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Anomalous diffusion driven by the redistribution of internal stresses
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This article explores the mathematical description of anomalous diffusion, driven not by thermal fluctuations
but by internal stresses. A continuous time random walk framework is outlined in which the waiting times
between displacements (jumps), generated by the dynamics of internal stresses, are described by the generalized
� distribution. The associated generalized diffusion equation is then identified. The solution to this equation is
obtained as an integral over an infinite series of Fox H functions. The probability density function is identified
as initially non-Gaussian, while at longer timescales Gaussianity is recovered. Likewise, the second moment
displays a transient nature, shifting between subdiffusive and diffusive character. The potential application of
this mathematical description to the quaking observed in several soft-matter systems is discussed briefly.
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I. INTRODUCTION

Anomalous diffusion is a transport process observed in a
large variety of systems, across many lengths and timescales.
As specific examples, it has been observed in charge car-
rier transport in amorphous semiconductors [1,2], in flow in
porous systems [3], in quantum optics [4,5], and in many other
systems [6,7]. Mathematically, there are two main avenues for
the treatment of anomalous diffusion: either considering the
stochastic description afforded by the Langevin equation or
studying the deterministic Fokker-Planck equation, where the
latter encodes information regarding the evolution in time of
the probability density function (PDF). Diffusive behavior is
most commonly characterized by the temporal behavior of the
second moment of the PDF,

〈x2(t )〉 ∝ tα. (1)

The exponent α is used to distinguish between the character-
istic regimes. The behavior is referred to as subdiffusive (α <

1), Fickian or normal (α = 1), and superdiffusive (α > 1). In
other cases the exponent may vary in time, known as transient
diffusion [8]. All of these diffusive behaviors may be found
in systems throughout the physical world [9–11]. One of the
most natural ways of modeling these systems has been to
incorporate fractional derivative operators [12]. These oper-
ators can incorporate the influence of nonlocal effects in both
time and space as the current state of the system evolves. The
application of fractional calculus to diffusion is known as the
field of fractional diffusion.

The continuous time random walk (CTRW) is considered
to be the stochastic framework underpinning fractional dif-
fusion. The discrete time counterpart has also proven to be
a valuable tool within anomalous diffusion studies [13,14];
however, in this article we consider the CTRW. By altering the
functional forms of the waiting time and jump length distri-
butions in this CTRW framework, new anomalous behaviors

may be captured by the corresponding fractional diffusion
equations (FDEs). Historically, the connection between these
two concepts is that FDEs represent the description of an
underlying CTRW in the so-called fluid limit of large time
and length scales [15]. The connection between fractional
diffusion relations and CTRWs has been explored a great deal
over the past few decades, perhaps most notably in the review
of Metzler and Klafter [8]. The field of fractional diffusion
has continued to grow, with a wide range of new connections
and applications being produced [16,17]. Fractional diffusion
equations owe their success to their capacity to describe a
range of non-Gaussian probability density functions and cap-
ture nonlocality in time and space as well as incorporate
various external forces and boundary conditions [8].

CTRWs are classified in one regard by the relationship
between the distribution functions of the spatial and tem-
poral increments. When they depend (in some fashion) on
one another, they are referred to as a coupled CTRW, while
independence of these functions implies decoupling. Within
the decoupled CTRW framework the waiting time distribu-
tion between successive jump events is vitally important in
determining the Markovian (memoryless) or non-Markovian
character observed in the corresponding generalized diffu-
sion equation. The classical diffusion equation is connected
to a Markovian CTRW model, corresponding to a waiting
time distribution that decays exponentially [18]. Waiting time
distributions that decay in some nonexponential fashion cap-
ture various non-Markovian features. Common examples of
this assume the waiting time distribution behaves as an in-
verse power law on large timescales. Such behavior leads
to the classic Riemann-Liouville diffusion equation in the
hydrodynamic limit [19]. In the natural world variations of
waiting time distributions are commonly associated with en-
vironmental factors such as trapping events, disorder, and
memory [20]. This article considers the influence that a wait-
ing time distribution strongly associated with the timing of
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stress-redistribution events, namely, the generalized � dis-
tribution, has on the diffusive properties of the CTRW and
generalized diffusion equation [21–24]. This article will be
structured as follows: Sec. II will cover some preliminary
details of fractional derivatives and will outline the decoupled
CTRW finishing with the well-known Montroll-Weiss [25]
equation; Sec. III will identify the corresponding generalized
diffusion equation for the stress-redistribution driven CTRW.
Several basic properties of the solution to this equation will
also be discussed. Concluding remarks and potential applica-
tions will be mentioned in Sec. IV.

II. PRELIMINARIES

A. Fractional calculus

While fractional calculus has existed as long as integer
order calculus, the applications of fractional calculus were not
immediately apparent. A common difficulty of fractional (or,
more accurately, arbitrary [26]) order calculus is the lack of a
simple geometric interpretation, which is present with its inte-
ger order counterpart. Indeed, many have attempted to capture
the geometric essence of these operators [27], although a con-
sensus on the matter is, for the most part, unavailable. Perhaps
the most widely utilized forms of the fractional operators
in the temporal sense are the Riemann-Liouville (RL) and
Caputo operators. The RL fractional derivative follows from
generalizing Cauchy’s repeated integral formula, while the
Caputo form follows from generalizing the Laplace transform
expression for the derivative. The RL and Caputo derivatives
may be defined as follows [27].

Definition 1. The fractional derivative of Riemann and Li-
ouville, for arbitrary order α ∈ [0,∞), applied to the function
f (t ) is defined as

RL
0 Dα

t f (t ) = 1

�(n + 1 − α)

(
d

dt

)n+1 ∫ t

0
(t − t ′)n−α f (t ′)dt ′

(2)
for n < α < n + 1, where n ∈ Z0+.

Definition 2. The fractional derivative of Caputo, for arbi-
trary order α ∈ [0,∞), applied to the function f (t ) is defined
as

C
0 Dα

t f (t ) = 1

�(n − α)

∫ t

0

f (n)(t ′)
(t − t ′)1+α−n

dt ′ (3)

for n − 1 < α < n, where n ∈ Z0+.
There is an intimate connection between these two for-

malisms which can be made apparent through the following
manipulation. If α = 1 − β and 0 < β < 1,

RL
0 D1−β

t f (t ) = 1

�(β )

d

dt

∫ t

0

f (t ′)
(t − t ′)1−β

dt ′. (4)

Due to the convolution theorem, after Laplace transforma-
tion of Eq. (4), it appears as

L
[

1

�(β )

d

dt

∫ t

0

f (t ′)
(t − t ′)1−β

dt ′
]

= 1

�(β )
u1+βF (u). (5)

Applying the Laplace inversion yields

L−1

[
1

�(β )
uβ (uF (u))

]
= 1

�(β )

∫ t

0

f (1)(t ′) + f (0)

(t − t ′)1−β
dt ′, (6)

which is nothing more than the Caputo fractional derivative
plus a power law decaying contribution from the initial con-
ditions [28]. Inspection of the form of the Caputo fractional
derivative in Eq. (6) reveals that it generates an infinite sum of
weighted infinitesimal contributions of the process over [0, t].
This integral represents the memory of the system and is of
great importance to non-Markovian processes.

B. Continuous time random walks

The continuous time random walk theory considers the
motion of a walker as it progresses through time continuously.
The framework was first described by Weiss and Montroll and
has been utilized to describe an enormous variety of stochastic
processes [25]. In a CTRW the walker, or object of interest,
progresses by taking steps of size x, after which it waits a
time t prior to taking the next step. Both variables x and t are
distributed according to a probability density function �(x, t ).
If the sizes of the steps and waiting times are uncorrelated, the
following expressions hold:

λ(x) =
∫ ∞

0
�(x, t )dt, (7)

ω(t ) =
∫ ∞

−∞
�(x, t )dx, (8)

where λ(x) and ω(t ) are the step-length and waiting time
probability density functions, respectively. Equally, in the
decoupled framework �(x, t ) factors into the independent
distributions λ(x) and ω(t ). From these quantities one may
construct an arrival probability density η(x, t ) describing the
probability density of arriving at various positions x in time t ,
defined as

η(x, t )=
∫ ∞

−∞

∫ t

0
η(x′, t ′)λ(x−x′)ω(t −t ′)dt ′dx′+δ(x)δ(t ).

(9)

This expression contains two terms; the first describes the
probability associated with a walker at x′ at time t ′ having
made a jump of length x − x′ in the remaining time t − t ′,
summed over all x and causally relevant t . The second term
represents the initial conditions here that at time t = 0 the
walker is localized at a location defined by δ(x).

The position PDF P(x, t ) is then defined as the probability
density of arriving and remaining at a position x at time t ,
defined as

P(x, t ) =
∫ t

0
η(x, t ′)
(t − t ′)dt ′, (10)

where 
(t ) is referred to as the survival PDF, which provides
the probability density for a waiting time longer than t , de-
fined as


(t ) = 1 −
∫ t

0
ω(t ′)dt ′. (11)

Thus, Eq. (10) represents the probability density associated
with a walker remaining at position x for the at least the time
t − t ′. At this point it is easier to manipulate the series of equa-
tions by passing into the Fourier [F : λ(x) → λ̂(k)]–Laplace
[L : ω(t ) → ω̂(u)] space, by virtue of the convolution theo-
rems for these transforms [29]. Transforming Eqs. (9) and (11)
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and then substituting into the Fourier-Laplace equivalent of
Eq. (10) gives the following form for the probability density
[30]:

P(k, u) = 1 − ω̂(u)

u

1

1 − λ̂(k)ω̂(u)
. (12)

III. RESULTS

A. Stress redistribution diffusion

Equation (12) represents a common starting point when
constructing anomalous diffusion models. By altering the
functional forms of the distributions, ω̂(u) and λ̂(k), nonlocal
features, of both time and space, can be incorporated in the
corresponding generalized diffusion equation. A variety of
models ranging in complexity have been described in the
literature that attempt to capture statistical aspects of stress
redistribution processes, akin to those of plate tectonics and
more broadly in stick-slip systems [23,24]. A common feature
of both simulated and real-world statistical data is that the
waiting time distribution between successive events appears
to be contained within the functional form of a generalized �

distribution [31,32]. The generalized � distribution is defined
as

ω(t ) = tγ−1

τ γ �(γ )
exp

(−tα

τα

)
. (13)

In this article the influence of waiting times of this form on
diffusive processes is explored, with α = 1 and γ ∈ [0, 1].
Thus, the events exhibit random behavior in the long time
regime. The motivation for exploring this influence is the ob-
servation that a large number of soft-matter systems appear to
restructure internally over time. The development of internal
stresses and these restructuring events are expected to con-
tribute to the dynamics of the system. The Laplace transform
of Eq. (13) is

ω̂(u) = 1

τ γ
(

1
τ

+ u
)γ . (14)

Substituting Eq. (14) into Eq. (12) under natural boundary
conditions [P(x, 0) = δ(x) and P(±∞, t ) = 0] yields

P(k, u) =
1 − 1

τ γ

(
1
τ
+u
)γ

u

1

1 − λ̂(k) 1

τ γ

(
1
τ
+u
)γ

. (15)

1. Gaussian jump distribution

After inserting this new functional form of ω̂(u), the effects
of a Gaussian jump distribution λ(x) are considered. This dis-
tribution may be represented in Fourier space by the following
approximation for small k:

λ̂(k) ∼ 1 − σ 2k2, (16)

where σ 2 represents the variance. With some rearranging of
Eq. (15),

P(k, u) = 1

u

1

1 + σ 2k2

τ γ

[(
1
τ
+u
)γ

− 1
τγ

] . (17)

FIG. 1. Second moment behavior for P(x, t ), found in Eq. (22),
with τ = σ = 1 and γ = 1/10.

Defining the ratio σ 2/τγ to be the generalized diffusion co-
efficient Dγ (with units m2/sγ , where γ → 1 recovers the
standard diffusion coefficient),

P(k, u) = 1

u

1

1 + Dγ k2[(
1
τ
+u
)γ

− 1
τγ

] . (18)

2. Second moment behavior

The transient nature of the process driving the temporal
evolution of the system is apparent in the second moment
of the PDF. The second moment μ2(t ) is related to the mean
squared displacement (MSD) in the following way:

μ2(t ) = 〈x2〉(t ) + 〈x〉2(t ). (19)

Thus, the MSD and second moment are equivalent in the
present work, where 〈x〉(t ) = 0, by virtue of beginning with
a bias free CTRW. The second moment of the PDF in Eq. (18)
may be obtained from the Laplace inversion of the relation

〈x2(u)〉 = − ∂2

∂k2
P(k, u)|k=0. (20)

After Laplace inversion of Eq. (20)

〈x2(t )〉 = Dγ

∫ t

0
exp

(
− t ′

τ

)
t ′γ−1Eγ ,γ

(
t ′γ

τ γ

)
dt ′, (21)

where Ea,b(t ) is the generalized Mittag-Leffler function [33].
Figure 1 displays the behavior of this expression. The pro-
cesses evolves subdiffusively 〈x2(t )〉 ∝ tγ on short timescales
(t 
 τ ) prior to transitioning to Fickian behavior, 〈x2(t )〉 ∝ t ,
as the random nature of long timescale events begins to man-
ifest (t � τ ).

B. Diffusion equation

Applying the inverse Laplace and Fourier transforms to
Eq. (18), the following generalized diffusion equation is
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FIG. 2. Comparison of the Riemann-Liouville memory kernel
(red dashed line) and memory kernel of Eq. (22) (blue solid line).
Here τ = σ = 1, and γ = 1

2 .

obtained:

∂

∂t
P(x, t ) = Dγ

∂

∂t

∫ t

0
exp

(
− (t − t ′)

τ

)
(t − t ′)γ−1

× Eγ ,γ

(
(t − t ′)γ

τ γ

)
∂2

∂x2
P(x, t ′)dt ′. (22)

Generalized diffusion equations were investigated recently by
Tateishi et al. [34] and were shown to describe a range of
different diffusive behaviors. Within this work Tateishi et al.
also discussed the concept of a memory kernel M(t ), which
represents the function being convolved with the standard dif-
fusive component ∂2

∂x2 P(x, t ). The form of the memory kernel
relevant to this work appears as

M(t ) = exp(−t/τ )tγ−1Eγ ,γ (tγ /τ γ ). (23)

The memory kernel describes the influence past diffusive
behavior has on the present dynamics. Figure 2 highlights
the comparison of this memory kernel with that found in
the Riemann-Liouville fraction diffusion equation. For small
values of t the functions behave identically; thus, they account
for the recent memory in the same way. However, as the value
of t grows, the two kernels deviate in behavior, with the kernel
of interest to this research decaying to a constant value. This
decay reflects the transition back to a Markovian process on
these timescales and the return to Fickian dynamics.

C. Probability density function

Obtaining the PDF of interest in x-t space requires the
Fourier-Laplace inversion of the following equation:

P(k, u) = 1

u

1

1 + σ 2k2

τ γ

[(
1
τ
+u
)γ

− 1
τγ

] , (24)

which has been developed through a CTRW framework, with
a Gaussian jump distribution and � waiting time distribution.
The derivation of this equation also employed the small k
limit. This equation has been discussed once before [35]. Here
the application to physical systems, the Fox H function solu-
tion, the short and long timescale asymptotic behaviors, and
the means by which the Gaussian solution may be recovered
upon γ → 1 are described. It is worth noting that by employ-
ing Monte Carlo methods, as discussed in [36,37], the PDF
may be numerically identified. However, this article considers
an analytic approach. First, the Fourier inverse transform of
the expression is performed, readily identified by a common
Fourier inversion result [38],

P(x, u) = F−1[P(k, u)] = F−1

[
1

u

1

1 + σ 2k2

τ γ

((
1
τ
+u
)γ

− 1
τγ

)
]
.

(25)

Evaluating the Fourier transform gives us the following ex-
pression in x − u space:

P(x, u) = τ
γ

2

2uσ

√(
1

τ
+ u

)γ

− 1

τ γ
exp

[
−|x|τ γ

2

σ

√(
1

τ
+ u

)γ

− 1

τ γ

]
. (26)

Taking the Laplace transform yields

P(x, t ) =L−1

⎡
⎣ τ

γ

2

2uσ

∞∑
n=0

(
−|x|τ γ

2

σ

)n[(
1

τ
+ u

)γ] 1
2 + n

2

(
1 − 1

τ γ
(

1
τ

+ u
)γ
) 1

2 + n
2 1

�(n + 1)

⎤
⎦(t ). (27)

Taking out the 1/u factor as the t space definite integral over [0, t],

P(x, t ) =
∫ t

0
L−1

⎧⎨
⎩τ

γ

2

2σ

∞∑
n=0

(
−|x|τ γ

2

σ

)n[(1

τ
+ u

)γ] 1
2 + n

2

(
1 − 1

τ γ
(

1
τ

+ u
)γ
) 1

2 + n
2 1

�(n + 1)

⎫⎬
⎭(t ′)dt ′. (28)

Invoking the shift theorem of the Laplace transform and utilizing the binomial theorem leaves us with the expression

P(x, t ) =
∫ t

0
exp

(
− t ′

τ

)
L−1

[
τ

γ

2

2σ

∞∑
n=0

(
−|x|τ γ

2

σ

)n

(uγ )
1
2 + n

2

∞∑
m=0

�
(

3
2 + n

2

)
�(m + 1)�

(
3
2 + n

2 − m
)(− 1

τ γ uγ

)m 1

�(n + 1)

]
(t ′)dt ′.

(29)
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This expression can be cast as a Fox H function [39] by virtue of its series expansion [40]. Recognizing the H function form
allows for more straightforward manipulations with regard to the inverse transforms and reduction to known results. For these
reasons and others the H function sees regular employment within the realm of fractional and generalized diffusion equations
[41]:

P(x, t ) =
∫ t

0
exp

(
− t ′

τ

)
L−1

{
τ

γ

2

2σ

∞∑
m=0

1

�(m + 1)

(
− 1

τ γ uγ

)m

u
γ

2 H1,1
1,2

[
|x|τ γ

2 u
γ

2

σ

∣∣∣∣
(− 1

2 , 1
2 )

(0,1)(m− 1
2 , 1

2 )

]}
(t ′)dt ′. (30)

The Laplace inversion of the Fox H function, followed by the use of identity 3.5 described by Skibiński in 1970 [42], is now
employed. Due to the flexibility of the coefficients ai and αi (by virtue of the value of p in the H function) it can be cast in the
following form:

P(x, t ) = 1

2

∫ t

0
exp

(
− t ′

τ

) ∞∑
m=0

1

�(m + 1)

(
t ′γ

τ γ

)m 1

|x|
1

t ′ H
2,0
2,2

[
|x|τ γ

2

σ t ′ γ

2

∣∣∣∣
(0, 1

2 ),(γ m,
γ

2 )

(m, 1
2 ),(1,1)

]
dt ′. (31)

The behavior of this solution across a range of timescales and γ values is portrayed in Fig. 3. This solution describes a system
exhibiting short timescale subdiffusive behavior which transitions on longer timescales to normal diffusion and thus may capture
many real-world systems with this phenomenology.

D. Recovery of the Gaussian PDF

We can test the behavior of this result by first establishing the return to the Gaussian PDF upon setting γ → 1 in Eq. (31).
This change immediately allows for the reduction of the H function by way of identity 3.2 of Skibiński [42]. After the reduction,
there is no longer any occurrence of the index m within the H function structure; thus, all that remains is the series form of the
exponential function. These steps yield the following:

P(x, t ) =
∫ t

0
exp

(
− t ′

τ

)
exp

(
t ′

τ

)
1

2|x|
1

t ′ H
1,0
1,1

[
|x|τ 1

2

σ t ′ 1
2

∣∣∣∣
(0, 1

2 )

(1,1)

]
dt ′, (32)

where the exponential functions cancel one another, leaving

P(x, t ) =
∫ t

0

1

2|x|
1

t ′ H
1,0
1,1

[
|x|τ 1

2

σ t ′ 1
2

∣∣∣∣
(0, 1

2 )

(1,1)

]
dt ′. (33)

We now utilize identity 3.4 of Skibiński and use it in conjunction with Legendre’s duplication formula for the � function. These
steps produce the following result:

P(x, t ) = 1√
4π

∫ t

0

1

|x|
1

t ′ H
2,0
1,2

[
x2τ

4σ 2t ′

∣∣∣∣
(0,1)

( 1
2 ,1),(1,1)

]
dt ′. (34)

Next, identity 3.6 of Skibiński is invoked, in combination with taking the partial derivative with respect to t of both sides of the
equation, thus producing

∂

∂t
P(x, t ) = 1√

4π

−1

|x|
1

t
H1,1

1,2

[
x2τ

4σ 2t

∣∣∣∣
(0,1)

(1,1),( 1
2 ,1)

]
. (35)

By virtue of the known differential results for the H function covered by Skibiński as well as later texts on the subject, the
following result is identified:

∂

∂t
P(x, t ) = 1√

4π

√
τ

σ 2

∂

∂t

1√
t
H1,0

0,1

[
x2τ

4σ 2t

∣∣∣∣
(0,1)

]
. (36)

Taking the antiderivative of both sides and utilizing the initial conditions discussed earlier, namely, the initial Dirac δ form over
x, provide

P(x, t ) = 1√
4π

√
τ

σ 2

1√
t
H1,0

0,1

[
x2τ

σ 2t

∣∣∣∣
(0,1)

]
, (37)

which is the H function form of the Gaussian PDF, as expected.
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FIG. 3. PDFs corresponding to increasing values of γ in Eq. (31), where X is dimensionless, X = x/σ . The value of γ ranges from
γ = 1/6 in (a) to γ = 1 in (f), in increments of 1/6. The color scale correspond to units of time, t/τ , within the open range (0,5) [light blue
(light gray) to black]. These plots use values of τ and σ set to be τ = σ = 1.
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E. Long timescale asymptotics

The H function, present in Eq. (31), in its series form as defined in the article by Sandev et al. [40] is

H2,0
2,2

[
|x|τ γ

2

σ t
γ

2

∣∣∣∣
(0, 1

2 ),(γ m,
γ

2 )

(m, 1
2 ),(1,1)

]
=

∞∑
n=0

�(1 − 2m − 2n)

�(γ m − γ (m + n))

(−1)n

�(−m − n)�(n + 1)�
(

3
2

)(x2τ γ

σ 2tγ

)m+n

+
∞∑

n=0

�
(
m − 1

2 (1 + n)
)

�(γ m − γ (1 + n))�
(− 1

2 − n
2

) (−1)n

�(n + 1)

( |x|τ γ

2

σ t
γ

2

)1+n

; (38)

because 1
�(−m−n) = 0 for m, n ∈ Z0+, only the second term contributes. Inserting this result back into Eq. (31) yields

P(x, t ) = 1

2

∫ t

0
exp

(
− t ′

τ

) ∞∑
m=0

1

�(m + 1)

(
t ′γ

τ γ

)m 1

|x|
1

t ′

∞∑
n=0

�
(
m − 1

2 (1 + n)
)

�[γ m − γ (1 + n)]�
( − 1

2 − n
2

)
�(n + 1)

(−1)n

( |x|τ γ

2

σ t ′ γ

2

)(1+n)

dt ′.

(39)

Expressing the series over m as a Fox H function,

P(x, t ) = 1

2

∫ t

0
exp

(
− t ′

τ

) ∞∑
n=0

(−1)n

�(− 1
2 − n

2 )�(n + 1)

( |x|τ γ

2

σ t ′ γ

2

)1+n
1

|x|
1

t ′ H
1,1
1,2

[
− tγ

τ γ

∣∣∣∣
( 3

2 + n
2 ,1)

(0,1),(1+ γ

2 + γ n
2 ,γ )

]
dt ′

= 1

2

∫ t

0
exp

(
− t ′

τ

) ∞∑
n=0

(−1)n

�
( − 1

2 − n
2

)
�(n + 1)

( |x|τ γ

2

σ t ′ γ

2

)1+n
1

|x|
1

t ′ 1�1

[
tγ

τ γ

∣∣∣∣
(− 1

2 − n
2 ,1)

(− γ

2 −γ n
2 ,γ )

]
dt ′, (40)

where p�q is the Wright function [43]. The asymptotic behavior of this function is described in the article by Wright published
in 1940 [44]. For the Wright function of interest, these parameters take on the following values, which are defined in the work
of Wright [44] as well as briefly in the Appendix:

κ = γ , h = γ −γ , θ = −1

2
− n

2
+ γ

2
+ γ n

2
, Z = γ

(
γ −γ tγ

τ γ

) 1
γ

= t

τ
, A0 = γ

n
2 − γ

2 − γ n
2 γ

1
2 + γ

2 + γ n
2 = γ

1
2 + n

2 ,

I
( t

τ

)
=
( t

τ

)− 1
2 − n

2 + γ

2 + γ n
2

exp
( t

τ

)[M−1∑
m=0

Am

(
t

τ

−m
)

+ O

(
t

τ

−M
)]

. (41)

In the article by Wright, M is free to be chosen as long as M ∈ Z. Therefore, M = 1 is chosen, but the terms O( t
τ

−1) are
neglected, given the fact that t → ∞. Thus,

I
( t

τ

)
=
( t

τ

)− 1
2 − n

2 + γ

2 + γ n
2

exp
( t

τ

)(
γ

1
2 + n

2
)
. (42)

Thus, P(x, t ) appears in this regime as

P(x, t ) = 1

2

∫ t

0
exp

(
− t ′

τ

)
1

|x|
1

t ′

∞∑
n=0

(−1)n

�
(− 1

2 − n
2

) 1

�(n + 1)

( |x|τ γ

2

σ t ′ γ

2

)1+n

I

(
t ′

τ

)
dt ′

= 1

2

∫ t

0
exp

(
− t ′

τ

)
1

|x|
1

t ′

∞∑
n=0

(−1)n

�
(− 1

2 − n
2

)
�(n + 1)

( |x|τ γ

2

σ t ′ γ

2

)1+n
t ′

τ

− 1
2 − n

2 + γ

2 + γ n
2

exp

(
t ′

τ

)(
γ

1
2 + n

2
)
dt ′

= 1

2

∫ t

0

1

|x|
1

t ′

∞∑
n=0

(−1)n

�
(− 1

2 − n
2

) 1

�[n + 1]

(
γ

1
2 |x|τ 1

2

σ t ′ 1
2

)1+n

dt ′, (43)

where, after expressing the series in its Fox H function form,

P(x, t ) = 1

2

∫ t

0

1

|x|
1

t ′ H
1,0
1,1

[
γ

1
2 |x|τ 1

2

σ t ′ 1
2

∣∣∣∣
(0, 1

2 )

(1,1)

]
dt ′, (44)

which arrives at a Gaussian PDF in the same manner as demonstrated in Eq. (33). Interestingly, the remnants of the prior
non-Gaussian behavior are visible in the occurrence of γ in the standard deviation of the resulting Gaussian.
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F. Short timescale behavior

It can be shown that, in the regime where exp(− t
τ

) ≈ 1 (or
t 
 τ ), taking the m = 0 term of the summation (m = 0 is the
dominant term in the series for small t) yields the solution to
the RL fractional diffusion equation. Under these conditions
Eq. (31) is approximated by

P(x, t ) = 1

2

∫ t

0

1

|x|
1

t ′ H
1,0
1,1

[
|x|τ γ

2

σ t ′ γ

2

∣∣∣∣
(0,

γ

2 )

(1,1)

]
dt ′. (45)

Making use of the properties of the H function [42], the
following form of Eq. (45) can be found:

∂

∂t
P(x, t ) = 1

2

1

|x|
1

t
(−1)H1,1

2,2

[
|x|τ γ

2

σ t
γ

2

∣∣∣∣
(0,

γ

2 ),(1,
γ

2 )

(1,1),(1,
γ

2 )

]
dt ′. (46)

The right-hand side can be identified as the partial derivative
of the RL solution [42] with respect to time. Given the initial
condition for P(x, t ), the RL solution appears after integration
of both sides:

P(x, t ) = 1

2

1

|x|H1,0
1,1

[
|x|τ γ

2

σ t
γ

2

∣∣∣∣
(1,

γ

2 )

(1,1)

]
dt ′. (47)

IV. DISCUSSION AND CONCLUSION

This article began by framing the basics of fractional dif-
fusion and the CTRW, where the former is connected to the
latter in the so-called hydrodynamic limit [45]. A functional
form of the waiting time distribution, widely associated with
the timing of stress driven displacements, is inserted into
the CTRW. The corresponding generalized diffusion equation
was then obtained by making use of the small k approxi-
mation. The memory kernel of this equation was plotted in
Fig. 2, where it was compared to the power law decay of the
Riemann-Liouville kernel. The memory kernel represents the
functional form of the weighting of past diffusive contribu-
tions. The memory kernel described within this article exhibits
power law decay which tails off to a constant value: this
represents the transition from subdiffusive behavior towards
standard diffusion. The MSD was obtained as well, plotted in
Fig. 1; the behavior is transient in nature, moving between
subdiffusive and diffusive regimes. The early subdiffusive
behavior can be attributed to the power law decay observed
on short timescales for the underlying waiting time distribu-
tion. This power law decay is indicative of a correlation of
events on shorter timescales. The recovery of Fickian behavior
is a direct consequence of the exponential decay on longer
timescales for the waiting time distribution. The solution to
the generalized diffusion equation was obtained as an inte-
gral over an infinite series of Fox H functions. The solution
was arrived at through a combination of Fourier and Laplace
transforms used in conjunction with the known properties of
the H function. It was further shown that the solution reduced
to known and expected results across the relevant regimes of
short and long timescales, as well as in the instance that the
anomalous parameter γ took on the Fickian value of 1.

This article explored the implications of stress-
redistribution type timing for diffusion behavior.
Restructuring events, which may be described in this manner,
have been observed among a range of soft materials such as
dense colloids, foams, gels, and granular fluids [46–50]. It is
therefore suggested that the diffusive contribution outlined in
this article may be found across these systems.

A more specific example may be seen in studies on pectin
gel systems, where, through more recent experimental tech-
niques, the diffusive contribution of restructuring events has
been identified [46]. By constructing a coupling of the Brown-
ian contribution and the stress redistribution portion discussed
here, it is suggested the full transient diffusive behavior of
such a pectin gel system may be modeled. In the applications
of this mathematical treatment to physical systems it is ex-
pected that the origins of the parameters may be connected
back to physical parameters of the gel, thus providing insight
into the potential avenues for tuning the system towards desir-
able features for the various applications.
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APPENDIX: WRIGHT FUNCTION
ASYMPTOTIC BEHAVIOR

If κ > 0 and | arg(z)| � 1
2π min(κ, 2) − ε, then for z →

∞ [44]

p�q

[
z

∣∣∣∣
(βr ,αr )

(μr ,ρr )

]
= I (Z ), (A1)

where

I (Z ) = Zθ exp(Z )

(
M−1∑
m=0

AmZ−m + O(Z−M )

)
(A2)

and

A0 = (2π )
1
2 (p−q)κ− 1

2 −θ

p∏
r=1

ρ
1
2 −μr

r

q∏
r=1

α
βr− 1

2
r , (A3)

with

Z = κ (h|z|) 1
κ exp

(
i arg(z)

κ

)
, (A4)

κ = 1 +
q∑

r=1

ρr −
p∑

r=1

αr, (A5)

h =
(

p∏
r=1

ααr
r

)(
q∏

r=0

ρ−ρr
r

)
, (A6)

and

θ =
p∑

r=1

βr −
q∑

r=1

μr + 1

2
(q − p). (A7)
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