0

−πα2ϕ2(λ2) f (l, λ0),

ϕ2(λ2) = λ2

(λ2 + 4π2)2 , λ2 = αγ (23)

f (l, λ0) = L

l (L − l )
sin 2π (l/L) cos 2π (l/L − 2λ0).

At l → L, the function f (l, λ0) tends to f (L, λ0) =
−2π cos 4πλ0, and formula (23) becomes

〈v〉
v0

→
α→0

2π2α2ϕ2(λ2) cos 4πλ0. (24)

The result (24) can also be obtained by the asymptotic ex-
pansion of the “extremely asymmetric” expression (22) with
α → 0 (high-temperature limit).

At γ → 0, the general expression (22) gives the follow-
ing low-frequency representation of the average velocity of a
ratchet with the extremely asymmetric stationary part u(x) of
the nanoparticle potential energy:

〈v〉
v0

→
γ→0

αγϕ3(α)

2ϕ2
1 (α)

[2ϕ3(α) + cos 4πλ0],

ϕ3(α) = α2

α2 + 4π2
.

(25)

It is easily shown that, at γ → 0, the high-temperature
expression (24) gives the result coinciding with the high-
temperature limit (α → 0) of the expression (25), that is,

〈v〉
v0

→
α→0
γ→0

1

8π2
α3γ cos 4πλ0, (26)

as expected. Relations 24)–(26) lead to a number of important
conclusions. In the region of high temperatures (α 
 1), the
motion direction is determined by the sign of the function
cos 4πλ0. For example, for the values of the phase shift within
the interval 0 < λ0 < 1/2, the average velocity is positive at
λ0 < 1/8 and λ0 > 3/8, while it is negative for 1/8 < λ0 <

3/8 (Fig. 4). At sufficiently low temperatures, T < T (low)
c with
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FIG. 4. Phase diagram in the space of parameters α and λ0 (in-
verse temperature–phase-shift space), demonstrating the ranges of
values within which different directions, leftward (inner regions) and
rightward (outer regions), of the ratchet motion can occur. Zero-
velocity contours are plotted for low-frequency and high-frequency
approximations (LF and HF curves, respectively).

T (low)
c ≈ 0.159 u0/kB (α(low)

c = 2π ), the velocity sign is al-
ways (i.e., for any phase shift λ0) positive. In Fig. 4, the value
T (low)

c determines the α value corresponding to the maxima of
low-frequency (LF) curves. Finally, in the region of interme-
diate temperature values T > T (low)

c and at low frequencies,
one can reverse the motion direction by tuning the value of
the phase shift λ0 (Fig. 4); this follows from the competition
of the terms in the square brackets in (25).

The high-frequency behavior can be obtained from (22)
with γ → ∞:

〈v〉
v0

→
γ→∞

2π2α2

γ sinh α

[
cos 4πλ0 + α/2

tanh α/2
− 1

]
. (27)

Intersection of regions α → 0 and γ → ∞ in the (α, γ )
plane determines the common applicability domain of the
expressions (24) and (27), where they are both reduced to the
following simple form:

〈v〉
v0

→
α→0
γ→∞

2π2α

γ
cos 4πλ0. (28)

While in the region of high temperatures the motion direc-
tion is still determined by the sign of the function cos 4πλ0,
at T < T (high)

c with T (high)
c ≈ 0.261 u0/kB [α(high)

c ≈ 3.83, see
(27) for clarity; it is the value corresponding to the max-
ima of high-frequency (HF) curves in Fig. 4], the velocity
remains always positive. Therefore, from this, supplemented
with the above result concerning T (low)

c , we conclude that for
intermediate values of both temperatures T (low)

c < T < T (high)
c

(3.83 < α < 6.28) and frequencies (the area between LF and
HF curves in Fig. 4), controlling the motion direction becomes
possible not only through the phase shift λ0, but also by tuning
the temperature and frequency. Figure 4 is a phase diagram in
α − λ0 variables; it shows families of stopping points in the

FIG. 5. Analytical dependences of the average motor velocity
with an extremely asymmetric (l = L) sawtooth potential u(x) on
the dimensionless frequency parameter γ at a fixed value of the
temperature parameter α = 5 (a) and on the temperature parameter
α at a fixed γ value γ = 4 (b).

low- and high-frequency regimes. These contours divide the
diagram into regions of positive and negative values of the
average velocity. Thus, in the regions above the LF curves
and below the HF curves, the direction of the particle flux
is fixed, rightward and leftward, respectively, while the inner
region between the LF- and HF curves includes those α and λ0

values, at which one can get either rightward or leftward flux,
depending on γ values; this is what makes this inner region
interesting.

VI. TEMPERATURE-FREQUENCY CONTROL OF
RATCHET OPERATING MODES

In the range of intermediate values of frequencies and
temperatures (see Fig. 4 and the corresponding discussions in
Sec. V), analytical solution (22) of the extremely asymmetric
model demonstrates the possibility of reversing the motion
direction by tuning the frequency γ [Fig. 5(a)] or temperature
α [Fig. 5(b)]. The analysis of this solution shows that, at
certain values of the phase shift λ0, changing γ and α yields
only one change in the motion direction (i.e., a single stopping
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point can exist). We can illustrate the way the stopping point
appears under changes in fluctuation frequency γ by fixing
the value of the temperature parameter, say, let α = 5. Then,
the velocity is positive in the high-frequency region at any
λ0 values, while it becomes negative in the low-frequency
region if 0.195 < λ0 < 0.304 (Fig. 4). Therefore, for the λ0

values belonging to that interval, say, λ0 = 0.21 and 0.25,
the stopping point will appear for the intermediate values of
the frequency γ , whereas at λ0 = 0.19 (which is out of the
interval) the velocity remains positive at any frequencies, and
the stopping point will never appear [Fig. 5(a)]. Similarly, in
the region of low temperatures (α � 1), the velocity is posi-
tive at any λ0 value, while in the region of high temperatures
(α 
 1), it is negative for 1/8 < λ0 < 3/8 (Fig. 4). Thus,
at any frequencies, in that range of λ0 values, the tempera-
ture dependence of the velocity will have one stopping point
[Fig. 5(b) is an example here].

The fact that the results just discussed are nontrivial (dif-
ferent from the more predictable nonextremely asymmetric
case) becomes clear from the analysis of an extended model
in which the potential u(x) is sawtooth but nonextremely
asymmetric (l �= 0, L). Let us come to it. The high-frequency
asymptotics of the average ratchet velocity calculated from (7)
with the sawtooth u(x) without jumps leads to the following
expression:

〈v〉
v0

→
γ→∞ − πα

γϕ2
1 (α)

f (l, λ0) →
l→L

2π2α

γϕ2
1 (α)

cos 4πλ0, (29)

in which the function f (l, λ0) is defined in (23). We will
compare asymptotic behavior of the “arbitrarily asymmetric
result” (29) (l �= L) in the limit l → L with the behavior of the
“extremely asymmetric result” (27) (l = L), valid for arbitrary
temperatures. The limiting value of the average velocity (29),
corresponding to the geometry l → L, coincides with its value
(27) (valid for l = L) at high temperatures (α → 0) though
differs at low temperatures (α >> 1). In its turn, the high-
frequency asymptotics (29) at l → L yields negative values
of the average velocity in the intervals λ0 ∈ (1/8, 3/8) and
(5/8, 7/8) for arbitrary temperatures, including low ones; this
fact does not imply the occurrence of stopping points with a
change in temperature. However, according to the “extremely
asymmetric result” (27), the velocity sign can become positive
in the above intervals of λ0 values when the temperatures
are sufficiently low (α >> 1). All this means that it is the
special form of the high-frequency asymptotic behavior of the
average velocity of the ratchet with the extremely asymmetric
potential (l = L) which is in charge for the appearance of
a stopping point at low temperatures. This behavior differs
from the high-frequency asymptotic behavior of the ratchet
with L−l small but different from zero, l �= L [compare ex-
pressions (27) and (29)]. In Sec. VII, we discuss the physical
meaning of this difference between the limiting velocity value
at l → L and its value at the point l = L.

Let us come to the frequency-dependent behavior. To
deepen the analysis of the dependence of the velocity sign on
the perturbation frequency, we use numerical results obtained
for arbitrary sawtooth potentials (of an arbitrary asymmetry
l). Such calculations can be performed either by numerical
integration of expression (2) with the Green function S(x, y)

of the explicit form presented in [24] or by using the Fourier
analog of the expression (2):

〈v〉 = −iL3β2D2
∑

pp′ p1 p2

kp′k−p−p1 k−p2+p′ρ (+)
p1

ρ (−)
p2

× Spp′w−p−p1w−p2+p′ . (30)

Here the quantities ρ (±)
p , wp, and Spp′ are the

Fourier components of the periodic functions ρ±(x),
w(x), and S(x, y), respectively, and kp = 2π p/L
(p = 0,±1,±2, ...) is the wave vector. The quantities
Spp′ = L−2

∫ L
0 dx

∫ L
0 dy S(x, y)e−ikpx+ikp′ y, in accordance with

(6) [taking into account (5)], can be calculated as matrix
elements of the inverse of the matrix specified by its elements
−L [(Dk2

p + �)δpp′ + βDkpkp−p′up−p′]. This was the method
which we followed to calculate the frequency dependences in
Fig. 6.

We chose the widths of the links of the sawtooth potential
such that its shape was close to the extremely asymmetric
shape (l → L). Note that since the velocity reverses upon
substitutions l → L−l and λ0 → 1/2 − λ0 [see the symmetry
property (B8) in Appendix B), the limiting behavior l → 0
can be analyzed in a similar way. The frequency dependences
in Fig. 6 show that in the low-frequency region, the curves
with l → L do tend to the curve with l = L. However, in the
high-frequency region, at certain values of the phase shift λ0,
the curves with l → L tend to the abscissa axis from below,
while the curve with l = L tends to the abscissa axis from
above. The consequences of this are as follows. If there are no
stopping points for the extremely asymmetric potential u(x)
with l = L, then in case of u(x) infinitesimally close (but
different) to it, l → L, the stopping points arise [curve 2 in
Fig. 6(a), and curves 2–4 in Fig. 6(b)]. And vice versa, if there
exists a stopping point for the potential with u(x) l = L, then
at l → L this point can disappear [curves 2–4 in Fig. 6(c),
curves 3,4 in Fig. 6(d), and curves 2–4 in Fig. 6(e)]. Note that
additional stopping points can arise as a result of transition of
the ratchet system from the geometry l = L to the geometries
l → L: Two stopping points characterize curve 2 in Figs. 6(a)
and 6(d). Why it is so, we will discuss in the next section.

VII. DISCUSSION AND CONCLUSIONS

The performed analysis of the ratchet effect in a sawtooth
potential, dichotomously modulated by a spatially harmonic
perturbation, led us to several groups of results. The first
group includes the explicit expression for the Laplace image
of the Green function of the extremely asymmetric sawtooth
potential and using this expression (within the approximation
of slightly fluctuating potential energy) for analytically inte-
grating the relations for the average velocity of a Brownian
particle. The results of the second group concern the analysis
of the frequency and temperature dependences of the obtained
expression for the average velocity. They also include the
comparison of its high-temperature, low-frequency, and high-
frequency asymptotics with the analogous asymptotics for the
ratchet with a sawtooth potential of arbitrary (not extreme)
asymmetry. The third group is the results of numerical cal-
culations and the deriving the ratchet symmetry properties
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FIG. 6. Frequency dependences of the average velocity at the inverse temperature value α = 5 calculated for various values of the phase
shift: λ0 = 0.19 (a), 0.31 (b), 0.21 (c), 0.29 (d), and 0.25 (e). The curve numbers correspond to different asymmetries of the sawtooth profile
u(x): l/L = 1 (1), 0.975 (2), 0.95 (3), and 0.925 (4).
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with neither applying the approximations of the overdamped
regime and small fluctuations nor the choice of a dichotomous
process to control fluctuations.

The main conclusion from all the results obtained con-
cerns the possibility of frequency-temperature controlling
the magnitude and direction of the ratchet velocity. Known
solution of a similar problem within the high-temperature
approximation indicated that changing the motion direction
could be only through tuning the phase shift of the spa-
tial harmonic disturbance relative to the stationary sawtooth
component [34]. Within that approximation, the frequency
dependence of the average velocity was a simple constant-sign
bell-shaped function. The analytical solution obtained in this
paper shows that only at sufficiently low temperatures and
in certain intervals of the phase-shift values the frequency
dependence becomes sign alternating; this fact determines
the frequency-controlled reversal of the motion direction.
Conversely, at certain frequencies and phase shifts, it be-
comes possible to reverse the motion direction by a change in
temperature.

Another nontrivial feature of the analytical expression for
the ratchet velocity, obtained here for the case of the ex-
tremely asymmetric sawtooth u(x), is that the high-frequency
velocities of this ratchet and of the same ratchet but with
the sawtooth u(x) of arbitrary (not extreme) asymmetry are
opposite in sign to each other. This is due to the fact that
the sawtooth potential is characterized by the particle slid-
ing time τL−l = ζ (L−l )2/u0 along its segment L−l , and this
time tends to zero with l → L in the extremely asymmetric
geometry (with the jumplike potential segment L−l), thus
becoming a new characteristic time of the system. Hence, the
high-frequency asymptotic behavior depends on the order of
the limits, over the frequency and the inverse sliding time;
the obtained sign difference is caused by the competition
of these quantities. Such a dependence of the result on the
order of limits leading to different high-frequency asymp-
totics of the average velocity was known before within the
high-temperature approximation [29]. Note that nontrivial ef-
fects can also be caused by the competition of the tending
to zero parameter τL−l with other times, e.g., the durations
of fast perturbing processes of the relaxation type [25,31]
or the characteristic time associated with the finite particle
mass [30].

Next, let us discuss the physical meaning of the depen-
dence of the average velocity on the order of limits l → L
and � → ∞ as well as reveal the mechanism of how an
additional stopping point can originate from this dependence.
The above analyzed “extremely asymmetric ratchet” (l = L)
could have only one stopping point in frequency dependences
of the velocity. Let us deepen the nonextremely asymmetric
case (l �= L). At large values of τ−1

L−l and �, the question of
fundamental importance is which of the inequalities, either
� < τ−1

L−l or � > τ−1
L−l , is fulfilled. In the first case, � < τ−1

L−l ,
one can simply set l = L and τL−l = 0 (the case l = L); then
the inequality � < τ−1

L−l is considered to be satisfied for any
� values. This case corresponds to curve 1 in Fig. 6(d), with
only one stopping point; it is the case we have been discussing.
This stopping point occurs because the average velocity is
negative at low � while it is positive at high �. Therefore, with
a change in the frequency parameter γ from zero to infinity,

the continuous frequency dependence of the average velocity
certainly crosses the abscissa axis.

In the second case l < L and τL−l > 0, so there will exist
a region (absent in the first case) in which the frequency is
so high that it is even higher than τ−1

L−l , � > τ−1
L−l . Then, at

� → ∞, when one tunes the fluctuation frequency to this
new region, the sign of the high-frequency asymptotics of the
average velocity is opposite to its sign in the first case [see the
discussion concerning Eqs. (27) and (29) in Sec. V]. On the
other hand, since the values τ−1

L−l and � remain large, in the
region � < τ−1

L−l , the velocity sign will be the same as the sign
of the high-frequency asymptotics of the first (τL−l = 0) case.
All this means that, in the region � > τ−1

L−l , a second stopping
point appears, additional to the point observed for frequencies
� < τ−1

L−l [see curve 2 in Fig. 6(d)].
In conclusion, we emphasize that the results presented in

this paper illustrate the rare case when rather abstract results
(about the dependence of the system behavior on the order
of limits) can lead to those of practical importance. Indeed,
an extremely asymmetric sawtooth potential is hardly real-
izable experimentally, so it would seem that knowing the
high-frequency asymptotics of the ratchet velocity in such a
potential is of little use. Nevertheless, this information turns
out to be of fundamental importance, since it explains how
one can get a second stopping point in the high-frequency
region for real, not extremely asymmetric, potentials. Here,
it will be useful to note that one of the main mechanisms of
motion reversal in ratchet systems is the competition between
the spatial and temporal asymmetry of the potential energy
[35]. For flashing and rocking ratchets, the average velocity
depends on parameters of spatial and temporal asymmetry
in different fashion, namely, multiplicatively and additively,
respectively [35,36]. This makes motion reversal most eas-
ily achieved for rocking ratchets [37] than for flashing ones
provided the same shapes of the functions u(x) and w(x) in
Eq. (1) [35,36]. The approximation of small fluctuations, in
which the ratchet effect is proportional to the second degree
of the perturbation w(x), excludes taking the temporal asym-
metry into account. On the other hand, when the profiles u(x)
and w(x) are different and there is a shift λ0 between their
symmetry axes, it becomes possible to regulate the motion
direction not only by changing λ0, but also by using the
fact of competition of other time parameters, e.g., the slid-
ing time and the correlation time of the dichotomous noise.
Thus, summarizing what has been said, one can assert that
the exactly solvable model of a slightly fluctuating pulsating
(flashing) ratchet developed in this paper, combined with both
the symmetry analysis and numerical results of a more gen-
eral model, has convincingly demonstrated that, in specific
systems, highly nontrivial mechanisms can underlie the pos-
sibility of frequency-temperature controlling the intensity and
direction of the ratchet effect.
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APPENDIX A: PERTURBATION THEORY IN SMALL
FLUCTUATIONS

Let us write the Smoluchowski equation in the form of the
continuity equation

∂

∂t
ρ(x, t ) + ∂

∂x
J (x, t ) = 0, (A1)

with the probability flux J (x, t ) determining by

J (x, t ) = Ĵ (x)ρ(x, t ) − βDw′(x)σ (t )ρ(x, t ). (A2)

Using the retarded Green function g(x, y, t ) of diffusion in the
stationary potential relief u(x), which satisfies Eq. (4), one
can equivalently represent Eq. (A1) as the following integral
equation:

ρ(x, t ) = ρ−(x) − βD
∫ L

0
dy

∫ ∞

−∞
dt ′g(x, y, t − t ′)σ (t ′)

× ∂

∂y
[w′(y)ρ(y, t ′)]. (A3)

Here the unperturbed distribution function ρ−(x) satisfies the
equation Ĵ (x)ρ−(x) = 0, which is the condition for the unper-
turbed flux to vanish. The normalized solution of this equation
is the Boltzmann distribution ρ−(x) = e−βu(x)/

∫ L
0 dxe−βu(x).

The validity of the representation (A3) can be verified by time
differentiating both its sides; this, when using Eq. (4), brings
Eq. (A3) back to the original Smoluchowski equation of the
form (A1) with (A2).

Next, we multiply (term by term) the equation for the
probability flux (A2) by exp[βu(x)] and integrate the result
over the spatial period L. Since the integral of the derivative
of a periodic function over its period is zero, we obtain the
following identity:

∫ L

0
dxeβu(x)J (x, t ) = −βD

∫ L

0
dxeβu(x)w′(x)σ (t )ρ(x, t ).

(A4)
Let the operation of averaging over fluctuations σ (t ) be

denoted as 〈...〉. Applying this operation to the continuity
equation (A1), we conclude that while 〈ρ(x, t )〉 depends only
on the coordinate, the average flux value 〈J (x, t )〉 depends
neither on time nor on the coordinate, that is, it is a con-
stant. This constant value, multiplied by the spatial period L
of the potential energy u(x), determines the average motion
velocity 〈v〉 = L 〈J (x, t )〉, which is the main characteristic of
a Brownian motor. Let us now apply the averaging operation
to Eq. (A4). The left-hand side of this equation takes the form
〈J (x, t )〉 ∫ L

0 dxeβu(x), so that

〈v〉 = −LβD
∫ L

0
dxρ+(x)w′(x)〈σ (t )ρ(x, t )〉, (A5)

where ρ+(x) = eβu(x)/
∫ L

0 dxeβu(x). Substituting (A3) into
(A5) and taking into account the equality 〈σ (t )〉 = 0, we get

〈v〉 = L(βD)2
∫ L

0
dx q(x)w′(x)

∫ L

0
dy

∫ ∞

−∞
dt ′g(x, y, t − t ′)

× ∂

∂y
[w′(y)〈σ (t )σ (t ′)ρ(x, t )〉]. (A6)

Next, we assume that the function w(x) is small. Then,
accurate up to the terms which are quadratic in w(x), we
can assume that 〈σ (t )σ (t ′)ρ(x, t )〉 ≈ 〈σ (t )σ (t ′)〉ρ−(x) [see
Eq. (A3)]. Introduce the correlation function K (t−t ′) ≡
〈σ (t )σ (t ′)〉 and the function S(x, y) determined by Eq. (3);
this makes it possible to pass to the relation (2), which is the
main result of the approximation of small fluctuations [25].
Note that this relation has a general character. Firstly, it is
valid not only for flashing ratchets discussed in this paper,
but also for rocking ratchets. Secondly, it is valid not only for
the stochastic dichotomous process considered here in which
the correlation function has the form K (t ) = exp(−�|t |), but
also for periodic processes, for which σ (t + τ ) = σ (t ) =∑

j σ j exp(−iω jt ), where τ is the period, ω j = 2π j/τ , j =
0, ±1, ±2, ..., and σ j is the Fourier component of the func-
tion σ (t ). For such processes, the averaging operation 〈...〉
means averaging over the period, so that 〈σ (t )〉 = σ0 = 0, and
the correlation function will be written in the form K (t ) =∑

j |σ j |2 exp(−iω jt ).
Note that the perturbation theory is a powerful apparatus

of modern theoretical physics [38,39] and is widely used to
describe ratchet systems (see review in Ref. [24] and the
literature therein). If the Green function (the resolvent) of an
unperturbed system is known, then the characteristics of the
perturbed system can be determined using iterations of the
Dyson equation [40] [similar to how the result (2) is obtained
from Eq. (A3)]. A similar quantum-mechanical perturbation
theory has been used for weakly driven quantum coherent
ratchets in cold-atom systems [41]. Various versions of the
perturbation theory turn out to be useful when considering
more complex ratchet systems with feedback, for which it is
difficult to obtain analytical solutions [42]. One can expect
that the perturbation theory can also be applied for calculating
the second moment of the distribution function, the disper-
sion, and the Péclet number. This would make it possible
not only to obtain the average velocity of particle directed
motion, but also to characterize synchronization regimes, the
coherence, and reproducibility of the ratchet effect [43,44].

APPENDIX B: SYMMETRY PROPERTIES

Let us analyze symmetry properties of a ratchet with a saw-
tooth potential of the symmetry described by the parameter
l; the spatial dependence of fluctuations is given by the first
harmonic with the phase shift λ0 (Fig. 3). We will characterize
the space-time dependence of the potential energy, of the
additive-multiplicative form (1), by the indices l and λ0,

Ul,λ0 (x, t ) = ul (x) + σ (t )wλ0 (x). (B1)

We also assume that the function ul (x) belongs to the class
of antisymmetric functions, while the functions wλ0 (x) and
σ (t ) are of the universal symmetry type. According to the
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terminology introduced in Ref. [36], a periodic function f (x)
(L is its period) belongs to the symmetric, antisymmetric, and
shift-symmetric functions under the following properties:

fs(x + xs) = fs(−x + xs), fa(x + xa) = − fa(−x + xa),

fsh(x + L/2) = − fsh(x), (B2)

respectively (xs is the position of a symmetry axis, xa is the
position of a center of symmetry); the universal symmetry
is realized when all three conditions (B2) are simultaneously
satisfied. When written for potential energies, transformations
(B2) also allow shifts along the ordinate axis, since potential
energies are determined up to an arbitrary constant. The time
dependence σ (t ) of the universal symmetry type corresponds
to a symmetric dichotomous process with equal average dura-
tions of its two states [36]. The average velocity of a ratchet
driven by fluctuations of the periodic potential energy of a
nanoparticle (flashing ratchet) is a functional of the potential
energy with the following symmetry properties [36]:

v{U (x, t )} =
(vect)

−v{U (−x, t )},
(B3)

v{U (x + x0, t + t0)} =
(shift)

v{U (x, t )},

v{U (x, t )} =
(C-R)

v{−U (−x,−t )}. (B4)

Relations (B3) describe vector and shift symmetries, which
are of a general nature; relation (B4) reflects the hidden
Cubero-Renzoni symmetry [45], inherent only in the over-
damped regime.

The choice of the origin as it is shown in Fig. 3 accom-
panied by the replacement x → −x leads to the following
obvious identities:

ul (−x) = uL−l (x), wλ0 (−x) = w1−λ0 (x),

Ul,λ0 (−x, t ) = UL−l,1−λ0 (x, t ).
(B5)

They make it possible to prove a number of important sym-
metry properties of the ratchet model under consideration.

First, let us prove that the substitutions l → L−l and
λ0 → 1 − λ0 lead to the reversal of the motion direction. This
property follows from the chain of transformations:

v
{
Ul,λ0 (x, t )

} =
(vect)

−v
{
Ul,λ0 (−x, t )

} = −v
{
UL−l,1−λ0 (x, t )

}
.

(B6)

The second property uses the identity wλ0−1/2(x) = −wλ0 (x),
which follows from (i) the explicit form of the function
wλ0 (x) given by the formula (21), according to which wλ0 (x +
L/2) = wλ0−1/2(x), and (ii) the fact that wλ0 (x) is a shift-
symmetric function [wλ0 (x + L/2) = −wλ0 (x)]. Then the
following chain of equalities holds:

v
{
Ul,λ0−1/2(x, t )

} = v
{
ul (x) − σ (t )wλ0 (x)

}
=

(shift)
v
{
ul (x) − σ (t + τ/2)wλ0 (x)

}

= v
{
ul (x) + σ (t )wλ0 (x)

} = v
{
Ul,λ0 (x, t )

}
,

(B7)

in which the shift symmetry of the function σ (t ) with the
period τ is used, σ (t + τ/2) = −σ (t ). Combining equalities
(B6) and (B7) gives v{Ul,λ0−1/2(x, t )} = −v{UL−l,1−λ0 (x, t )};
and taking into account the replacement λ0 → λ0 + 1/2, we
finally get

v
{
Ul,λ0 (x, t )

} = −v
{
UL−l, 1/2−λ0 (x, t )

}
. (B8)

Note that the function f (l, λ0) that determines, in the
overdamped mode, both the high-temperature dependence
(23) and high-frequency dependence (29) of the ratchet av-
erage velocity on l and λ0 has the same property f (l, λ0) =
− f (L−l, 1/2 − λ0). In contrast to the results of these two
approximations, as well as to the approximation of slight
fluctuations, used in this paper, the property (B8) is proved
for the general case: it remains valid both when the inertia
of a Brownian particle is taken into account and for the shift-
symmetric time dependence of fluctuations. From the property
(B8), in particular, it follows that it is sufficient to analyze the
domain λ0 ∈ [0, 1/2].

An additional symmetry property exists for an extremely
symmetric sawtooth potential, for which, when choosing the
origin as in Fig. 3, the identity uL(−x) = −uL(x) holds. From
the explicit form of the function wλ0 (x), (21), the equality
wλ0 (−x) = −w1/2−λ0 (x) follows. Using these two equalities,
as well as the symmetry of the function σ (t ), gives

v
{
UL,1/2−λ0 (x, t )

} = v
{
uL(x) − σ (t )wλ0 (−x)

} =
(C−R)

v
{−uL(−x) + σ (−t )wλ0 (x)

} =
(shift)

=
(shift)

v
{−uL(−x) + σ (−t + ts)wλ0 (x)

} = v
{−uL(−x) + σ (t + ts)wλ0 (x)

} =
(shift)

=
(shift)

v
{−uL(−x) + σ (t )wλ0 (x)

} = v
{
uL(x) + σ (t )wλ0 (x)

} = v
{
UL,λ0 (x, t )

}
.

(B9)

We stress here that in contrast to the general property (B8), which can also be used when taking inertial effects into account, the
obtained symmetry property

v
{
UL,λ0 (x, t )

} = v
{
UL,1/2−λ0 (x, t )

}
(B10)

is valid only in the overdamped regime, since it uses the time-reversal operation and the Cubero-Renzoni symmetry [45].
Naturally, this hidden symmetry is an attribute of the solution (22) obtained in the overdamped regime: the entire dependence on
λ0 enters (22) only through the factor cos 4πλ0 which is invariant under the replacement λ0 → 1/2 − λ0.

Note that at l = L/2, the antisymmetric sawtooth potential also acquires shift-symmetric properties, uL/2(x + L/2) =
−uL/2(x), that is, it becomes a function of the universal symmetry, just like the functions wλ0 (x) and σ (t ) are. This means that
there is the property UL/2,λ0 (x, t + ts) = −UL/2,λ0 (x + L/2,−t + ts), which, in the terminology of Refs. [1,46], is an attribute of
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the so-called supersymmetric function, for which the ratchet effect is absent,

v
{
UL/2,λ0 (x, t )

} =
(shift)

v
{
UL/2,λ0 (x + L/2, t + ts)

} = v
{−UL/2,λ0 (x,−t + ts)

} =
(shift)

=
(shift)

v
{−UL/2,λ0 (x,−t )

} =
(C−R)

v
{
UL/2,λ0 (−x, t )

} =
(vect)

−v
{
UL/2,λ0 (x, t )

}
. (B11)

Here, the use of the Cubero-Renzoni symmetry also
means that this property is valid only in the overdamped
mode, i.e., in the specified geometry of the system,

a nonzero ratchet velocity can arise when the particle
mass changes and thus takes the system out of this
regime.
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