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Optimal non-Gaussian search with stochastic resetting
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In this paper we reveal that each subordinated Brownian process, leading to subdiffusion, under Poissonian
resetting has a stationary state with the Laplace distribution. Its location parameter is defined only by the position
to which the particle resets, and its scaling parameter is dependent on the Laplace exponent of the random process
directing Brownian motion as a parent process. From the analysis of the scaling parameter the probability density
function of the stochastic process, subject to reset, can be restored. In this case the mean time for the particle
to reach a target is finite and has a minimum, optimal for the resetting rate. If the Brownian process is replaced
by the Lévy motion (superdiffusion), then its stationary state obeys the Linnik distribution which belongs to the
class of generalized Laplace distributions.
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I. INTRODUCTION

There has been a large amount of research on various
stochastic processes under resetting in the last decade [1–5].
The studies on resetting appeared well before the topic of re-
setting or restart became recently popular (see, e.g., [6]). Any
stochastic process evolving under its own natural dynamics is
interrupted at random times and brought back (reset) to a fixed
state, say, its initial state. The intervals between successive
reset events are statistically independent and are drawn from
some specified distribution. A particularly simple and illustra-
tive case is the Poissonian resetting with the constant reset rate
r [1]. For another popular first-passage resetting, where reset-
ting occurs whenever a diffusing particle reaches a threshold
location, see [7]. One of the most optimal search strategies is
just based on the stochastic resetting: if it is difficult to find
something, it would be better to go back to the beginning to
start the search process again [8–10]. This key to success is
widely used in nature and human behavior. In the way that
animals search for food and relocation [11–13], biomolecules
search for proteins on DNA [14,15], people look for a target
in a crowd [16], etc. The resetting can lead to a stationary state
in natural systems which is off equilibrium [17]. Chemical
reactions, producing some product and manifesting a complex
stochastic process, may benefit from restarting [18]. All this
attracts attention to the study of stochastic processes, subject
to reset, again and again [19–22]. Although the systems are
different in nature, often they demonstrate similar features.
Understanding reasons for their likeness is of particular in-
terest. Many of these works focus on the stationary state,
the approach to it, and first-passage properties [7]. In con-
trast, we study here yet another type of process, namely, the

*a.a.stanislavsky@rian.kharkov.ua
†aleksander.weron@pwr.edu.pl

subordinated Brownian process and Levy α-stable motion,
undergoing Poissonian resetting. A useful technical tool is the
subdiffusive Green’s function.

An intuitively simple way [9], leading to such systems,
can be represented by using the familiar Gaussian expression
(propagator)

G1(x, t |x0) = 1√
4πDt

exp

[
− (x − x0)2

4Dt

]
, (1)

where D is the diffusion constant, and x0 the initial position in
which the initial condition is expressed in terms of the Dirac
delta function, i.e., G1(x, 0|x0) = δ(x − x0). In the presence
of resetting the probability density function (PDF) p1(x, t |x0)
is a sum of two terms [1]. One of them is related to trajec-
tories, where no resetting events have occurred, and another
is responsible for summing over trajectories, where the last
resetting event occurred at time t − τ . For Poissonian reset-
ting with the rate r the probability of no resetting events up to
time t is defined by e−rt , whereas the probability of the last
resetting event at time t − τ (without resetting events after) is
re−rτ . The resetting process is independent of the stochastic
process which was reset. In this case the PDF p1(x, t |x0) is
written as

p1(x, t |x0) = e−rt G1(x, t |x0)

+ r
∫ t

0
e−rτ G1(x, τ |Xr ) dτ, (2)

where Xr denotes the position to which the particle was re-
turned after resetting. This case can be also considered as
stopping Brownian motion at an exponential time [23]. If
r = 0, this equation manifests the absence of resetting. The
stationary state (t → ∞) of Eq. (2) is determined only by the
second term which can be calculated exactly [24]. In fact, it
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FIG. 1. Illustration of the Brownian motion with resetting pro-
cess: the particle starts at initial position x0 and resets to position Xr

with rate r.

takes the form of the Laplace distribution [25], namely,

p1(x,∞|x0) = c1

2
e−c1|x−Xr |, (3)

where c1 = √
r/D is the constant. The result is based on

the consideration of Brownian motion as a stochastic process
under resetting and was obtained in Ref. [9]. This example is
illustrated in Fig. 1. Note that the renewal equation (2) holds
for more general stochastic processes with their propagators,
which can be different from this case having G1(x, t |x0). Be-
low we will show that the Laplace distribution is a stationary
state not only for Brownian motion under Poissonian reset-
ting, but also it is typical for many other stochastic processes
with the same resetting. In addition, this allows one to explain
why the Laplace distribution shows up so often in the statistics
of off-equilibrium non-Brownian systems. Recall that the sum
of random variables with the Laplace distribution does not
belong to the same distribution as in the case of Gaussian vari-
ables. Thus, the well-known method of limit theorems from
the theory of probability cannot be used for interpretations of
experimental data with the Laplace distribution. Nevertheless,
Laplace distributions are popular enough in different studies
[26–28]. Moreover, this analysis also brings us to another in-
teresting feature induced by resetting: the mean first-passage
time is minimized for an optimal choice of the resetting rate.

II. SUBDIFFUSION WITH RESETTING

Consider the subdiffusion instead of Brownian motion as
a stochastic process under Poissonian resetting with the con-
stant rate r. The subdiffusive Green’s function (also known
as the propagator for the subdiffusion equation) is easy to
represent with the help of the subordination integral:

Gα (x, t |x0) =
∫ ∞

0
G1(x, ξ |x0) gα (ξ, t ) dξ, (4)

for which the PDF G1(x, ξ |x0) describes the parent process,
whereas the PDF gα (ξ, t ) is related to the directing process

being inverse α stable [29]. The latter has a simple Laplace
transform

ḡα (ξ, u) = uα−1e−ξuα

, 0 < α < 1, (5)

which we use for the subsequent analysis. The PDF is ex-
pressed in terms of the M-Wright function [30], for which the
Laplace transform with respect to ξ leads to the Mittag-Leffler
function. Then the corresponding time-dependent equation,
accounting for Poissonian resetting, yields

pα (x, t |x0) = e−rt Gα (x, t |x0)

+ r
∫ t

0
e−rτ Gα (x, τ |Xr ) dτ, (6)

similar to Eq. (2), but with another propagator corresponding
to the given case. For α = 1 the PDF gα (ξ, t ) becomes the
Dirac δ function (no subordination), and Eq. (6) is trans-
formed into Eq. (2) for Brownian motion. This explains why
the propagator index equal to 1 is used for Eq. (2). In the
stationary state Eq. (6) is determined, as before, by the second
term:

pα (x,∞|x0) = r
∫ ∞

0
e−rτ Gα (x, τ |Xr ) dτ. (7)

Using Eqs. (4) and (5) and integrating over ξ , we find the sub-
diffusive Green’s function as the inverse Laplace transform:

Gα (x, t |Xr ) = 1

2π i

∫
Br

eut− |x−Xr |√
D

uα/2 du

2
√

Du1−α/2
. (8)

In fact, Eq. (7) manifests the Laplace transform of the func-
tion Gα (x, t |Xr ), whereas Eq. (8) presents the inverse Laplace
transform giving the same function. Thus, the stationary so-
lution of Eq. (6) can be found from the integrand of Eq. (8),
calculating the following integral:

pα (x,∞|x0) = r

2
√

D

∫ ∞

0
δ(s − r) e− |x−Xr |√

D
sα/2 ds

s1−α/2

= cα

2
e−cα |x−Xr |, (9)

where cα = √
rα/D is the constant. In this case we again

obtain the Laplace distribution as a stationary state after Pois-
sonian resetting. The evolution of pα (x, t |x0) in time is shown
in Fig. 2. Recall that in the logarithmic scale along the y axis
the Laplace distribution has typically a triangular form.

III. INVERSE INFINITELY DIVISIBLE SUBORDINATOR

Next, we will move on to a more general case, when the
subordinator is described by an inverse infinitely divisible dis-
tribution [31]. Such a distribution has the following Laplace
transform:

ḡ� (ξ, u) = �̄(u)

u
e−ξ�̄(u), (10)

where �̄(u) is the Laplace exponent expressed in terms of
Bernstein functions [32]. Then the propagator is

G� (x, t |x0) =
∫ ∞

0
G1(x, ξ |x0) g� (ξ, t ) dξ . (11)
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FIG. 2. Propagator pα (x, t |x0) of subdiffusion with resetting for
α = 0.7, r = 3, D = 2, x0 = 0.1, and Xr = 0.5, drawn for several
instances of time, starting with the Dirac δ function at x0 and passing
to the subdiffusive PDF, which for t → ∞ becomes the Laplace dis-
tribution, shown by the black dotted line on the panel, the maximum
of which is located at Xr .

Based on Eq. (10), it is not difficult to find the function
G� (x, t |x0) as the inverse Laplace transform, namely,

G� (x, t |x0) = 1

2π i

∫
Br

eut− |x−x0 |√
D

√
�̄(u)

√
�̄(u)

2
√

Du
du. (12)

The corresponding Green’s function p� (x, t |x0) of this
stochastic process with resetting is written as Eq. (2) ex-
pressed in terms of the propagator G� (x, t |x0). It is clear that
the second term determines a stationary state of this equation,
and this term is nothing but the Laplace transform for t → ∞.
Consequently, the PDF of the stationary state takes the form

p� (x,∞|x0) = c�

2
e−c� |x−Xr |, (13)

where c� =
√

�̄(r)/D is the constant. Consequently, the brief
analysis of the anomalous diffusion under resetting leads to
the Laplace distribution, if t → ∞. It is interesting to note
that the Laplace distribution also appears, as a stationary state,
from the conjugate property of Bernstein functions, connect-
ing the tempered stable subdiffusion with the confinement
[33].

IV. NON-LAPLACE STATIONARY STATE

Is it possible to get away from the Laplace distribution
as a stationary state in a stochastic process with Poissonian
resetting? The answer to this question is affirmative. For
this purpose the process must have an infinitely divisible
distribution [34,35]. The characteristic exponent �(|k|) of
the distribution is a Bernstein function. As for the β-stable
Lévy motion, the characteristic exponent is equal to |k|β
with β ∈ (0, 2). This is only one of the families of non-
Gaussian infinitely divisible distributions. There are others: (i)
(|k|2 + mβ/2)2/β − m, β ∈ (0, 2); (ii) log(1 + |k|β ), β ∈ (0, 2];

(iii) b|k|2 + |k|β ; (iv) log((1 + |k|2) +
√

(1 + |k|2)2 − 1); and
so on [36]. Some of them have special names: (i) relativistic,
(ii) gamma. On this basis we can describe any non-Brownian
motion with p(x, 0) = δ(x) by the characteristic function in
the form

ĥ(k, t ) = e−tD∗ �(|k|), (14)

where D∗ is a generalized diffusive constant. Next, it is con-
venient to consider the characteristic function as the Fourier
transformation of the Green’s function in this resetting pro-
cess, i.e.,

p̂(k, t |x0) =
∫ ∞

−∞
p(x, t |x0) eikx dx. (15)

The resetting leads to the expected equation [Eq. (2)] with
the propagator G(x, t |x0), which is easy to study in the
Fourier space, passing from x to k. The stationary state of the
characteristic function p̂(k, t |x0) is described by the Laplace
transform integral type,

p̂(k,∞|Xr ) = r
∫ ∞

0
e−rτ Ĝ(k, τ |Xr ) dτ

= eikXr

1 + D∗�(|k|)/r
. (16)

Note that 1/[1 + A�(|k|)] with A = D∗/r > 0 is an even
function, and thus its Fourier transform is equivalent to the
cosine transform. The term eikXr indicates that the PDF max-
imum is located at Xr . Considering the β-stable Lévy motion
with the characteristic exponent �(|k|) = |k|β under β ∈ (0,
2), we obtain the Linnik distribution [37] as a stationary PDF.
Since �(|k|) is a Bernstein function (or otherwise the function
having a complete monotone derivative), the characteristic
function 1/[1 + A�(|k|)] is typical for geometrical infinitely
divisible PDFs [38]. In any case the PDF form is symmetric
and unimodal. Depending on the type of function �(|k|) it
has a finite or infinite maximum. This feature is explained by
the integral

∫ ∞
0 1/[1 + A�(k)] dk having a single improper

point, namely, k → ∞, where the integral is either convergent
or divergent. Nevertheless, p(x, t |x0) evolves from a bimodal
form to unimodal. The case of the Linnik distribution as a
stationary state is shown in Fig. 3.

V. MEAN TIME TO REACH A TARGET

The key question for stochastic processes with resetting
concerns the mean time for the particle (or searcher) to reach
a target. For Poissonian resetting a convenient way is based on
the renewed equation for survival probabilities,

Qr (x0, t ) = e−rt Q0(x0, t )

+ r
∫ t

0
e−rτ Q0(Xr, τ ) Qr (x0, t − τ ) dτ, (17)

in which Qr (x0, t ) is the shorthand notation of Qr (x0, t |Xr ),
and similarly for Q0, accepted for convenience [1]. The first
term of Eq. (17) is related to trajectories without resetting,
whereas the second term represents trajectories under reset-
ting. After the Laplace transform and when the initial position
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FIG. 3. Propagator p(x, t |x0) of Lévy motion with resetting for
β = 1.3, r = 3, D∗ = 2, x0 = 0.1, and Xr = 0.5, drawn for several
instances of time, starting with the Dirac δ function at x0 and passing
to the Lévy PDF, which for t → ∞ becomes the Linnik distribution,
shown by the black dotted line on the panel, the maximum of which
is located at Xr .

and resetting position coincide, we have

Q̄r (Xr, s) = Q̄0(Xr, r + s)

1 − rQ̄0(Xr, r + s)
. (18)

Then the mean time for the particle to reach a target
is 〈T (Xr )〉 = Q̄r (Xr, 0), expressed in terms of the survival
probability Q0(Xr, t ) in the absence of resetting. The general
equation for the propagator from x0 to x, as an integral over
the first time to reach x, reads

G� (x, t |x0) =
∫ t

0
φ0(x, τ |x0) G� (x, t − τ |x) dτ, (19)

where φ0(x, t |x0) is the probability density of reaching x
for the first time at t . As φ0(0, t |x0) = −∂Q0(x0, t )/∂t , the
Laplace transform of Q0(x0, t ) can be presented by using the
Laplace transform of G� (x, t |x0) from Eq. (12). In this case
we obtain

Q̄0(x0, s) = 1 − e−(�̄(s)/D)1/2x0

s
. (20)

This gives us the following expression:

Q̄r (Xr, s) = 1 − exp(−c�Xr )

s + r exp(−c�Xr )
, (21)

where c� is the same as in Eq. (13). Thus, the mean time
of one-dimensional subordinated diffusion with resetting is
written as

〈T (Xr )〉 = 1

r
(ec�Xr − 1). (22)

As an example, we consider the ordinary subdiffusion having
�̄(s) = sα with 0 < α � 1. In this case it is convenient to
introduce the dimensionless parameter χ = cαXr which is the
ratio of two length parameters: Xr is the distance from the
resetting position to the target and 1/cα is the typical diffusion
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FIG. 4. Mean time of subdiffusion with Poissonian resetting as
a function of r (D = 1 and Xr = 1), drawn for several values of α.
The red circles indicate minimums of 〈T (Xr )〉 with different α. Inset
shows evolution of the minimum of χ dependent on 0 < α � 1.

length between resets. To minimize Eq. (22), the equation
reduces in terms of χ to the transcendental equation

αχ

2
= 1 − e−χ , (23)

which has a unique nonzero solution χ∗ dependent on α.
This result is represented in Fig. 4. Note that for α = 1
Eq. (23) recovers the transcendental equation, characteristic
for the ordinary diffusion with resetting [1,9], having the root
equal to ≈1.5936. Thus the minimal mean time to locate the
target is achieved when the ratio of the distance Xr to the
target to the typical diffusion length between resets is χ∗. The
value 〈T (Xr )〉 diverges as r → 0 because of 〈T (Xr )〉 ∼ rα/2−1,
which leads to the well-known result that the mean time for
a subdiffusive particle to reach the origin (in the absence of
resetting) is infinite. Also 〈T (Xr )〉 diverges for r → ∞, which
has a clear explanation: if the reset rate increases, then the
subdiffusing particle has less time between resets to reach the
origin. If α → 0, χ∗ tends to infinity, which is caused by the
particle entering the confinement. The presence of temporal
traps in the subdiffusion provides an increase in the value χ∗
with decreasing α.

In the most general case of Eq. (22) the transcendental
equation for χ cannot be represented in the simple form like
Eq. (23), but there is another useful relation,

1 − e−ζ = r
dζ

dr
, ζ = c�Xr = Xr

√
�̄(r)

D
, (24)

dependent on r and permitting to find the minimum position
of 〈T (Xr )〉 along the axis r. Then we calculate ζ ∗ by using the
second expression in Eqs. (24). It is not difficult to notice also
that the function 1 − e−ζ � 1 is bounded, whereas r dζ/dr is
a monotonically increasing function. Both functions start from
scratch at r = 0. The first of them grows faster, but then slows
down so that the second catches up and overtakes it. Thus,
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between two divergences of 〈T (Xr )〉 for r → 0 and r → ∞
there is a single minimum determining the optimal resetting.

VI. CONCLUSIONS

Finally, it should be emphasized that the Laplace distri-
bution has a crucial role to play in Poissonian resetting of a
stochastic process. The stationary state after such resetting
obeys the Laplace PDF that was well known for ordinary
Brownian motion. Nevertheless, this feature persists, if the
resetting acts on subdiffusion which arises from Brownian
motion subordinated by an inverse infinitely divisible random
process. Each Laplace PDF is characterized by two parame-
ters: Xr is a location parameter and 1/c is a scale parameter.
The first of them is the same for any subdiffusive process
under resetting, whereas the second depends on r and D. The
contribution of r is determined by the Laplace exponent of the
stochastic process subject to resetting, but D is not. By chang-
ing the rate r (reset protocol) at constant value D and finding
the scaling parameter of the Laplace distribution, one can
restore the Laplace exponent of its directing random process.
The second effect of resetting in our case concerns the mean
time to search or capture a target. We have shown that there

is an optimal resetting rate at which the mean capture time
is minimal that makes the search process efficient. The Lévy
processes with resetting manifest also a stationary state, but
its PDF is described by the Linnik distribution which belongs
to the class of geometrical stable distributions which forms
a subclass of generalized Laplace distributions. Geometric
stable distributions are heavy tailed and stable with respect
to geometric summation (see [25,38]). However, differently
from the stable ones, their densities are more “peaked” and
“blow up” at zero. Moreover, since geometric stable distri-
butions approximate random sums, they naturally arise in a
variety of applied problems and are particularly appropriate
in modeling heavy-tailed phenomena, when the variable of
interest may be thought of as the result of a random number
of independent innovations (heterogeneous environment).
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