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The site-bond percolation problem in two-dimensional kagome lattices has been studied by means of theo-
retical modeling and numerical simulations. Motivated by considerations of cluster connectivity, two distinct
schemes (denoted as S ∩ B and S ∪ B) have been considered. In S ∩ B (S ∪ B), two points are connected if a
sequence of occupied sites and (or) bonds joins them. Analytical and simulation approaches, supplemented by
analysis using finite-size scaling theory, were used to calculate the phase boundaries between the percolating and
nonpercolating regions, thus determining the complete phase diagram of the system in the (ps, pb) space. In the
case of the S ∩ B model, the obtained results are in excellent agreement with previous theoretical and numerical
predictions. In the case of the S ∪ B model, the limiting curve separating percolating and nonpercolating regions
is reported here.
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I. INTRODUCTION

Since its introduction in the 1950’s [1,2], the percolation
theory has been a focal point of statistical mechanics and it has
been applied to a wide range of phenomena, such as flow in
porous materials [3–5], conductive materials [6,7], networks
[8–11], colloids [12], the spin quantum Hall transition [13],
and the spread of epidemics [14]. Percolation is also a funda-
mental model in the statistical mechanics of phase transitions
and critical phenomena [3,4,15–17].

Usually, the percolation model in a lattice is classified into
two categories, namely, the site model and the bond model
[3]. In the site [bond] model, vertices [edges] of a lattice in
dimension d are independently occupied with probability ps

[pb] or empty (nonoccupied) with probability 1 − ps [1 − pb].
Nearest-neighboring occupied sites (bonds) form structures
called clusters. For an infinite lattice, there is a critical proba-
bility psc [pbc], above which a cluster extends from one side of
the system to the other. This cluster is called the infinite clus-
ter, and its presence determines a geometrical phase transition
in the system. Finding the critical point psc [pbc] is central to
many theoretical and computational studies of percolation.

The original site (bond) percolation model has spawned
many generalizations. Among them, the site-bond percolation
problem has received considerable attention in various areas
[3,4,15,18–24]. In this framework, sites and bonds are ran-
domly and independently occupied with occupancy fractions
ps and pb, respectively. It is possible then to define site-and-
bond (S ∩ B) and site-or-bond (S ∪ B) percolation: in S ∩ B
(S ∪ B), two points are said to be connected if a sequence of
occupied sites and (or) bonds joins them. Thus, in S ∩ B, a
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cluster is considered to be a set of occupied bonds and sites in
which the bonds are joined by occupied sites, and the sites are
joined by occupied bonds. In S ∪ B, a bond or site contributes
to cluster connectivity independently of the occupation of its
end points.

The site-bond percolation problem has many applications
in different fields. For instance, it has been used as a prototype
model to study the sol-to-gel transition (gelation) of polymers
[25]. In this model, bonds represent chemical bonds, occupied
sites represent monomers, and empty sites represent solvent
molecules. The site-bond percolation has also been applied
to study dissociative adsorption on metal surfaces [26,27].
In this sense, Gao and Yang [28] investigated the process of
dissociative adsorption of dimers and studied the percolat-
ing properties of the dissociated monomers as a function of
both the concentration of dimers (sites) and the dissociation
probability (bonds). A phase diagram separating a percolating
from a nonpercolating region was obtained. Biological and
medical applications have invoked the mixed percolation case.
A typical example arises when some pathological condition
spreads by contagious infection through a large static colony
of biological cells (or individuals), of which a proportion p is
susceptible and a proportion 1 − p is immune to the infection.
The cells are the vertices of a lattice (sites), and the edges of
the lattice (bonds) connect pairs of neighboring cells, between
which infection may spread [29]. The traditional approach of
site-bond percolation has been used to model pore network
structure and capillary phenomena. In this framework, sites
represent pore bodies (cavities) and bonds correspond to pore
necks (windows) [30–32].

Here, we discuss a version of two-dimensional (2D) per-
colation on the kagome lattice. The kagome lattice is of
great interest to the physics community because it mani-
fests geometric frustration (the phenomenon of having a large
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number of degenerate ground states for geometric reasons). In
the field of magnetism, the antiferromagnetic kagome lattice
may be the most frustrated 2D magnetic system that one can
construct [33]. Kagome antiferromagnets are central in the
search for exotic quantum states because both the spin and
the charge are frustrated geometrically, enabling the forma-
tion of spin-liquid phases and topological electronic struc-
tures [34–36]. Kagome ferromagnets also provide unusual
physics, showing large anomalous Hall effects that can arise
from nontrivial electronic topology with nonvanishing Berry
curvatures [37–39].

From the perspective of percolation theory, the problems of
pure site percolation, pure bond percolation, and S ∩ B mixed
percolation on kagome lattices have been studied by means of
numerical simulations and analytical approaches [21–23,40–
46]. Relevant details of these papers will be reviewed in Secs.
II and IV. The S ∪ B model has received considerably less
attention in the literature [47–51]. In particular, the critical
curve corresponding to the S ∪ B problem on kagome lattices
has not yet been reported.

Despite previous work, site-bond percolation in kagome
lattices has resisted exact calculations and, accordingly, there
are no known exact results for the critical lines separating
the percolating and nonpercolating regions in the S ∩ B and
S ∪ B models. In this context, the development of numerical
simulations and analytically solvable models might be a help
and a guide to identify and characterize the most prominent
features of this kind of systems. The main objective of this
paper is to provide a thorough study in this direction. For
this purpose, a theoretical framework is presented based upon
(i) the classical Tsallis approximation [52], which allows us
to calculate the S ∩ B and S ∪ B percolation functions from
the percolation functions corresponding to pure site and pure
bond percolation problems; and (ii) the analytical percolation
functions obtained by Scullard and Ziff (pure bond perco-
lation model) [42], Sykes and Essam (pure site percolation
model) [45], and Rosowsky (pure site percolation model) [46].
In addition, extensive computer simulations are performed in
order to test the validity of the theoretical model. In the case
of the S ∩ B model, the results obtained here are compared
with previous theoretical and numerical predictions [21–23].
In the case of the S ∪ B model, the complete percolation phase
diagram is reported here.

The paper is organized as follows. The theoretical approach
is introduced in Sec. II, which includes the main results
concerning the phase diagrams obtained from the analytical
calculations. Details of the calculations are given in the Ap-
pendix. Simulation calculations are described in Sec. III. In
Sec. IV, the analytical predictions are compared with simula-
tion data and previous results in the literature [21–23]. Finally,
the conclusions are drawn in Sec. V.

II. ANALYTICAL APPROACH

The kagome lattice is one of the fundamental lattices of
2D percolation, as well as many other 2D lattice problems.
It is one of the 11 Archimedean tiling lattices, which are
vertex-transitive graphs made in two dimensions by edge-
to-edge tiling of regular polygons, the vertices of which are
surrounded by the same sequence of polygons [53].

FIG. 1. Schematic diagram of a kagome lattice composed of four
unit cells. Solid circles and thick segments represent sites and bonds
in the lattice, respectively. Dashed open circles and dashed segments
denote boundary sites and bonds, respectively.

The Archimedean lattices are categorized in terms of the
set of polygons which surround each vertex, (n1

a1 , n2
a2 , . . . )

[53]. Going clockwise around a vertex, the numbers ni denote
the number of sides of each polygon, and the superscript
ai refers to the number of these polygons adjacent to each
other. In the case of the kagome lattice, each vertex touches
a triangle, a hexagon, a triangle, and a hexagon. Accordingly,
the corresponding notation is (3,6,3,6).

A schematic diagram of a kagome lattice is shown in Fig. 1,
where each site (solid circle) corresponds to a vertex of the
lattice and each bond (thick segment) corresponds to a poly-
gon side. Four unit cells are represented in Fig. 1. Each unit
cell contains three sites and six bonds. Dashed open circles
and dashed segments represent boundary sites and bonds,
respectively. The concept of a unit cell has been previously
used to calculate bond percolation thresholds in Archimedean
lattices [41–44].

As mentioned in Sec. I, our idea is to address the site-bond
percolation problem on the kagome lattice. In this scheme,
sites and bonds are randomly and independently occupied
with occupancy fractions ps and pb, respectively. It is possible
then to define site-and-bond (S ∩ B) and site-or-bond (S ∪ B)
percolation: in S ∩ B (S ∪ B), two points are connected if a
sequence of occupied sites and (or) bonds joins them. Then,
in S ∩ B, a cluster is a set of occupied bonds and sites in which
the bonds are joined by occupied sites, and the sites are joined
by occupied bonds. In S ∪ B, a bond or site contributes to
cluster connectivity independently of the occupation of its end
points. The central idea of the site-bond percolation theory
is based on finding the minimum concentration of elements
(sites and bonds) for which a cluster extends from one side
to the opposite one of the lattice, and a second order phase
transition occurs in the system.

It is well known that it is quite a difficult matter to analyt-
ically determine the value of the S ∩ B and S ∪ B percolation
thresholds for a given lattice [3]. However, several attempts
were made to solve the site-bond percolation problem. Among
them, an important contribution to the understanding of the
site-bond statistics was made by Tsallis [52], who proposed to
calculate the S ∩ B and S ∪ B percolation functions from the
corresponding pure site and pure bond percolation functions.
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In the Tsallis scheme [52],

hS∩B(ps, pb) = f (ps)g(pb) (1)

and

hS∪B(ps, pb) = f (ps) + g(pb) − f (ps)g(pb), (2)

where f (ps) [g(pb)] represents the percolation function cor-
responding to the pure site [bond] percolation problem, and
hS∩B(ps, pb) [hS∪B(ps, pb)] indicates the percolation function
corresponding to the S ∩ B [S ∪ B] percolation problem. In-
terested readers are referred to Ref. [52] (p. 720) for a more
complete description of the Tsallis scheme.

In the case of the kagome lattice, different approximations
have been developed to determine the functions f (ps) and
g(pb). From the analysis of the unit cell and symmetry consid-
erations, Scullard and Ziff [42] derived the critical condition
for the bond percolation problem in the kagome lattice,

1 − 3p2
b − 6p3

b + 12p4
b − 6p5

b + p6
b = 0, (3)

where the solution pbc = 0.524 429 717 5 . . . in [0,1] is the
percolation threshold of the pure bond percolation problem
in the kagome lattice. By integrating two times the function
in Eq. (3) and applying normalization conditions, we get the
corresponding percolation function:

gSZ(pb) = 40
9

(
1

56 p8
b − 1

7 p7
b + 2

5 p6
b − 3

10 p5
b − 1

4 p4
b + 1

2 p2
b

)
.

(4)
The subscript SZ in Eq. (4) refers to calculations by Scullard
and Ziff [42]. Note that the percolation function gSZ(pb) is a
positive, increasing, and continuous function on 0 � pb � 1
with gSZ(0) = 0 and gSZ(1) = 1. The critical threshold pbc =
0.524 429 717 5 . . . can now be determined from the position
of the inflection point of gSZ(pb).

By using a similar procedure as described for Scullard and
Ziff’s calculations, f (ps) can be obtained from the critical

conditions derived by Sykes and Essam [45] for the pure
bond percolation problem in triangular and honeycomb lat-
tices [54]:

1 − 3pb + p3
b = 0 (triangular lattice) (5)

and

1 − 3p2
b + p3

b = 0 (honeycomb lattice). (6)

The results in the honeycomb lattice also apply to the isomor-
phic site problem on the kagome lattice. Then, by integrating
two times the function in Eq. (6) and normalizing, the perco-
lation function for the site problem on the kagome lattice can
be obtained:

fSE(ps) = 1
6

(
ps

5 − 5ps
4 + 10ps

2
)
. (7)

In this case, the subscript SE in Eq. (7) refers to calculations
by Sykes and Essam [45]. The inflection point of the function
fSE(ps) denotes the critical threshold for the pure site percola-
tion problem on the kagome lattice psc = 0.652 703 644 6 . . . .

Based on exact counting of configurations on finite cells,
an alternative method to calculate f (ps) was proposed by
Rosowsky [46]. The resulting site percolation function, de-
noted as fR(ps), can be written as

fR(ps) = 3p8
s − 8p6

s + 6p4
s . (8)

The value of the percolation threshold derived from Eq. (8) is
psc = 0.654 653 6 . . . .

By following the Tsallis strategy [52] and using the expres-
sions of g(pb) and f (ps) in Eqs. (4), (7), and (8), two schemes
were used to obtain the site-bond percolation functions.

Scheme 1. S ∩ B and S ∪ B percolation functions are calcu-
lated using gSZ(pb) and fSE(ps). Thus,

hS∩B
1 (ps, pb) = fSE(ps)gSZ(pb). (9)

Introducing Eqs. (4) and (7) in Eq. (9), the percolation func-
tion is

hS∩B
1 (ps, pb) = 40

54

(
ps

5 − 5ps
4 + 10ps

2)( 1
56 p8

b − 1
7 p7

b + 2
5 p6

b − 3
10 p5

b − 1
4 p4

b + 1
2 p2

b

)
. (10)

On the other hand, in the case of S ∪ B percolation,

hS∪B
1 (ps, pb) = fSE(ps) + gSZ(pb) − fSE(ps)gSZ(pb), (11)

and using Eqs. (4) and (7),

hS∪B
1 (ps, pb) = 1

6

(
ps

5 − 5ps
4 + 10ps

2
) + 40

9

(
1
56 p8

b − 1
7 p7

b + 2
5 p6

b − 3
10 p5

b − 1
4 p4

b + 1
2 p2

b

)
− 40

54

(
ps

5 − 5ps
4 + 10ps

2
)(

1
56 p8

b − 1
7 p7

b + 2
5 p6

b − 3
10 p5

b − 1
4 p4

b + 1
2 p2

b

)
. (12)

Scheme 2. Site-bond percolation functions are calculated using gSZ(pb) and fR(ps). Thus,

hS∩B
2 (ps, pb) = fR(ps)gSZ(pb). (13)

Then,

hS∩B
2 (ps, pb) = 40

9

(
3p8

s − 8p6
s + 6p4

s

)(
1

56 p8
b − 1

7 p7
b + 2

5 p6
b − 3

10 p5
b − 1

4 p4
b + 1

2 p2
b

)
. (14)

In addition,

hS∪B
2 (ps, pb) = fR(ps) + gSZ(pb) − fR(ps)gSZ(pb), (15)

and

hS∪B
2 (ps, pb) = (

3p8
s − 8p6

s + 6p4
s

) + 40
9

(
1

56 p8
b − 1

7 p7
b + 2

5 p6
b − 3

10 p5
b − 1

4 p4
b + 1

2 p2
b

)
− 40

9

(
3p8

s − 8p6
s + 6p4

s

)(
1
56 p8

b − 1
7 p7

b + 2
5 p6

b − 3
10 p5

b − 1
4 p4

b + 1
2 p2

b

)
. (16)

014130-3



M. I. GONZÁLEZ-FLORES et al. PHYSICAL REVIEW E 104, 014130 (2021)

(a)

0

0.2

0 1

0.4

0.6

h
1S

 B
( 

p
s, p

b
 )

0.2 0.8

0.8

1

0.4 0.6
p

s p
b

0.6 0.40.8 0.21 0

(b)

0
10

0.2

0.4

h
1S

 B
 (

p
s, p

b
)

0.6

0.80.2

0.8

1

0.60.4
p

b
p

s

0.40.6 0.20.8 01

(c)

0
1

0.2

0

0.4

0.6

h
2S

 B
( 

p
s, p

b
 )

0.80.2

0.8

1

0.60.4
p

b
p

s
0.40.6 0.20.8 01

(d)

0
0

0.2

1

0.4

h
2S

 B
( 

p
s, p

b
 )

0.6

0.2 0.8

0.8

1

0.4 0.6
p

s p
b

0.6 0.40.8 0.21 0

FIG. 2. Percolation functions in the (ps, pb) plane:
(a) hS∩B

1 (ps, pb) [Eq. (10)], (b) hS∪B
1 (ps, pb) [Eq. (12)],

(c) hS∩B
2 (ps, pb) [Eq. (14)], and (d) hS∪B

2 (ps, pb) [Eq. (16)].

hS∩B
1 (ps, pb) [Eq. (10)], hS∪B

1 (ps, pb) [Eq. (12)], hS∩B
2 (ps, pb)

[Eq. (14)], and hS∪B
2 (ps, pb) [Eq. (16)] are plotted in

Figs. 2(a)–2(d), respectively. These functions are necessary in
order to obtain the critical curves separating the percolating
and nonpercolating regions (ps − pb phase diagram). For this
purpose, the string method [55,56] was used. The procedure
is described in the Appendix, and the results are compiled in
Table I.

In Sec. IV, the analytical results obtained in the present
section will be discussed in comparison with simulation data
and previous studies in the literature [21–23].

TABLE I. Values of (ps, pb) for the critical line corresponding to
the S ∩ B and S ∪ B percolation models. The data have been obtained
by following scheme 1 and scheme 2.

Scheme 1 Scheme 2

S ∩ B S ∪ B S ∩ B S ∪ B

pb ps pb ps pb ps pb ps

0.52443 1.00 0 0.65270 0.52443 1.00 0 0.65465

0.53 0.99434 0.02 0.64782 0.53 0.96140 0.02 0.65445

0.55 0.96447 0.05 0.63875 0.55 0.90150 0.05 0.65348

0.60 0.90235 0.10 0.61124 0.60 0.82434 0.10 0.64971

0.65 0.85974 0.15 0.57810 0.65 0.77486 0.15 0.64213

0.70 0.81457 0.20 0.54264 0.70 0.74045 0.20 0.62848

0.75 0.78013 0.25 0.49566 0.75 0.71139 0.25 0.60589

0.80 0.74703 0.30 0.44694 0.80 0.69103 0.30 0.57201

0.85 0.71467 0.35 0.39231 0.85 0.67618 0.35 0.52550

0.90 0,68823 0.40 0.32956 0.90 0.66585 0.40 0.47431

0.95 0,66845 0.45 0.25289 0.95 0.65917 0.45 0.40150

1.00 0.65270 0.465 0.23052 1.00 0.65465 0.465 0.37549

0.485 0.18728 0.485 0.33449

0.50 0.14687 0.50 0.29356

0.52443 0 0.52443 0

III. SIMULATION METHOD AND RESULTS

Let us consider an initially empty kagome lattice of Lc × Lc

cells, where Lc is the number of unit cells per lattice side (Lc =
2 in Fig. 1). Sites and bonds are independently and randomly
occupied with concentrations ps and pb, respectively. The
filling process is as follows: (1) a given site (bond), belonging
to the set of empty sites (bonds), is randomly selected and oc-
cupied; and (2) the set of empty sites (bonds) is updated. The
procedure is repeated until Ns sites and Nb bonds are occupied,
and the desired concentrations (ps = Ns/Ms, pb = Nb/Mb) are
reached. Ms [Mb] represents the total number of lattice sites
[bonds], being Ms = 3L2

c [Mb = 6L2
c ].

Under these considerations, our simulations consist of the
following two elementary steps: (a) the construction of the
Lc × Lc kagome lattice for the desired fractions ps and pb

of occupied sites and bonds, respectively; and (b) the cluster
analysis by using the Hoshen and Kopelman algorithm [57] on
the occupied elements (sites and bonds) in the lattice [58]. In
the last step, the existence of a percolating island is verified.

For each model (S ∩ B or S ∪ B), and for a given size Lc, a
value of pb is chosen. With fixed pb, steps (a) and (b) are per-
formed for increasing values of ps until a percolating cluster is
formed. By repeating this process n times, the corresponding
percolation threshold ps,c(Lc) is obtained. The number n is
chosen in order to determine ps,c(Lc) with an uncertainty
range between 10−4 and 10−5. In the present paper, four lattice
sizes were considered: Lc = 32, 64, 128, and 256.

With previous results for ps,c(Lc), the infinite percolation
threshold ps,c(∞) = ps,c [for simplicity we will drop the (∞)]
can be obtained from scaling analysis [3]. Thus, for each
percolation model (S ∪ B and S ∩ B) and for each value of
pb, one expects that

ps,c(Lc) = ps,c + AX L−1/ν
c , (17)
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FIG. 3. Extrapolation of ps,c(Lc ), towards the thermodynamic
limit according to the theoretical prediction given by Eq. (17). The
data correspond to the S ∩ B model with pb = 0.60 (squares), pb =
0.70 (circles), pb = 0.80 (triangles), and pb = 0.90 (diamonds). The
plots were made using the exact critical exponent in two dimensions
ν = 4/3.

where AX is a nonuniversal constant and ν will taken as 4/3
(value corresponding to standard percolation in two dimen-
sions).

As an illustrative example, Fig. 3 shows the plots to-
wards the thermodynamic limit of ps,c(Lc) according to
Eq. (17) for the S ∩ B model and four values of pb:
pb = 0.60 (squares), pb = 0.70 (circles), pb = 0.80 (trian-
gles), and pb = 0.90 (diamonds). From extrapolations it
is possible to determine the percolation thresholds in the
thermodynamic limit (Lc → ∞). In this case, the val-
ues obtained were ps,c = 0.905 46(3) (pb = 0.60), ps,c =
0.812 06(3) (pb = 0.70), ps,c = 0.743 39(3) (pb = 0.80), and
ps,c = 0.692 10(2) (pb = 0.90).

The procedure in Fig. 3 was repeated for different values
of pb and S ∩ B and S ∪ B models. The results are collected in
Table II and will be discussed in detail in the next section.

IV. SITE-BOND PHASE DIAGRAM: COMPARISON
BETWEEN SIMULATION AND THEORETICAL RESULTS

We start this section by analyzing the S ∩ B model. In
the inset of Fig. 4, the simulation results in Table II (solid
circles) are compared with previous data from Ref. [23] (solid
triangles). The numerical values obtained in Ref. [23] are
compiled in Table III. Circles and triangles determine a critical
line separating a percolating (nonshaded area in the figure)
from a nonpercolating (shaded area in the figure) region.
The agreement between previous and current results is excel-
lent, validating our computational approach and calculation
method.

The critical curve extends from the point [ps =
1.0, pb = 0.524 405 3(3)] at left, to the point [ps =
0.652 703 6 . . . , pb = 1.0] at right. pb = 0.524 405 3(3)
[40] [ps = 0.652 703 6 . . . [45]] represents the percolation

TABLE II. Simulation values of (ps, pb) for the critical line
corresponding to the S ∩ B and S ∪ B percolation models. Statistical
errors are in the last digit and are indicated in parentheses.

Simulation data, this paper

S ∩ B S ∪ B

pb ps pb ps

0.53 0.9854(3) 0.02 0.6463(9)
0.55 0.96604(4) 0.05 0.6483(7)
0.60 0.90546(3) 0.10 0.6389(4)
0.65 0.85519(3) 0.15 0.6326(3)
0.70 0.81206(3) 0.20 0.6160(1)
0.75 0.77556(3) 0.25 0.5927(2)
0.80 0.74339(3) 0.30 0.5608(2)
0.85 0.71626(3) 0.35 0.5176(2)
0.90 0.69210(2) 0.40 0.45812(6)
0.95 0.67097(3) 0.45 0.3717(5)

0.465 0.3403(3)
0.485 0.2787(4)
0.50 0.2266(9)

threshold for the standard bond [site] percolation on a kagome
lattice (see Ref. [59]).

In the main part of Fig. 4, the results obtained from
the analytical approaches developed in Sec. II are compared
with the simulation data presented in Sec. III. Open cir-

[21]

FIG. 4. Analytical and simulation S ∩ B phase diagrams for
kagome lattices. The symbology is as follows: simulation results
in Table II (solid circles); analytical data from scheme 1, first and
second columns in Table I (open circles joined by lines); analytical
data from scheme 2, fifth and sixth columns in Table I (open squares
joined by lines); analytical data from Ref. [22], first and second
columns in Table IV (open triangles joined by lines); analytical
data from Ref. [21], third and fourth columns in Table IV (open
diamonds joined by lines); and analytical data from Ref. [23], fifth
and sixth columns in Table IV (open stars joined by lines). In the
inset, percolating and nonpercolating regions are indicated. The inset
also includes numerical data obtained in the present paper (solid
circles) and previous simulations from Ref. [23] (solid triangles).
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TABLE III. Simulation values of (ps, pb) for the critical line
corresponding to the S ∩ B percolation model. The data correspond
to values taken from Ref. [23]. Statistical errors are in the last digit
and are indicated in parentheses.

Simulation data [23]
S ∩ B

pb ps

0.5615(4) 0.95
0.6046(5) 0.90
0.6556(6) 0.85
0.7152(7) 0.80
0.75 0.7757(8)
0.7894(9) 0.75
0.80 0.7428(5)
0.85 0.7162(5)
0.90 0.6914(5)
0.95 0.6711(4)

cles [squares] joined by lines represent analytical data from
scheme 1 [scheme 2] (Table I) and solid circles correspond to
simulation results in Table II.

The comparative analysis in Fig. 4 includes the predictions
from three previous studies [21–23]. In Ref. [22], the S ∩ B
critical frontier is determined from the condition

1 + 3ps
2(1 − 3pb + 2pb

3 − pb
4)

+ ps
3(−3 + 9pb − 3pb

2 − 12pb
3 + 15pb

4 − 6pb
5 + pb

6)

= 0. (18)

The first and second columns in Table IV compile the values
of (pb, ps) obtained by solving Eq. (18) for the same values
of pb used in the numerical simulations. The corresponding
results are shown in Fig. 4 as open triangles joined by lines.

The shape of the boundary between percolation and non-
percolation was also studied by Yanuka and Englman [21].
The authors proposed the following equation for the S ∩ B

percolation phase diagram:

log ps

log ps,c
+ log pb

log pb,c
= 1. (19)

Tarasevich and van der Marck [23] studied the same S ∩
B critical curve for different lattices, obtaining the following
boundary equation:

pb

(
ps + pb,c − ps,c

1 − pb,c

)
= pb,c

1 − ps,c

1 − pb,c
. (20)

Equations (19) and (20) were used to calculate the S ∩ B
phase diagram for kagome lattices. As in previous cases, the
values of pb were chosen according to the pb concentrations
used in the simulations. The results are summarized in Ta-
ble IV and plotted in Fig. 4 as open diamonds joined by lines
[Eq. (19)] and open stars joined by lines [Eq. (20)]. Solving
Eqs. (19) and (20) requires the inclusion of pb,c and ps,c as
extra parameters. In the case of Table IV and Fig. 4, we take
pb,c = 0.524 405 [40] and ps,c = 0.652 704 [45], following
the calculations in Ref. [23].

The behavior of the two critical curves introduced in this
paper is explained as follows: while the results from scheme
1 (open circles joined by lines) show an excellent agree-
ment with the numerical calculations, scheme 2 (open squares
joined by lines) predicts a smaller ps than the simulation data
over the range of pb. With respect to previous studies, Wu’s
critical curve (open triangles joined by lines) agrees relatively
well with the simulation results for the limit values of pb

(pb → pb,c and pb → 1); however, the disagreement turns
out to be significantly large for intermediate values of pb.
Finally, the equations of Yanuka-Englman (open diamonds
joined by lines) and Tarasevich–van der Marck (open stars
joined by lines) provide good approximations with very small
differences between simulation and theoretical results.

The differences between theoretical and numerical data
can be easily rationalized with the help of the average rel-
ative error Er , which is defined for each analytical critical

TABLE IV. Values of (ps, pb) for the critical line corresponding to the S ∩ B and S ∪ B percolation models. The data were obtained by
following scheme 1 and scheme 2. The values marked with asterisks (∗) and stars (�) were taken from Refs. [40] and [45], respectively, and
rounded to five decimal places.

S ∩ B model

Wu [22] Yanuka and Englman [21] Tarasevich and van der Marck [23]

pb ps pb ps pb ps

0.52443 1.00 0.52441∗ 1.00 0.52441∗ 1.00
0.53 0.99076 0.53 0.99301 0.53 0.99229
0.55 0.95874 0.55 0.96899 0.55 0.96602
0.60 0.88770 0.60 0.91484 0.60 0.90800
0.65 0.82975 0.65 0.86770 0.65 0.85890
0.70 0.78336 0.70 0.82622 0.70 0.81682
0.75 0.74649 0.75 0.78939 0.75 0.78035
0.80 0.71729 0.80 0.75643 0.80 0.74844
0.85 0.69431 0.85 0.72672 0.85 0.72028
0.90 0.67641 0.90 0.69978 0.90 0.69525
0.95 0.66275 0.95 0.67521 0.95 0.67286
1.00 0.65270 1.00 0.65270� 1.00 0.65270�
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FIG. 5. Analytical and simulation S ∪ B phase diagrams for
kagome lattices. The symbology is as follows: simulation results in
Table II (solid squares); analytical data from scheme 1, third and
fourth columns in Table I (open circles joined by lines); and analyti-
cal data from scheme 2, seventh and eighth columns in Table I (open
squares joined by lines). As in Fig. 4, percolating and nonpercolating
regions are indicated in the inset.

curve by

Er = 1

n

i=n∑
i=1

∣∣∣∣ pt
s,i − ps

s,i

ps
s,i

∣∣∣∣
pb,i

. (21)

In the last equation, ps
s,i (pt

s,i) denotes the critical fraction of
sites calculated from simulation (theoretical approximation).
Each pair (ps

s,i, pt
s,i) is calculated at fixed pb,i. n is the number

of points in the critical curve.
The average relative error was calculated for the five an-

alytical curves in Fig. 4. The values of ps
s,i were taken from

Table II and the values of pt
s,i were taken from Tables I

(scheme 1 and scheme 2) and IV (Wu, Yanuka-Englman,
and Tarasevich–van der Marck). The obtained results were
Er = 0.0045 (scheme 1); Er = 0.0628 (scheme 2); Er =
0.0236 (Wu); Er = 0.0121 (Yanuka-Englman); and Er =
0.0046 (Tarasevich–van der Marck). Appreciable differences
can be seen for the different theoretical frameworks, with
scheme 1 being the most accurate approximation, predicting
the behavior of the S ∩ B critical curve in the whole range
of (pb, ps). In addition, it is important to note that scheme
1 does not require extra parameters, as is the case of the
Yanuka-Englman and Tarasevich–van der Marck equations.

On the other hand, the results corresponding to the S ∪ B
percolation model are shown in Fig. 5: simulation results
in Table II (solid squares); analytical data from scheme 1,
third and fourth columns in Table I (open circles joined by
lines); and analytical data from scheme 2, seventh and eighth
columns in Table I (open squares joined by lines). The simula-
tion results are shown again in the inset separating percolating
and nonpercolating regions.

As a fundamental difference with previous data in Fig. 4,
the critical behavior of the S ∪ B model on kagome lattices
is reported here. As it is expected, the S ∪ B critical curve
extends from the point [ps = 0.652 703 6 . . . , pb = 0.0] to the
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FIG. 6. Gradient norm functions in the (ps, pb) plane: (a) SS∩B
1

[Eq. (A3)], (b) SS∪B
1 [Eq. (A4)], (c) SS∩B

2 [Eq. (A3)], and (d) SS∪B
2

[Eq. (A4)].

point [ps = 0.0, pb = 0.524 405 3(3)]. Accordingly, the S ∪ B
critical curve is essentially a continuation of the S ∩ B curve
(if it is wrapped around the diagram).

With respect to schemes 1 and 2, both approaches show
a good qualitative agreement with the simulation data. In the
case of scheme 2, an excellent approximation is provided in
the range 0 < pb < 0.4, and the agreement tends to be worse
in the range 0.4 < pb < pb,c. On the other hand, scheme 1
predicts smaller values of ps than the simulation data over
the entire range of pb. The resulting average relative errors
are Er = 0.1905 for scheme 1 and Er = 0.0650 for scheme 2,
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showing that scheme 2 performs better than scheme 1 for the
S ∪ B problem.

V. CONCLUSIONS

In this paper, the phase diagram of the site-bond per-
colation problem for kagome lattices has been addressed.
Two distinct schemes, site-and-bond (S ∩ B) and site-or-bond
(S ∪ B), have been considered. In S ∩ B, a cluster is consid-
ered to be a set of occupied bonds and sites in which the
bonds are joined by occupied sites, and the sites are joined by
occupied bonds. In S ∪ B, a bond or site contributes to cluster
connectivity independently of the occupation of its end points.
Then, by using numerical simulations and finite-size scaling
analysis the phase diagrams of the S ∩ B and the S ∪ B model
were determined.

In addition to the simulations, a simple theoretical model
was developed. The analytical formalism is based on the
well-known Tsallis approximation [52], which allows us to
calculate the S ∩ B and S ∪ B percolation functions from
the percolation functions corresponding to pure site and
pure bond percolation problems. By using previous theoret-
ical results for pure site and pure bond percolation models
in kagome lattices, two analytical schemes were proposed:
scheme 1, which combines the Scullard-Ziff solution for
pure bond percolation [42] and the Sykes-Essam approach
for pure site percolation [45]; and scheme 2, obtained from
the mentioned Scullard-Ziff solution [42] and the Rosowsky
approximation for pure site percolation [46].

An extensive analysis was carried out for evaluating the
present results and comparing them with existing literature
[21–23]. In the S ∩ B case, the numerical results coincide
with previous simulation work [23]. The numerical predic-
tions were also compared with analytical data obtained in
the present paper (scheme 1 and scheme 2) and previous
theoretical calculations by Wu [22], Yanuka and Englman
[21], and Tarasevich and van der Marck [23]. The results of
the comparison indicate that scheme 1 allows us to obtain
an approximation that is significantly better than the other
existing approaches.

On the other hand, the critical curve for the S ∪ B model
is reported here. A good qualitative agreement is obtained
between the simulation and analytical data, with scheme 2
being the most accurate approximation for this case.

In summary, the proposed theoretical framework is sim-
ple, is mathematically handleable, and represents a qualitative
advance with respect to the existing analytical development of
on site-bond percolation in kagome lattices. The present paper
complements previous work from our group, where the Tsallis
scheme [47] has been successfully applied to two- and three-
dimensional Euclidean lattices [50,51]. Future efforts will be
directed to extending the analysis to fractal geometries (Sier-
pinski carpets, DLA clusters, etc.) [60] and random graphs
(Erdös-Rényi lattices, random regular graphs, etc.) [61].
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APPENDIX

Once the functions hS∩B
1 (ps, pb) [Eq. (10)], hS∪B

1 (ps, pb)
[Eq. (12)], hS∩B

2 (ps, pb) [Eq. (14)], and hS∪B
2 (ps, pb) [Eq. (16)]

are determined (see Sec. II), the projections of these sur-
faces on the planes (pb = const) and (ps = const) behave in
a similar way to the curves of the percolation order parameter
obtained with respect to one variable while keeping the sec-
ond constant. Accordingly, the mentioned projections show a
change in the concavity (inflection points), which can be as-
sociated to the existence of a transition from a nonpercolating
to a percolating state.

A way to study the local curvature of the site-bond perco-
lation functions is by using the concept of gradients. Thus,

−→∇ hS∩B
1{2} (ps, pb) = ∂hS∩B

1{2} (ps, pb)

∂ ps
p̂s + ∂hS∩B

1{2} (ps, pb)

∂ pb
p̂b

=
[

gSZ(pb )
∂ fSE{R}(ps)

∂ ps

]
p̂s +

[
fSE{R}(ps)

∂gSZ(pb )

∂ pb

]
p̂b, (A1)

and

−→∇ hS∪B
1{2} (ps, pb) = ∂hS∪B

1{2} (ps, pb)

∂ ps
p̂s + ∂hS∪B

1{2} (ps, pb)

∂ pb
p̂b

=
[
∂ fSE{R}(ps)

∂ ps
− gSZ(pb)

∂ fSE{R}(ps)

∂ ps

]
p̂s +

[
∂gSZ(pb )

∂ pb
− fSE{R}(ps)

∂gSZ(pb )

∂ pb

]
p̂b. (A2)

Now, the norm of the gradients ‖−→∇ hS∩B
1{2} (ps, pb)‖ and ‖−→∇ hS∪B

1{2} (ps, pb)‖ can be calculated as

SS∩B
1{2} =

∥∥∥−→∇ hS∩B
1{2} (ps, pb)

∥∥∥
=

√[
gSZ(pb )

∂ fSE{R}(ps)

∂ ps

]2

+
[

fSE{R}(ps)
∂gSZ(pb )

∂ pb

]2

, (A3)
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and

SS∪B
1{2} =

∥∥∥−→∇ hS∪B
1{2} (ps, pb)

∥∥∥
=

√[
∂ fSE{R}(ps)

∂ ps
− gSZ(pb)

∂ fSE{R}(ps)

∂ ps

]2

+
[
∂gSZ(pb )

∂ pb
− fSE{R}(ps)

∂gSZ(pb )

∂ pb

]2

. (A4)

SS∩B
1 , SS∪B

1 , SS∩B
2 , and SS∪B

2 are shown in Figs. 6(a)–6(d),
respectively. The curves for a fixed value of pb have a maxi-
mum for a given value of ps, and in the same way the curves
for a fixed value of ps have a maximum for a given value of pb.
The set of such maxima can be calculated by the string method
[55,56]. The basic idea of the string method is to find a path
of critical points that connect the minimum of the function
V (ps, pb) = −SS∩B(S∪B)

α (ps, pb) (α = 1, 2) by evolution of a
string of initial points. The string {ϕ := (xi, yi ) ∈ [0, 1], i =
0, 1, 2, . . . , s − 1} is discretized into s = 10 000 initial points
[62] and it evolves until it meets the condition

−→∇ V (xi, yi )⊥ =
0, where

−→∇ V (xi, yi )⊥ is the component of
−→∇ V (xi, yi ) normal

to ϕ:

−→∇ V (xi, yi )
⊥ = −→∇ V (xi, yi ) − [

−→∇ V (xi, yi ) · t̂ ]̂t . (A5)

Here t̂ denotes the unit tangent of the curve ϕ and · denotes the
Euclidean inner product. Each point of the curve in evolution
moves in the direction of the normal component

−→∇ V (xi, yi )

and the tangential component only moves the points along the
string keeping the spacing between them. Then, the points are
redistributed in every movement. The iteration of the method
consists of two steps defined as follows.

(1) Each point of the string initially evolves according to
the recurrence equation:

xi+1 = xi − �t
∂V (xi, yi )

∂ ps
, (A6)

yi+1 = yi − �t
∂V (xi, yi )

∂ pb
. (A7)

(2) The points along the string are redistributed using a
cubic interpolation of the points of the part of the string
calculated in each time step �t .

Finally, when the two end points of the initial string fall
in the two minimum points of the function V (ps, pb), these
points are identified. Then, the critical line is obtained from
the path of minimum critical points joining the two minimum
end points. The resulting critical curves are shown in Figs. 4
and 5.
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