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Transport properties of porous media are intimately linked to their pore-space microstructures. We quantify
geometrical and topological descriptors of the pore space of certain disordered and ordered distributions of
spheres, including pore-size functions and the critical pore radius δc. We focus on models of porous media
derived from maximally random jammed sphere packings, overlapping spheres, equilibrium hard spheres,
quantizer sphere packings, and crystalline sphere packings. For precise estimates of the percolation thresholds,
we use a strict relation of the void percolation around sphere configurations to weighted bond percolation on
the corresponding Voronoi networks. We use the Newman-Ziff algorithm to determine the percolation threshold
using universal properties of the cluster size distribution. The critical pore radius δc is often used as the key
characteristic length scale that determines the fluid permeability k. A recent study [Torquato, Adv. Wat. Resour.
140, 103565 (2020)] suggested for porous media with a well-connected pore space an alternative estimate of k
based on the second moment of the pore size 〈δ2〉, which is easier to determine than δc. Here, we compare δc to
the second moment of the pore size 〈δ2〉, and indeed confirm that, for all porosities and all models considered,
δ2

c is to a good approximation proportional to 〈δ2〉. However, unlike 〈δ2〉, the permeability estimate based on
δ2

c does not predict the correct ranking of k for our models. Thus, we confirm 〈δ2〉 to be a promising candidate
for convenient and reliable estimates of the fluid permeability for porous media with a well-connected pore
space. Moreover, we compare the fluid permeability of our models with varying degrees of order, as measured
by the τ order metric. We find that (effectively) hyperuniform models tend to have lower values of k than their
nonhyperuniform counterparts. Our findings could facilitate the design of porous media with desirable transport
properties via targeted pore statistics.
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I. INTRODUCTION

The statistics that structurally or topologically characterize
the pore space of disordered porous media are intimately
linked to their effective transport properties, such as the ef-
fective electrical conductivity σe [1], mean survival time T
[2–4], principal (largest) diffusion relaxation time T1 [2,3],
and principal viscous relaxation time �1 [5]. For example,
the first and second moments of the pore-size probability
density function P(δ), 〈δ〉 and 〈δ2〉, respectively, bound T and
T1 from above for diffusion-controlled reactions in which the
interface of the porous medium is perfectly absorbing for a
solute species diffusing in the pore space, where P(δ)dδ is the
probability that a randomly chosen point in the pore space lies
at a distance between δ and δ + dδ from the nearest point on
the pore-solid interface [1].
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An especially important pore characteristic is the critical
pore radius δc of a heterogeneous material, which is the max-
imal radius of an impenetrable test sphere so that the sphere
can percolate through the void space. Interestingly, as detailed
below, the critical pore radius δc is related not only to all of the
aforementioned effective transport properties (σe, T , T1,�1)
of the porous medium but also to its fluid permeability.

The fluid permeability k associated with slow viscous flow
through an isotropic porous medium is defined by Darcy’s
law, which can be rigorously derived using homogenization
theory [6]. The permeability k has dimensions of the square of
length and, roughly speaking, may be regarded as an effective
pore channel area of the dynamically connected part of the
pore space [1]. Avellaneda and Torquato [5] used the solutions
of unsteady Stokes equations for the fluid velocity vector
field to derive a general rigorous relation connecting the fluid
permeability k to the formation factor F of the porous medium
and a length scale L that is determined by the eigenvalues of
the Stokes operator:

k = L2

F , (1)
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where L is a certain weighted sum over the viscous relaxation
times �n (i.e., inversely proportional to the eigenvalues of
the Stokes operator), and F = σ1/σe is the formation factor,
where σe is the effective electrical conductivity of a porous
medium with a conducting fluid of conductivity σ1 and a
solid phase that is perfectly insulating. Roughly speaking,
the formation factor F quantifies the degree of windiness
for electrical transport pathways across a macroscopic sample
[7]. (Note that the length scale L appearing in (1) absorbs
a factor of 8 compared to the definition L given in Ref. [5];
specifically, L = L/8.)

The prediction of the fluid permeability via theoretical
methods is a notoriously difficult problem, largely because
it is nontrivial to estimate the length scale L in (1) for gen-
eral porous media. Thus, the majority of previous analytical
studies attempt to provide closed-form estimates of L. For
example, the length scale L can be rigorously bounded from
above by length scales associated with the mean survival
time T [8], principal diffusion relaxation time T1 [3], and
principal viscous relaxation time �1 [5]. There is a panoply
of approximation formulas for L [1,9–11]. An estimate due to
Katz and Thompson [10] approximates L to be proportional to
the capillary radius at breakthrough during mercury injection
in the pore space, which is directly related to the critical pore
radius δc [12]. Empirical correlations between permeability
and critical pore radius have also been found using the water
expulsion method [13].

The critical pore radius is a complex structural character-
istic that encodes both nontrivial geometrical and topological
information. Motivated by rigorous bounds on the principle
relaxation time T1 and its link to the permeability, Torquato [7]
suggested the second moment of the pore size 〈δ2〉 as an easily
measurable approximation of L2 for models where the pore
space is well connected. The approximation was verified for
BCC sphere packings [7]. Thus, 〈δ2〉 is expected to be closely
related to the critical pore radius, which we verify below.

Here, we study the critical pore radius and void percolation
for disordered and ordered models of porous media derived
from either overlapping or hard spheres (HS) with a constant
radius R. Such configurations of overlapping or hard spheres
are effective models of a broad range of heterogeneous materi-
als and many-particle systems [1,14–18]. Our models exhibit
a varying degree of long- and short-range order, from com-
pletely random overlapping spheres to the crystalline densest
packing of hard spheres.

Importantly, we determine the critical pore radius of
maximally random jammed (MRJ) packings of identical
spheres [19], which are, intuitively speaking, the maximally
disordered among all mechanically stable packings. More
precisely, MRJ sphere packings minimize among jammed
packings an order metric � [19–26]. Previously studied
structural characteristics of MRJ sphere packings include
their two-point statistics, average contact numbers, fractions
of rattlers, Voronoi cell statistics and correlation functions,
pore-size distributions, etc. [20,27–30]. Bounds on transport
properties of MRJ packings have been recently characterized
in Ref. [31]. Ziff and Torquato [32] determined the site and
bond percolation threshold of MRJ sphere packings.

We compare the critical pore radius of the MRJ sphere
packings to three crystalline sphere packings and to three

models with disordered microstructures. The first model is
that of overlapping spheres that are completely random and
independent (also known as the Swiss-cheese model) [1], and
the second model is that of equilibrium hard spheres [18]. For
the third model, we assign overlapping spheres to the points
of amorphous inherent structures of the quantizer energy [33],
where the quantizer energy is proportional to the first mo-
ment of the void exclusion probability EV (r) (which is the
probability that a randomly placed spherical cavity of radius
r contains no points) [34]. Hence, the quantizer energy is also
related to the pore-size distribution [31]. We therefore suggest
it as an interesting model for studying transport properties.
For both the overlapping spheres (or Swiss-cheese model)
and the quantizer model, we consider two different diameters
of the spheres: (i) the average nearest-neighbor distance and
(ii) diameters that result in the same porosity as MRJ sphere
packings.

We quantify the degree of short-, intermediate-, and long-
range order in our four systems using the τ order metric [35].
It measures how the two-point statistics deviate from those of
the Poisson point process:

τ := 1

Dd

∫
Rd

[g2(r) − 1]2dr

= 1

(2π )d Ddρ2

∫
Rd

[S(k) − 1]2dk,

(2)

where g2(r) is the pair-correlation function and S(k) the struc-
ture factor [1,18]. The systems are compared at unit number
density (with a cutoff value k = 16.5 for the integration in
Fourier space).

Here, we estimate the void percolation threshold using
Kerstein’s method [36], as described in Sec. II, and the
Newman-Ziff algorithm [37]. The latter is based on the second
moment of the cluster sizes and allows for a convenient finite-
size scaling.

As mentioned above, Torquato [7] recently suggested for
porous media with a well-connected pore space to use the
second moment of the pore size, 〈δ2〉, as a convenient esti-
mate of L2, which in turn allows an estimation of the fluid
permeability k. Here, we compare the critical pore radius δc

to 〈δ2〉 and confirm that to a good approximation δ2
c ∝ 〈δ2〉. In

fact, we find that an estimation of k based on 〈δ2〉 is superior
to an estimate based on δc in that only the former provides the
correct ranking of k for our models.

We also compare the fluid permeability of models with dif-
ferent large-scale density fluctuations, i.e., nonhyperuniform
and hyperuniform models. A hyperuniform porous medium
is defined by an anomalous suppression of long-wavelength
volume-fraction fluctuations compared to those of typical dis-
ordered media [38–40]. In agreement with the analysis of
Torquato [7], we find that the estimates of fluid permeabilities
for our hyperuniform models tend to be smaller than those of
their nonhyperuniform counterparts.

In the following, we first define our models, construction
of Voronoi networks, and clustering analysis in Sec. II. Then,
we present our results on the critical pore radius, the pore
statistics, and estimates of the fluid permeability in Sec. III. In
Sec. IV, we give concluding remarks and an outlook to future
research.
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FIG. 1. Two-dimensional schematic of how the critical pore size
δc of a dispersion of hard disks (dark blue or gray) can be determined
from the corresponding Voronoi diagram (black) [36]. Each bond
in the Voronoi diagram corresponds to a channel in the void space.
When each disk of radius R is surrounded by a soft shell of thickness
δSH (light blue or gray), then δc is equal to the critical thickness
at which the pore space ceases to percolate; the thick (green) line
highlights a cluster of open channels.

II. MODELS AND STRUCTURE CHARACTERIZATION

We use periodic boundary conditions for all of our samples,
the construction of the Voronoi network, and the percolation
analysis. Figure 1 schematically shows how the pore space is
related to the Voronoi network.

Models. The first model is that of overlapping spheres that
are randomly and uniformly distributed in the simulation box
without interaction. Hence, the sphere centers are a snapshot
of the ideal gas in the canonical ensemble, i.e., the number
N of points per sample is fixed. Mathematically speaking, the
points follow a binomial point process. The τ order metric for
this model is 0, by definition.

The second model that we study is an equilibrium fluid of
hard spheres. The equal-sized spheres are impenetrable but do
not interact otherwise. Each sample has a packing fraction of
45%. The τ order metric is 9.45(1).

Determining the critical pore radius of equilibrium hard
spheres is closely related to the so-called cherry-pit model
[1], where each hard sphere of radius R is surrounded by a
penetrable spherical shell of thickness δSH . The thickness at
which the void space (outside the penetrable spheres) stops
percolating is the critical pore radius δc. It is, therefore, strictly
related to the void percolation threshold Rc := R + δc. The
same principle applies to any other monodisperse sphere con-
figuration; see Fig. 1 for a two-dimensional schematic.

The third model is that of maximally random jammed
(MRJ) packings of hard spheres. Here, we analyze packings
generated by Atkinson et al. [28]. The average packing frac-
tion is 63.6%. The τ order metric is 23.7(1) [33].

The fourth model is based on amorphous inherent struc-
tures of the quantizer energy [33]. This energy functional is
defined for Voronoi tessellations of arbitrary point configu-
rations [33,34,41–47], and it is proportional to a sum of the
second moments of inertia of all Voronoi cells (each computed
with respect to the corresponding Voronoi center). The quan-
tizer energy can be interpreted as a many-body interaction

with a certain soft-core repulsion [34]. It has been studied
both as a ground-state problem [34] and at finite temperature
[44–47].

More precisely, the quantizer energy can be defined as the
first moment of the void exclusion probability EV (r) of the
point configuration. For a point pattern at unit number density,
the rescaled quantizer energy (or error) is given by [34]:

G := 1

d
〈r2〉 = 2

d

∫ ∞

0
rEV (r)dr, (3)

where d is the dimension (here d = 3). For monodisperse
sphere packings with radius R, the complementary cumulative
distribution function F (δ) of the pore size is trivially related to
the exclusion probability via EV (r) = φ1F (r − R) for r > R,
where φ1 is the volume fraction of the pore space (and φ2 =
1 − φ1 is the volume fraction of the spheres) [1]. Hence, the
quantizer energy is closely related to the second moment of
the pore size 〈δ2〉 = 2

∫ ∞
0 δF (δ)dδ; in fact, for point particles

with R = 0: G = 〈δ2〉/d; and for nonoverlapping spheres, the
following relation can be straightforwardly derived by using
Eq. (5.68) in Torquato [1]:

G = 3 + 2φ1

5d
R2 + 2φ1

d
R〈δ〉 + φ1

d
〈δ2〉. (4)

Optimizing the quantizer energy for the centers of a sphere
packing is, therefore, closely related to an optimization of its
pore statistics.

To construct our samples of amorphous inherent structures,
we start from a binomial point process and locally minimize
the quantizer energy using the Lloyd algorithm [33]. In each
step of the algorithm and for each cell, the Voronoi center
is replaced by the center of mass of the cell [49]. We apply
10000 steps, after which the algorithm converges to an amor-
phous inherent structure with a strong suppression of density
fluctuations [33]. The final states are (effectively) centroidal
Voronoi tessellations, where in each cell the Voronoi center
coincides with the center of mass. The quantizer energy of the
disordered inherent structures (G = 0.07917) is only slightly
larger than that of the (conjectured) crystalline ground state,
the body-centered cubic (BCC) lattice (G = 0.07854) [33].
The τ order metric of the amorphous inherent structures of
the quantizer energy is 31.6(2) [33], i.e., larger than the value
for MRJ sphere packings by about a factor of 4/3.

The corresponding ground-state problem, known as the
quantizer problem, is also related to another tessellation op-
timization problem, known as the covering problem [34]. The
latter problem is the search for a point configuration that
minimizes the radius of overlapping circumscribed spheres
to cover the space. This covering radius is always an upper
bound on the critical radius Rc. Since MRJ sphere packings
are saturated, they have a finite covering radius, like a crystal.
A finite covering radius Rcov < ∞ implies that the exclusion
probability EV (r) has compact support, specifically, EV (r) =
0 for r � Rcov. As for the quantizer problem, the BCC lattice
is believed to be the optimum of the covering problem. Both
the quantizer and covering problems have relevance in numer-
ous applications, from wireless communication and network
layouts, to data compression and cryptography; see Torquato
[34] and references therein.
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TABLE I. The number of samples and number points per sample
for each of our models.

Overlapping spheres Equilibrium HS

20000 × 1000 points 2000 × 500 points
10000 × 2000 points 1000 × 1000 points
5000 × 4000 points 200 × 5000 points
1000 × 10000 points 100 × 10000 points

MRJ HS Quantizer spheres

2000 × 500 points
1015 × 2000 points 1000 × 1000 points

200 × 5000 points
16 × 10000 points 100 × 10000 points

We compare the pore statistics and transport properties
of our four disordered models to those of three perfectly
ordered crystalline structures. Specifically, we here consider
dense lattice packings of spheres with simple cubic (SC),
body-centered cubic (BCC), and face-centered cubic (FCC)
symmetries.

Simulation details. The MRJ samples are simulated in unit
cells with a nonorthogonal basis. All other samples are simu-
lated in cubic unit cells. Table I lists the number of samples
and the number of points per sample. The total number of
points in our samples is more than 80 × 106. The number
density ρ is the average number of points per unit volume.
We choose the unit of the length such that ρ = 1 for all of our
models. For the overlapping and equilibrium hard spheres and
for the quantizer sphere configurations, the number density
is fixed for each sample. For the MRJ spheres packings, the
radius of the spheres is fixed, but the number density slightly
fluctuates around unity. Figures 2–6 show for each of our
models a sample of the void space.

Voronoi network. For monodisperse sphere configurations,
the void percolation can be accurately studied by reformulat-

ing it as a weighted bond percolation on the Voronoi network,
as discussed by Kerstein [36]; see Fig. 1. The topology of
the void space is related to that of the Voronoi network, i.e.,
the network formed by the edges of the Voronoi diagram.
Each channel in the void space corresponds to a bond in
the Voronoi network. The channel vanishes when R + δSH

is larger or equal to the distance of the bond to its Voronoi
neighbors. Kerstein’s method [36] has been previously used
to study void percolation for overlapping spheres [48,50–52]
and hard-sphere packings (both jammed and in equilibrium)
[53], including models for protein structures [54].

Following this idea by Kerstein [36], we construct for
each sample the Voronoi diagram using VORO++ [55,56]. By
identifying vertices within an accuracy of about 10−12, we
determine the Voronoi network (of cell edges) and assign to
each edge the smallest distance to its neighboring Voronoi
centers. The void percolation problem is thus equivalent to a
weighted bond percolation problem on the Voronoi network.

Newman-Ziff method. Our goal was to find the critical per-
colation threshold of the void system. Along each bond in the
Voronoi network, we assigned a weight equal to the distance
of the bond to the neighboring Voronoi centers (which is
directly related to the radius of a sphere that can just pass
through that pore throat), and the goal is to find the critical
radius of a sphere where the system percolates. Various crite-
ria can be used to determine the percolation point. A common
one has been the point where a single cluster of connected
vertices spans from one side of the system to the other, or for
a periodic system, where it wraps around. However, various
other criteria can be used, including Binder-type ratios [57]
involving moments of the size of the largest cluster. The
goal in these is to find something universal so that its value
is independent of the size of the system under finite-size
scaling (although the corrections to scaling will cause a size
dependence visible for smaller systems). Here we use another
universal quantity: the second moment of the size distribution

FIG. 2. Overlapping spheres: a sample of the void space (left) and the rescaled cluster index M ′
2 as a function of the sphere radii R + δSH .

The curves for different system sizes intersect (see inset) roughly in one point, which corresponds to the percolation threshold Rc. The value
agrees within statistical accuracy with the previous result by Rintoul [48], where the mean value is indicated by the vertical line and the error
by the gray band. In the sample of the void space the different colors (shades) are only for an improved three-dimensional visualization.
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FIG. 3. Equilibrium hard spheres: a sample of the void space surrounding the dilated, cherry-pit spheres with radius R + δSH (left) and the
rescaled cluster index M ′

2 as a function of the sphere radii R + δSH ; for more details, see Fig. 2.

leaving out the largest cluster, M ′
2, divided by its value at the

maximum of the curve M ′
2(max). The idea behind this is that

M ′
2 is a peaked function whose peak is near the percolation

threshold pc but not exactly at pc. Finite-size scaling theory
implies that L−γ /νM ′

2(p) becomes a function of (p − pc)L1/ν

in the scaling limits p → pc and L → ∞. If we divide the
value at pc by the value at the maximum, for example, then we
get a ratio, which is universal (the same for all systems of the
same dimensionality and shape). Thus, if we consider plots of
M ′

2(p)/M ′
2(max), the crossing of the curves will indicate the

critical point. For very precise determinations of the critical
point, one would also have to worry about the corrections-
to-scaling contribution, but to the precision available for the
systems here, this is not necessary.

In the Newman-Ziff algorithm, bonds are added one at a
time, and the union-find computer science algorithm is used

to keep track of the evolving cluster size distribution in a
very efficient manner, including the moments such as M ′

2.
This is, in fact, much easier than determining crossing or
wrapping, which requires extra components in the data struc-
ture. Before carrying out the algorithm, we sort all the bonds
from large to small weights and then add the bonds one at
a time (largest weights first). Thus, for a given sample of a
lattice, we could only carry out one test of the percolation
threshold, unlike in typical lattices where we could create
many measurements by occupying the bonds in random order.
Here the order of the bonds is fixed by their weight. The
algorithm works in a microcanonical space where averaged
quantities are determined as a function of the number of bonds
made occupied. Usually, one carries out a convolution of the
microcanonical measurements with a binomial distribution to
get the canonical behavior that gives results as a function of

FIG. 4. MRJ hard spheres: a sample of the void space surrounding the dilated, cherry-pit spheres with radius R + δSH (left) and the rescaled
cluster index M ′

2 as a function of the sphere radii R + δSH ; for more details, see Fig. 2.
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FIG. 5. Quantizer spheres: a sample of the void space surrounding the dilated, cherry-pit spheres with radius R + δSH (left) and the rescaled
cluster index M ′

2 as a function of the sphere radii R + δSH ; for more details, see Fig. 2.

p. Here we do not do that, because for one thing there is no
random bond occupation probability p here, and, secondly,
the difference between the two is slight and would not be
observable with the precision of the results that we are able
to get here. Since M ′

2 can strongly fluctuate between samples,
we first bin, for each model and system size separately, all
weights that we find (using a constant bin width). Then, we
average the corresponding values of M ′

2 within each bin.
The crossing point of M ′

2/M ′
2(max) is used to find the

threshold. Its value should be universal and the same for
all systems of the same shape and boundary conditions. We
verified this by considering bond percolation on the simple
cubic lattice, and confirm the threshold of pc = 0.24881 with
a crossing point of M ′

2/M ′
2(max) = 0.96, consistent with the

values found here (about 0.94–0.96) for these quite different
systems.

Pore size. The pore size δ can be easily estimated from both
simulated data and three-dimensional images of real porous
media [58]. Here, we determine the mean pore size 〈δ〉 and
the second moment of the pore size 〈δ2〉 using a straight-

forward Monte Carlo sampling. Points are placed randomly
and uniformly distributed in the pore space surrounding the
spheres. For each point, we determine the smallest distance to
a sphere and estimate the first and second moment of δ using
the arithmetic mean. We estimate the statistical error using
the standard error of the mean. The number of Monte Carlo
points per sample is 105, where for each model we analyze
each sample of the two largest system sizes. For overlapping
spheres, the pore-size distribution is known analytically. We
also determine the pore sizes for lattice packings of spheres,
where we use 107 sampling points for each lattice. For the
tabulated values of 〈δ〉 and 〈δ2〉 of the dense hard-sphere
lattice packings, we use the values from Eqs. (B24)–(B39) in
Ref. [31], which were obtained by numerical integration of
exact formulas [59]. For the SC and BCC sphere packings,
we also confirm these values by numerical integration of the
exact formulas for EV (R) from Eqs. (84) and (87) in Ref. [34].
An exact formula of EV (R) also allows for precise values
of the critical void porosity ϕc := EV (Rc) of the void space
surrounding the soft shells at the critical radius.

FIG. 6. Void space surrounding the soft overlapping shells at the critical point for BCC (left), FCC (center), and SC (right) crystalline sphere
configurations: The different colors (shades) are only for an improved three-dimensional visualization. The critical porosity ϕc := EV (Rc ) is
distinctly smaller for the BCC spheres than for the FCC and SC spheres.
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TABLE II. Void percolation and pore-size statistics for our models with different porosities φ1: The table shows the critical radius Rc, the
critical void porosity ϕc (surrounding the soft shells at the critical point), and it compares the critical pore radius δc to 〈δ2〉. While Rc and ϕc

only depend on the positions of the sphere centers, δc and 〈δ2〉 also depend on the radius R and hence on the porosity φ1. For the overlapping
spheres and the quantizer model, the table shows the values for two different porosities: for a radius that matches half the nearest-neighbor
distance and for a porosity that matches the MRJ value.

Model φ1 Rc ϕc δc 〈δ2〉
Overlapping spheres 0.9148... 0.943(3) 0.0298(10) 0.666(3) 1.274... × 10−1

0.3640... 0.943(3) 0.0298(10) 0.320(3) 3.321... × 10−2

Equilibrium HS 0.550 0.714(2) 0.0257(12) 0.239(2) 1.5562(5) × 10−2

SC HS 0.4764... 0.707... 0.0349... 0.207... 1.388... × 10−2

Quantizer spheres 0.430 0.670(1) 0.0179(8) 0.156(1) 6.793(2) × 10−3

0.364 0.670(1) 0.0179(8) 0.136(1) 5.269(2) × 10−3

MRJ HS 0.364 0.681(2) 0.0303(16) 0.148(2) 7.177(2) × 10−3

BCC HS 0.3198... 0.668... 0.0055... 0.122... 3.718... × 10−3

FCC HS 0.2595... 0.648... 0.0358(6) 0.086... 3.592... × 10−3

III. RESULTS

Figures 2–5 show for our four models of disordered sphere
configurations the curves of the rescaled cluster index M ′

2 as
a function of the sphere radii R + δSH . The insets zoom into
the region where the curves of different system sizes intersect,
i.e., at the percolation threshold Rc in the infinite-system size
limit (where Rc is the critical value of R + δSH ). Each figure
also shows a sample of the void space for radii below the
percolation threshold (about 90% of Rc).

Table II lists our estimates of the critical radius Rc, critical
void porosity ϕc := EV (Rc), and critical pore radius δc. The
table compares the values for the disordered sphere configu-
rations to those of the crystalline sphere configurations. Our
results for Rc and ϕc of the overlapping sphere model and
equilibrium hard spheres agree within statistical errors with
previous results [48,50–53,60]. In particular, for the overlap-
ping spheres Rc = 0.943(3) and ϕc = 0.0298(10) agree with
the estimates Rc = 0.942(1) and ϕc = 0.0301(3) by Rintoul
[48], Rc = 0.9425(9) and ϕc = 0.0300(3) by Höfling et al.
[51], and Rc = 0.9422(3) and ϕc = 0.0301(1) by Priour and
McGuigan [52]. Moreover, our estimate Rc = 0.714(2) for the
equilibrium hard spheres agrees with the estimate of Rc =
0.712(4) that we obtain from Fig. S1 in Spanner et al. [53].

For our disordered sphere models, we find that the per-
colation threshold Rc decreases with increasing order, as
measured by the τ order metric. Moreover, while the amor-
phous hard-sphere packings have a distinctly larger value of
Rc than the optimal FCC packing, the amorphous quantizer
states have about the same Rc as the (conjectured) optimal
quantizer, a BCC lattice. The values agree within 0.3%. For
the corresponding dispersions of spheres, we find for all
radii considered here that the second moment of the pore
size, 〈δ2〉 agrees within 0.2% (even if the spheres overlap);
see Fig. 7.

Among the disordered models, the critical porosity ϕc is
lowest for the quantizer spheres [0.0179(8)]. For the lattices,
the lowest value is attained by the BCC lattice (0.0055 . . . ).
In contrast, the critical porosity of the FCC lattice [0.0358(6)]
is even larger than that of overlapping spheres [0.0298(10)].
The large difference between ϕc for BCC and FCC lattices
is related to the shape of the holes between the overlapping

soft sphere shells. For the BCC lattice, there are only small,
so-called tetrahedral holes, but for the FCC lattice, there is
an additional, relatively large type of hole, called octahedral.
These octahedral holes are formed by six neighboring spheres,
whose centers form a regular octahedron; the interstice be-
tween the spheres has a shape that resembles a cube (which is
the dual polyhedron of an octahedron); see Fig. 6.

Next, we compare the critical pore radius to the pore-
size statistics. We have found the following mean pore
sizes (compared at unit number density): for overlapping
spheres, 〈δ〉 = 0.30933 . . . at φ1 = 0.9148 . . . and 〈δ〉 =
0.14346 . . . at φ1 = 0.3640 . . . ; for equilibrium hard spheres,
〈δ〉 = 0.10259(2); for SC HS, 〈δ〉 = 0.09602 . . . ; for quan-
tizer spheres, 〈δ〉 = 0.06881(1) at φ1 = 0.430 and 〈δ〉 =
0.05990(1) at φ1 = 0.364; for MRJ HS, 〈δ〉 = 0.067414(8);
for BCC HS, 〈δ〉 = 0.05095 . . . ; and for FCC HS, 〈δ〉 =
0.04674 . . . . Table II lists the second moments of the pore
sizes for our models.

Following the suggestion by Torquato [7], Fig. 8 compares
the square of the critical pore radius to the second moments
of the pore size. To compare the models for a broad range
of porosities, we here vary the sphere radii R for each model

FIG. 7. The critical pore radius, δc (left), and the second moment
of the pore size, 〈δ2〉 (right), are compared for dispersions of spheres
arranged either on a BCC lattice or according to our amorphous
inherent structures of the quantizer energy.
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FIG. 8. Comparison of the square of the critical pore radius
δ2

c and the second moment of the pore-size distribution δ2: The
curves represent different values of δSH with fixed sphere centers.
For precise values, see Table II. The solid and dashed lines represent
overlapping spheres with porosities above and below 0.23. For the
entire range of our models and porosities, we find δ2

c ∝ δ2 to a
good approximation for models with a well-connected pore space.
However, as shown in Figs. 9 and 10, δ2

c and δ2 predict different
rankings of the fluid permeability k for dispersions of spheres at a
given volume fraction.

(from 0 to ∞). In agreement with the suggestion, we find
that δc is, to a good approximation, proportional to 〈δ2〉 over
our entire range of models and porosities. However, δ2

c and
δ2 lead to different predictions of the rankings of the fluid
permeability k for dispersions of spheres at a given volume
fraction, as discussed below.

The approximation of L2 by 〈δ2〉 was suggested by
Torquato [7] for models in which the pore space is well
connected. We, therefore, distinguish between overlapping-
sphere configurations above (solid line) and below (dashed
line) a porosity of 0.23. The approximation is most accurate
for overlapping spheres if the porosity is similar to that of
MRJ spheres.

For an estimate of the fluid permeability k, we additionally
need to approximate the formation factor F . Torquato [61]
derived a tight lower bound on F for any three-dimensional
porous medium that accounts for up to four-point information.
For both ordered and disordered dispersions of particles, the
four-point parameter vanishes to a very good approximation,
which yields the following approximation for the formation
factor:

F ≈ 2 + φ2 − φ1ζ2

φ1(2 − ζ2)
. (5)

Here ζ2 ∈ [0, 1] is a three-point microstructural parameter,
which is a weighted integral involving the one-, two-, and
three-point correlation functions S1, S2, and S3. The high
predictive power of Eq. (5) has already been validated by
excellent agreement with computer simulations of F for a
variety of ordered and disordered dispersions of spheres in
a matrix [61–66]. When ζ2 = 0, Eq. (5) reduces to the well-
known two-point Hashin-Shtrikman lower bound on F (which

FIG. 9. Estimate of permeability as a function of porosity for our
hard- and overlapping-sphere models, where L2 is approximated by
δ2

c .

is optimal for given one- and two-point correlation functions
S1 and S2) [1,67].

Here we use for our lattice sphere packings the tabulated
values of ζ2 up to the maximal packing fractions from Table
20.1 (on p. 523) in Torquato [1], which is based on data from
McPhedran and Milton [68]. We interpolate the values of
ζ2(φ2) using fourth-order polynomials. For overlapping and
equilibrium hard spheres, we use the tabulated values of ζ2

from Table 22.1 (on p. 598) in Torquato [1], which is based
on data from Torquato et al. [69] and Miller and Torquato
[70], respectively. In these two cases of disordered spheres, an
interpolation with third-order polynomials was sufficient. We
use the polynomial fit to the equilibrium hard-sphere data also
for an extrapolation to φ2 = 0.64, i.e., to estimate ζ2 ≈ 0.148
for the MRJ sphere packings. Since no data for ζ2 is yet avail-
able for our quantizer packings, we use the Hashin-Shtrikman
lower bound in this case.

Figure 9 shows the resulting estimate of the fluid perme-
ability k using the approximation by Katz and Thompson
[10], where we choose the empirical proportionality constant
between L and δc to be unity, i.e., L ≈ δc. The estimate of
k is highest for the uncorrelated overlapping spheres (among
our models and range of porosities); in particular, k is higher
for the overlapping spheres than for the hard-sphere models
(both ordered and disordered), which is consistent with the
theoretical predictions from Ref. [7].

Notably, the approximation by δc in Fig. 9 provides an
inaccurate ranking of the fluid permeability of BCC and FCC
sphere packings compared to theoretical calculations of the
fluid permeability [71]. This inaccuracy is due to the approx-
imation of L by δc rather than the approximation of F , since
we obtain the same ranking using the Hashin-Shtrikman and
three-point approximations. In contrast, the approximation
L2 ≈ 〈δ2〉 results in the correct ranking of the fluid perme-
ability k for FCC and BCC sphere packings, as shown in
Fig. 10. Moreover, except for the quantizer model that was
not studied in Ref. [7], it was shown that the approximation
L2 ≈ 〈δ2〉 provides the correct ranking for all other models
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FIG. 10. Estimate of permeability as a function of porosity for
our hard- and overlapping-sphere models, where L2 is approximated
by 〈δ2〉.

shown in Figs. 9 and 10. Thus, it is reasonable to expect that
this approximation would properly rank the quantizer model.

IV. CONCLUSION AND OUTLOOK

We have determined the percolation threshold for void
percolation around sphere configurations for models of both
hard and overlapping spheres. Our examples include the
MRJ packings of spheres, equilibrium fluids of hard spheres,
overlapping spheres, and inherent structures of the quantizer
energy, as well as ordered lattice packings of hard spheres.

To accurately determine the critical pore radius for our
models, we use the strict relation to a weighted bond per-
colation on the Voronoi network. Moreover, we employ the
Newman-Ziff algorithm and carefully take finite-system size
effects into account. We compare our results in Table II to the
second moment of the pore size δ.

We find in Fig. 8 a remarkably good correlation between
δ2

c and 〈δ2〉 across our broad spectrum of highly ordered and
disordered sphere configurations, confirming the suggestion
by Torquato [7]. Since 〈δ2〉 can be easily measured from
two- or three-dimensional digitized images of heterogeneous
materials, this recent approximation of L2 by 〈δ2〉 allows for
a simple yet reliable prediction of the permeability k. In fact,
we find that, in contrast to the critical pore size δc, the second
moment of the pore size, 〈δ2〉, predicts the correct ranking of
k for our models.

Moreover, we observe that the hyperuniform and effec-
tively hyperuniform models, like the most hyperuniform BCC
sphere packing or the disordered MRJ and quantizer packings,
tend to have smaller estimates of k than the nonhyperuniform
overlapping or equilibrium hard spheres. This again agrees
with theoretical arguments from Torquato [7] that k can be ex-
pected to be lower in hyperuniform than in nonhyperuniform
porous media because the latter exhibit a greater variability
in the sizes and geometries of the pore channels. Hence, the
velocity fields will be generally more uniform throughout the
pore space for hyperuniform two-phase media compared to
their nonhyperuniform counterparts. This is also consistent
with the fact that the BCC sphere packings have the lowest
fluid permeabilities, since the BCC lattice is the structure
with the lowest value of the hyperuniformity order metric,
implying that it suppresses large-scale density fluctuations to
the greatest degree [38,39]. It is interesting to point out that the
BCC lattice is also the optimum of the covering and quantizer
problems [34]. Our results provide additional confirmation for
the analysis presented in Torquato [7] for the aforementioned
link between these optimization problems, the pore statistics,
and fluid permeability.

Since the empirical Katz-Thomson formula has already
been applied to a broad variety of microstructures [10,12,13],
a possible direction for future research is to test the approx-
imation of δ2

c by 〈δ2〉 for polydisperse sphere configurations
and more complex particle shapes, that is, for more general
models of porous media as long as the pore space remains
well-connected. This condition is important for the theoretical
arguments of the approximation of L2 by 〈δ2〉.

An important outstanding problem is then to directly de-
termine fluid permeabilities from Stokes-flow simulations (as
suggested in Ref. [7]). Another direction for future research is
the determination of other transport properties besides the per-
meability, e.g., the effective electrical or thermal conductivity
of void space (possibly represented by the Voronoi network).
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