
PHYSICAL REVIEW E 104, 014126 (2021)

Relaxation process of magnetic friction under sudden changes in velocity
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Although there have been many studies of statistical mechanical models of magnetic friction, most of these
have focused on the behavior in the steady state. In this study, we prepare a system composed of a chain and
a lattice of Ising spins that interact with each other, and we investigate the relaxation of the system when the
relative velocity v changes suddenly. The situation where v is given is realized by attaching the chain to a spring,
the other end of which moves with a constant velocity v. Numerical simulation finds that, when the spring
constant has a moderate value, the relaxation of the frictional force is divided into two processes, which are a
sudden change and a slow relaxation. This behavior is also observed on regular solid surfaces, although caused
by different factors than our model. More specifically, the slow relaxation process is caused by relaxation of the
magnetic structure in our model but is caused by creep deformation in regular solid surfaces.
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I. INTRODUCTION

Friction is a familiar phenomenon that has been known
for a long time, and there have been many studies attempting
to describe its behavior [1–3]. One well-known phenomeno-
logical law is the Amontons–Coulomb law. It states that
frictional force F is independent of relative velocity v. How-
ever, Coulomb himself noted that real materials violate this
law slightly [1]. This violation was studied several decades
ago, resulting in an empirical modification of the Amontons–
Coulomb law known as the Dieterich–Ruina law [2–8]. This
is given by

F = F0 + A log v + B log θ, (1)

where θ is a variable obeying the following equation:

dθ

dt
= 1 − vθ

D
, (2)

and A, B, F0, and D are constants. According to this law,
F depends on the hysteresis through Eq. (2) in the general
situation. In the steady state, this relation becomes simplified
so that F is a linear function of log v.

Studies attempting to reveal the microscopic mechanisms
have also been performed following these empirical and
phenomenological results. Many types of friction caused by
various factors, such as lattice vibrations and electron mo-
tion, have been considered in these studies [9–13]. Magnetic
friction, which is the frictional force caused by magnetic in-
teractions between spin variables, is one such factor that has
attracted attention [14–16], and many statistical mechanical
models have been proposed [17–29].

In these models, the important behaviors of the system
such as the F -v relation, differ depending on the choice of
model. For example, the Amontons–Coulomb law is observed
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in some models [17–20], the Stokes law [27,28] in others,
while a crossover between these two laws is found in yet other
models [29]. In our previous studies, we introduced a model
that exhibits a crossover or transition from the Dieterich–
Ruina law to the Stokes law regardless of whether the range
of the magnetic interaction is short [30] or infinite [31]. These
studies mainly focused on the steady state, and the behavior
of these models in the non-steady state is virtually unknown.

In this study, we introduce a model similar to our previous
model [30], and we investigate the relaxation of the system
when the relative velocity v is changed suddenly as an exam-
ple of the nonsteady state. Note that in our previous model,
the constant external force imposed on the system causes
lattice motion, while most other previous studies keep the
lattice velocity fixed. Using these dynamics, we successfully
described the disturbance of the motion by the magnetic struc-
ture, which is why the system exhibited the Dieterich–Ruina
law in our previous model. However, to investigate relaxation
under a sudden change of v, we need to introduce a model
where v is given. We therefore introduce a spring connected
to the system such that the free end of the spring is pulled at
a constant velocity v, like in the classical model of friction
introduced by Prandtl and Tomlinson[32–34]. In this paper,
we introduce the model and its dynamics in Sec. II, investigate
the behavior of the model by numerical simulation in Sec. III,
and summarize the study in Sec. IV. To define the dynamics
of the system, we adopt the overdamped Langevin equation in
the main text, so the behavior when the underdamped one is
adopted is discussed in the Appendix.

II. MODEL

We consider a chain of length a and a square lattice of
side length L and depth h (a < L). The chain moves across
the upper surface of the lattice as shown in Fig. 1, and each
lattice point of the chain and the lattice has Ising spins {sn} and
{σ(ix,iy )}, where 1 � n � a, 1 � ix � L, and 1 � iy � h. We
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FIG. 1. Arrangement of the considered system.

denote the distance the upper chain has moved by δx. Spins
in the lattice interact with each other by nearest-neighbor
antiferromagnetic interactions. To simplify the simulation and
discussion, we fix the spins in the chain sn as sn = (−1)n−1,
and assume that any kind of deformation of the chain and the
lattice can be ignored. The Hamiltonian of the system is given
by

H = J
∑
〈i, j〉

σiσ j

+ J
a∑

n=1

{(1 − r)σ(n+[δx],h) + rσ(n+[δx]+1,h)}sn, (3)

where
∑

〈i, j〉 is the sum over all pairs of nearest-neighbor
spins in the lattice, [δx] is the largest integer less than or equal
to δx, and r ≡ δx − [δx] is the fractional part of δx. In this
Hamiltonian, the nth spin in the chain interacts with two adja-
cent spins in the lattice, σn+[δx] and σn+[δx]+1, and the coupling
constant between them is given by a piecewise linear function
of δx. The dependence of the coupling constant on δx is the
same as the model in our previous study [30]. To introduce
the dynamics of this system, we update the spin variables σi

using the Monte Carlo method, and define the unit time as 1
Monte Carlo step (MCS), namely, Lh steps of updating. Note
that these dynamics have two timescales corresponding to the
chain motion and the spin relaxation. We introduce a constant
p0(� 1) and let the acceptance ratio of the update of spins
be p0 times that of the normal Metropolis method, namely,
p0 min(1, e−β�H), to change the latter timescale.

The chain is attached to a spring with a spring constant
of ak, and the other end of the spring moves at a constant
velocity v such that the chain is pulled by this spring like in the
Prandtl–Tomlinson model [32–34]. Under these conditions,
the chain motion is thought to be dependent on the spring
constant. That is, when k is large, even a small extension of the
spring cancels the force generated by the magnetic interaction,
and the chain is not trapped by the magnetic structure. How-
ever, when k is small, we expect the chain to be trapped by
this structure. As k decreases, the spring needs to be stretched
further to move the chain, meaning that the magnitude of this
stretch overwhelms the fluctuation of itself in this case. This
means that the fluctuation of the elastic force can also be

ignored. Hence, the value of the elastic force is thought to be
nearly constant under extremely small k.

We let the chain obey the overdamped Langevin equation
under a given temperature T , so the time development of the
shift of the upper chain δx is given by

0 = −γ a
d (δx)

dt
+ Fex − ∂H

∂ (δx)
+

√
2γ TaR(t ), (4)

where R is white Gaussian noise that satisfies 〈R(t )R(t ′)〉 =
δ(t − t ′), and the term

√
2γ TaR is the sum of all of the ran-

dom forces imposed on the a spin variables in the chain. The
case that the chain obey the underdamped Langevin equation
instead of Eq. (4) is discussed in the Appendix. We adjust
the unit of temperature so that the Boltzmann constant kB is
normalized to one. The external force term Fex is the elastic
force from the spring,

Fex = ak{xsp(t ) − δx}, (5)

where xsp(t ) = vt + xsp,0. (6)

Substituting these equations into Eq. (4), we get

d (δx)

dt
= fex

γ
+ 1

γ a

(
− ∂H

∂ (δx)
+

√
2γ TaR(t )

)
, (7)

where fex ≡ Fex

a
= k{xsp(t ) − δx}. (8)

Note that the frictional force balances with Fex. To see the
relation between the chain motion and the magnetic structure,
we also calculate the Néel magnetization of the part of the
lattice contiguous to the chain:

ntouch ≡ 1

a + 1

∣∣∣∣∣
a+1∑
n=1

(−1)nσ(n+[δx],h)

∣∣∣∣∣. (9)

III. SIMULATION

In this section, we investigate the friction behavior by nu-
merical simulation. Updating of δx is performed after every
�t MCSs(= Lh�t steps) by applying the stochastic Heun
method to Eq. (7). In the actual calculation, the system size
is fixed at L = 400, h = 40, and a = 40, and the other param-
eters γ , J, and �t are given as γ = 1, J = 1, and �t = 0.01.
The constant p0, which is introduced to change the accep-
tance ratio of updating the spin, is fixed at p0 = 0.1. We
impose periodic boundary condition in the x direction and
open boundary condition in the y direction. First, we calculate
the dependences of fex and ntouch on the relative velocity v

in the steady state. In this calculation, physical quantities are
measured over 2 × 105 � t � 1 × 106, and averaged over 48
trials independent of each other. The initial state is given as
the perfectly antiferromagnetic state with δx = 0, xsp,0 = 2

k .
If the initial value of the strain of the spring xsp,0 is small, then
the spring requires a longer time to extend especially in the
small-v domain. Hence, we let this initial value be larger than
the typical value of the strain, 1

ak | ∂H
∂ (δx) | � 2J

k . For comparison,
we also investigate the case where the chain is not pulled by a
spring but is driven by a constant external force, fex = const.
In the following, we refer to this case as “ f -fixed case” to
distinguish it from the normal case in which fex is given
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FIG. 2. (a) The fex-v and (b) the ntouch-v relations in the steady
state. Red closed squares indicate the case where fex = const., and
blue closed circles, green closed triangles, brown open circles, and
purple open triangles represent the cases where fex is given by Eq. (8)
with k = 0.01, 0.5, 1, and 3, respectively.

by Eq. (8). The result at T = 2.0 is shown in Fig. 2. This
temperature is lower than the equilibrium transition temper-
ature of the two-dimensional antiferromagnetic Ising model
Tc � 2.27. We actually also performed the same calculation at
T = 2.5(>Tc), but there was no qualitative difference as far as
we could find. In the following calculations, the temperature is
fixed as T = 2.0. From Fig. 2, the fex-v relation in our model
becomes more similar to the f -fixed case as k decreases, as
we expected in the previous section. Hence, to make the chain
motion driven by Eq. (8) similar to that of the f -fixed case, we
need to make the spring constant k as small as possible. Note
that the graph of the f -fixed case shows a crossover from the
Dieterich–Ruina law to the Stokes law like in our previous
models.

We next investigate the relaxation process. In this calcu-
lation, we let the velocity of the spring v = v1 for 0 � t �
tW ≡ 2 × 105 and then change it to v = v2 at t = tW , and
we measure the time developments of fex and ntouch. These
quantities are averaged over 48000 independent trials. The
initial state is almost the same as that of the calculation of
the steady state, except that xsp,0 = 2

k + xr . The parameter
xr is a uniform random value satisfying 0 � xr � 2. If xr

does not exist, then xsp(t ) has a specific value at each time
because of Eq. (6), and the result of the simulation is biased.
Hence, xr is introduced to avoid this problem. Note that in this
calculation, the two timescales we mentioned in the previous
section, that is those of the relaxations of the spring length and
the magnetic structure, have an important role.

In the case of regular solid surfaces, the frictional force
exhibits two relaxation processes, which are a sudden jump
and slow relaxation [2,7]. The latter process is thought to be
caused by a slow increase in the contact area accompanying
creep deformation. The contribution of this effect is expressed
as θ in Eq. (2). To compare our model with regular solids,
we consider the case in which the relaxation of the magnetic
structure is sufficiently slower than that of the spring length,
similar to creep deformation. Letting the value of fex in the
steady state for a given velocity v be fex,s(v), the change
in the spring length during the change of velocity can be
expressed as

| fex,s(v2) − fex,s(v1)|
k

. (10)

The timescale of the relaxation of the spring length τsp can be
estimated as the time required to move this length,

τsp ∼ | fex,s(v2) − fex,s(v1)|
kv2

∝ 1

kv2
. (11)

To make the timescale of the relaxation of the magnetic struc-
ture slower than this value, 1

kv2
needs to be sufficiently small.

This means that sufficiently large values of k and v2 need
to be chosen. However, as we saw in the calculation of the
steady state, if k is too large, the behavior of the system is
apparently different from that of the f -fixed case and the
discussion becomes complicated. Hence, we need to choose
a moderate value of k that is not too large or too small. In this
calculation, we let k = 0.5. The results are shown in Fig. 3.
These graphs shows that the relaxation of fex is divided into
two processes, a sudden jump and a slow relaxation, like the
case of regular solid surfaces. The former process is caused by
the fast relaxation of the spring length. Hence, as we discussed
above, this needs more time as v2 decreases. Comparing the
graphs of fex and ntouch in Fig. 3, the latter process seems to be
caused by relaxation of the magnetic structure. We therefore
next discuss the relation between fex and ntouch.

Using a similar discussion to Ref. [30], the velocity v and
the external force Fex are expected to obey the relation

log v = αFex − U0

T
+ c, (12)

where U0 is the height of the potential barrier made by the
magnetic structure, α is the distance between the top and
bottom of the potential barrier, and c is a constant. In our
model where the spins in the chain are fixed in a perfectly
antiferromagnetic order, the height of the potential is thought
to be proportional to ntouch. Hence, by using a constant b,
U0 can be expressed as U0 = bntouch and Eq. (12) can be
expressed as

log v = αFex − bntouch

T
+ c. (13)

Transforming this equation gives

fex = Fex

a
= 1

aα
(T log v + bntouch − T c)

= α′ log v + b′ntouch + c′, (14)

where α′ = T

aα
, b′ = b

aα
, c′ = −T c

aα
. (15)
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FIG. 3. Time development of fex at k = 0.5 and v2 = (a) 0.05,
(b) 0.2, and (c) 1.0. Red squares and the blue circles indicate v1 =
0.01 and 0.1, respectively. Corresponding values of ntouch are plotted
in the inset. Dashed lines are curves fitted using Eq. (16), which is
explained later.

According to Eq. (14), fex is a linear function of ntouch, and v

depends on the magnetic structure through this relation. When
the values of fex and ntouch in the steady state are already
known as fex,s and ntouch,s, Eq. (14) can be rewritten as

fex = fex,s + b′(ntouch − ntouch,s ). (16)

Note that the above discussion regarding the height of the
potential as bntouch is simplified by the fixed spins in the chain.
If these spins were not fixed, then the contribution of the
magnetic structure to the frictional force, which appears in
Eqs. (14) and (16) as the term b′ntouch, would be more com-
plicated. To examine whether the time-development data in
Fig. 3 actually obey Eq. (16), we fit the values of fex and ntouch

at each time to Eq. (16) by the least-squares method. We use
the data satisfying 25 � t − tW < 80 when 0.05 � v2 < 0.1,
and those satisfying 15 � t − tW < 80 when 0.1 < v2, and we
impose the same weight at every point. The values of fex,s
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FIG. 4. Dependence of the fitting parameter b′ on v2 at k = 0.5.
Red squares and blue circles are the data at v1 = 0.01 and 0.1,
respectively.

and ntouch,s are taken from the data in Fig. 2. The results are
plotted as the dashed lines in Fig. 3. From these figures, since
the fitting curves seem to reproduce the slow-changing part of
the relaxation, the above discussion is thought to be correct.
However, since the value of b′ changes depending on v1 and
v2, we performed similar calculations for several values of v2,
and visualized this dependence as Fig. 4. This figure shows
that b′ has a nearly constant value in the large-v2 domain, and
becomes larger when v2 gets smaller. Note that relaxation of
the spring length is slow when v2 is small, as we can see in
Fig. 3(a). Hence, there is a possibility that the data fittings in
the small-v2 domain are inaccurate because of the incomplete
relaxation of the spring. We also note that the above discussion
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FIG. 5. Time development of fex at v2 = 0.2. The spring constant
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FIG. 6. Time development of fex at v1 = 0.01, v2 = 0.2, and k =
0.5. Red squares, blue circles, and purple triangles indicate the data at
p0 = 0.01, 0.1, and 1.0, respectively. Corresponding values of ntouch

are plotted in the inset. Note that even if p0 is small, the value of
ntouch changes in the timescale of a

v2
= 200.

deriving Eqs. (14) and (16) assumes that the external force Fex

is nearly constant during the chain motion, and the detachment
from this assumption is also thought to cause the nonconstant
b′. These points make the discussion of the behavior of b′
within the range of our calculation difficult.

We also calculate the relaxation process when k is small
or large, keeping other parameters and conditions the same
as that of Fig. 3. The results at k = 0.01 and 3 are shown in
Figs. 5(a) and 5(b), respectively. From Fig. 5(a), the relaxation
of the spring is slow and the distinction between the two
relaxation processes is ambiguous when k is small. In the
case of large k, the chain is not trapped by the magnetic
structure as we discussed in Sec. II. The force generated by
the magnetic interaction itself is proportional to ntouch even in
this case, so the dependence of fex on ntouch remains and the
two processes of the relaxation can be also observed like in
Fig. 5(b). However, the value of fex in this case is susceptible
to slight changes in δx during the chain motion. As a result
of this subtleness, the time development of fex contains an
oscillation that cannot be explained by Eq. (16).

As we explained in the beginning of this section, we fixed
the value of p0 as p0 = 0.1 in the above calculations. To
see how the relaxation process changes depending on p0, we
calculate this process at v1 = 0.01, v2 = 0.2, and k = 0.5 with
different values of p0. The result is shown in Fig. 6. Seeing
this figure, the relaxation of the magnetic structure becomes
faster with increasing p0. Note that when t − tW ∼ a

v2
, the

chain moves away from the place where it stays at t = tW .
Hence, even if p0 is extremely small, ntouch changes in this
timescale. To make the relaxation slower than this timescale,
a
v2

, we should investigate the case with larger a.

IV. SUMMARY

In this study, we considered a system composed of a chain
and a lattice interacting with each other by magnetic interac-
tions, and investigated the behavior of the magnetic friction.
By attaching a spring to the chain such that the opposite end
of the spring moves at a constant velocity v, we calculated
the relation between the frictional force and v. In particular,
we investigated the relaxation process of the frictional force

and the magnetic structure after a sudden change in v. In this
calculation, two relaxation processes, namely, a sudden jump
and a slow relaxation, were observed like the case of regular
solid surfaces if the spring constant has a moderate value. The
latter process results from relaxation of the magnetic structure
in our model, but is caused by creep deformation in the case
of regular solid surfaces. The distinction between these two
processes is clear when the timescale of the relaxation of the
magnetic structure is sufficiently slower than that of the spring
length. When the value of the spring constant is too small,
these timescales become comparable with each other and the
two processes are not observed. Note that we can modulate the
timescale of the relaxation of the magnetic structure by chang-
ing the constant p0. As we discussed at the end of Sec. III,
this timescale is slowed when p0 is small and a

v2
is sufficiently

large. If we adopt these conditions, then two processes are
clearly observed in the case with smaller k. The discussion
in Sec. III deriving Eq. (14) itself is thought to be more
accurate for the case where k has a smaller value, because
this discussion assumes that the external force imposed by
the spring is nearly constant during the chain motion. Hence,
we need to investigate whether the problem of the nonconstant
fitting parameter b′ discussed in Sec. III is eliminated in cases
with smaller values of k and p0 and sufficiently large a. This
investigation requires a large amount of computational time,
and is left as future work.

To examine whether our model obeys the Dieterich–Ruina
law given by Eqs. (1) and (2) in the nonsteady state, we need
to investigate the time development of the magnetic structure
carefully, and compare it with that of log θ in Eq. (1). Since
relaxation under a sudden change in v considered in our study
is too simple and has insufficient information to complete this
investigation, the behavior of magnetic friction under more
complicated situations also needs to be studied in the future.
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FIG. 7. Comparison of time developments of fex at v1 = 0.01,
v2 = 0.2, and k = 0.5 under the overdamped and underdamped
Langevin equations. Red closed circles mean the result of over-
damped one [Eq. (4)], and green open squares, blue open circles,
and purple open triangles indicate those of the underdamped one
[Eq. (17)] at m = 0.1, 0.5, and 1.0, respectively.
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APPENDIX: BEHAVIOR UNDER THE UNDERDAMPED
LANGEVIN EQUATION

In the main text, we investigated the case that the chain is
moved by the overdamped Langevin Eq. (4). This Appendix
treats the case in which the chain motion obey the under-
damped Langevin equation:

ma
d2(δx)

dt2
= − γ a

d (δx)

dt
+ Fex − ∂H

∂ (δx)
+

√
2γ TaR(t ).

(17)

Here, m is the mass of one lattice point. We calculate
the relaxation process of this case with v1 = 0.01, v2 =

0.2, and k = 0.5 adopting several values of m, and com-
pare it with that of the case obeying overdamped Langevin
Eq. (4). The result is shown in Fig. 7. According to this
figure, the result of the underdamped Langevin equation
resembles that of the overdamped one when m is small,
whereas it shows the damped oscillation when m is large.
The relaxation process of this model shows the qualitative
change depending on the spring constant k even in the case
of the overdamped Langevin Eq. (4), as we saw in the
main text. Hence, discussion on the underdamped Langevin
Eq. (17), which contains one more parameter m and shows
the damping oscillation under some conditions, is thought
to be more complicated and require more careful investiga-
tion than that of the overdamped one we considered in this
study.
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