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Beyond the adiabatic limit in systems with fast environments: A τ-leaping algorithm
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We propose a τ -leaping simulation algorithm for stochastic systems subject to fast environmental changes.
Similar to conventional τ -leaping the algorithm proceeds in discrete time steps, but as a principal addition it
captures environmental noise beyond the adiabatic limit. The key idea is to treat the input rates for the τ -leaping
as (clipped) Gaussian random variables with first and second moments constructed from the environmental
process. In this way, each step of the algorithm retains environmental stochasticity to subleading order in the
timescale separation between system and environment. We test the algorithm on several toy examples with
discrete and continuous environmental states and find good performance in the regime of fast environmental
dynamics. At the same time, the algorithm requires significantly less computing time than full simulations of
the combined system and environment. In this context we also discuss several methods for the simulation of
stochastic population dynamics in time-varying environments with continuous states.
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I. INTRODUCTION

The modeling of dynamical systems in biology and other
disciplines necessarily requires simplifying assumptions and
a level of coarse graining. If all processes we know about
are included, then the model becomes so complicated that
it cannot be simulated or analysed. Even if simulation or
analysis is possible further study of such a model will rarely be
enlightening. Excessive detail makes hard to identify the key
mechanisms at work and to understand what model compo-
nents are responsible for these mechanisms. At the same time,
some element of realism must be maintained. The model must
not be so stylized to miss the key ingredients and behavior it
is meant to capture. The principal challenge, therefore, is to
find the right level of detail, given the intended purpose.

The choice between stochastic and deterministic modeling
approaches is one aspect of this discussion. If more detailed
stochastic models mark one end of the spectrum, then many
traditional models in mathematical biology or chemistry sit
at the opposite end. These models are often built on a small
number of ordinary or partial differential equations (e.g.,
Refs. [1,2]). This deterministic approach is valid if one can
assume that the same initial conditions will always lead to
the same outcome. For many applications involving very large
systems this is a perfectly sensible approach.

However, it is now also universally recognized that
stochasticity in the time-evolution of many systems is key
in shaping the outcome, see, e.g., Refs. [3–5]. Consequently
a number of analytical and computational methods has been
developed for the study of stochastic systems. One focus is
on systems with discrete interacting individuals. What these
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individuals represent depends on the context, they could be
members of different species in population dynamics, individ-
ual animals or humans in models of an epidemic, or molecules
in chemical reaction systems [3,6–8].

One particular point of interest within this class of
individual-based systems are models operating in a time-
dependent environment. This environment is not part of the
system proper, but its state has an effect on what happens in
the system. In a model of a population of bacteria for exam-
ple, the reproduction or death rates could depend on external
conditions such as the availability of nutrients or the presence
of toxins [9,10]. In population dynamics, the carrying capacity
could vary in time [11–13], and in epidemics the infection rate
is subject to seasonal changes [14]. The focus of our paper
is on such individual-based models in time-varying external
environments.

Analytical approaches to stochastic systems with discrete
individuals usually start from the chemical master equation.
In limited cases direct solution is possible, for example using
generating functions. However, this is the exception, and a
number of approximation schemes have consequently been
developed. These include Kramers–Moyal and system-size
expansions, leading to Fokker–Planck equations and descrip-
tions in terms of stochastic differential equations [8,15]. These
schemes sacrifice the granularity of a discrete-agent system,
and instead describe the dynamics in terms of continuous
densities. This approach can be successful in particular for
large populations. Any particular event then only results in a
small change in the composition of the population relative to
its size. Individual-based approaches and descriptions based
on deterministic differential equations have been extended to
models of population dynamics in switching environments;
for a selection of work, see Refs. [11,16–26].

There are however situations in which one would rather
avoid giving up the discrete nature of the population. For
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example, granularity is crucial for extinction processes (the
number of individuals of the species about to go extinct is
small by definition). In other situations the population may
not be large enough to warrant a description in terms of
continuous densities. For example, copy numbers in genetic
circuits can be of the order of tens to hundreds (see, e.g.,
Ref. [27]), and it is difficult to justify a continuum limit. It then
becomes necessary to carry out numerical simulations of the
discrete individual-based process. The method of choice is the
Gillespie algorithm [28,29], generating a statistically accurate
ensemble of sample paths of the continuous-time dynamics.

In most applications the rate of events scales with the size
of the population so that each individual experiences an O(1)
number of reactions per unit time. The Gillespie method then
runs into difficulties when the population is large, and with
it the number of reactions per unit time. The computational
cost of generating sample paths to up the desirable end point
can then become very high. Similarly, a timescale separation
between the dynamics in the population and the environment
may make simulations challenging. If the environment is very
fast compared to the population, then a significant number of
environmental events needs to be executed between events in
the population. This aggravates the above limitations for large
populations, and simulations can become problematic even for
intermediate population sizes. One possible approach to this
consists of assuming that the environment is “infinitely” fast
compared to the population. This is known as quasi steady
state approximation [30,31], or the “adiabatic limit” [26,32].
For related work see also [23,33–36]. If this limit is taken, then
the environmental dynamics can be “averaged out” and effec-
tive reaction rates can be used for the population. While com-
putationally convenient, this approach discards any stochas-
ticity from the environmental process. This sets another
limitation, in particular when it is not valid to assume that the
environment is infinitely fast compared to the population.

The objective of this work is therefore to design and test
an algorithm for systems with fast environmental dynamics,
but which also captures some elements of the environmental
noise. We call this discrete-time algorithm τFE—τ -leaping
for fast environments. It is built on the ideas of the conven-
tional τ -leaping algorithm [37], but with modifications such
as to preserve elements of the stochasticity of the environ-
mental process. To do this, we assume that the environment is
fast compared to the population, but not infinitely fast. More
precisely, in each step of the algorithm we take into account
subleading contributions in the timescale separation.

The key new element of our algorithm is how we deal with
the environment. We do not take the adiabatic limit, instead
we treat the reaction rates in the population as random vari-
ables during each step. The rates are drawn from a distribution
at the beginning of each step, and then remain fixed during the
time step. The distribution of rates can change from one step
to the next, and is constructed to reflect statistical features of
the original environmental dynamics.

Each step of the τFE algorithm consists of two parts: First
a realization of reaction rates is drawn from the appropriate
distribution. Then a conventional τ -leaping step is carried
out with these rates. The core of our paper consists of the
construction of the “appropriate distribution” for the reaction
rates. These ideas were introduced in a previous work [38]

for a simple case of a two-species birth-death process in an
environment which can take two discrete states. In the present
paper we develop this further. We develop and test a more gen-
eral algorithm for environments with more than two discrete
states. As we will show, the algorithm can also be extended to
continuous environmental dynamics.

The remainder of the paper is organized as follows. In
Sec. II we describe the general setup of the type of system we
simulate. We also outline the general principles of the τFE
algorithm. In Sec. III we then make the necessary prepara-
tions for the introduction of the algorithm. In particular, we
compute the statistics of reaction rates which are fed into the
conventional τ -leaping step. We then describe the algorithm
in detail. In Sec. IV, we test the τFE algorithm in different
models with discrete environmental states. In Sec. V, we then
describe how the τFE algorithm can be used when the envi-
ronment takes continuous states. Specifically, we consider an
Ornstein-Uhlenbeck process. In this context we also describe
how known algorithms can be adapted to simulate continuous
environments. Finally, we provide a discussion of our results
and overall conclusions in Sec. VII.

II. MODEL SETUP AND GENERAL
PRINCIPLES OF THE ALGORITHM

A. Model definitions and notation

We look at systems composed of discrete individuals. We
will refer to this synonymously as the “system proper” or “the
population.” Each of the individuals is of one of S species (or
types), labeled i = 1, . . . , S. We write ni for the number of in-
dividuals of species i in the population, and n = (n1, . . . , nS ).
The system evolves in an external environment, whose state
we write as σ . These states are time dependent, and can either
take discrete values or be continuous.

The dynamics in the population proceeds through reactions
r = 1, . . . , R. Each of these reactions converts a number of
individuals from one type into another. Time in the model
is continuous, and we assume that the dynamics is Marko-
vian. We then write Rr,σ (n) for the rate of reaction r if the
environment is in state σ and the population in state n. The
stoichiometric coefficient νr,i indicates how the number of
individuals of type i changes when a reaction of type r oc-
curs. Each νr,i is an integer, which can be negative, zero, or
positive. We write νr = (νr,1, . . . , νr,S ). The rates Rr,σ (n) and
the stoichiometric coefficients fully specify the dynamics of
the population when the environment is in state σ .

The state of the environment undergoes a Markovian
stochastic process, governed by a master equation if states are
discrete or by a stochastic differential equation in the case of
continuous environmental states. These dynamics can depend
on the state of the population n. If the environmental states
are discrete, then we write qσ→σ ′ (τ ) for the probability of
finding the environment in state σ ′ at a particular point in
time, given that τ units of time earlier it was in state σ . If
the environment is continuous, then qσ→σ ′ (τ ) is a probability
density for σ ′ (at given σ ). We call qσ→σ ′ (τ ) the transition
kernel of the environmental process. We write ρ∗ for the
stationary distribution of the environmental dynamics. For
discrete environmental states the entries ρ∗

σ denote the prob-
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ability of finding the system in state σ in the stationary state.
For continuous environments ρ∗

σ is the stationary probability
density for σ .

B. General principles of the τ-leaping algorithm for systems
in fast environments

A conventional reaction system (without external environ-
ment) is governed by a wchemical master equation of the form

d

dt
P(n, t ) =

∑
r

[
Rr (n − νr )P(n − νr, t ) − Rr (n)P(n, t )

]
(1)

The notation is as in Sec. II A; the only difference is that there
is no subscript σ , as there is no environment. Sample paths
entail events (reactions) which can occur at any point in con-
tinuous time, separated by exponentially distributed random
waiting times. In each such event the state of the system n
changes, and accordingly the reaction rates Rr (n) can also
change. Sample paths can be generated for example using the
celebrated Gillespie algorithm [28,29].

The τ -leaping algorithm for such conventional reaction
systems is built around the idea of keeping reaction rates
constant over finite time steps of length τ [37]. That is to say,
if the state of the population is n at time t , then the assumption
is made that this state n and the rates Rr (n) do not change
until the end of the time step. The algorithm does not account
for potential changes of the rates as individual reactions occur,
and instead directly “leaps” to time t + τ . This is justified pro-
vided the so-called “leap condition” is fulfilled [37]: broadly
speaking the time step τ must be sufficiently small so that
the state n in the continuous-time system does not change
significantly in a time interval of length τ .

Making the approximation of constant n in the time in-
terval from t to t + τ , the number of reactions of type r
that fire in this interval follows a Poissonian distribution with
parameter τRr (n). Accordingly, realizations of Poissonian
random variables m1, . . . , mR are drawn, and the correspond-
ing numbers of each reactions are executed simultaneously.
This generates a new state n′ at time t + τ , with entries
n′

i = ni +∑R
r=1 mrνi,r . The process then repeats with updated

rates Rr (n′).
The idea of the τ -leaping algorithm we introduce for

systems in external environments is similar. As in the conven-
tional algorithm, we discretize time and keep the composition
of the population n fixed during each iteration. It is only
updated at the end of each step. From now on we use �t for
the duration of a step instead of τ .

The difference to the conventional case is the external
environment. If the environmental state space is discrete, then
switches of the environment can in principle be simulated in
continuous time along with the other reactions (using Gille-
spie algorithm [28,29]). They can also be dealt with by means
of the conventional τ -leaping algorithm, again along with
the other reactions. These are natural simulation approaches
when the environment operates on a similar timescale as the
reactions in the population. Not much can then be gained
by distinguishing between environmental processes and the
dynamics in the system proper.

If the environment is infinitely fast compared to the
reactions in the population, then the environment reaches
stationarity on very short timescales. One can average over
environmental states, see for example [26,30,31,33,38,39]. If
the environment is discrete, for example, then we can use
average rates

R∗
r (n) ≡

∑
σ

ρ∗
σ Rr,σ (n). (2)

In the case of continuous environments the sum is to be
replaced with an integral. These rates are functions of n only,
the environmental process has been averaged out. Noise from
the environmental process plays no role in the dynamics if
these average rates are used. This corresponds to making a
quasi-stationary state approximation for the fast-moving envi-
ronment [30,31].

The aim of this paper is to go beyond this adiabatic limit,
and to construct a τ -leaping algorithm which captures some
elements of extrinsic noise. We focus on the limit of a fast,
but not infinitely fast environmental dynamics.

Broadly speaking the τFE algorithm is constructed around
the idea of treating the reaction rates Rr (n) as stochastic
variables in each discrete time step. These random variables
represent the rates one obtains when averaging the environ-
mental process over the time step �t . Assuming that the rate
of change of the environment is finite these average rates will
remain stochastic. In the limit of infinitely fast environments
the deterministic limit in Eq. (2) is recovered, and there is no
stochasticity from the environment.

To construct the random reaction rates for each step, we
make an approximation: we use a Gaussian distribution for
the rates, with means as in Eq. (2) and with variances and
correlations derived from the original combined process of the
population and environment. We describe this in detail in the
next section.

III. CONSTRUCTION OF THE τFE ALGORITHM FOR
SYSTEMS WITH DISCRETE ENVIRONMENTS

A. Preliminary analysis of the environmental process

Here we assume the environmental states are discrete, σ ∈
{1, . . . , M}. The dynamics of the environment is governed by
the rates λAσ→σ ′ (n) for transitions from σ to σ ′. The factor λ

is introduced to control the timescale separation between reac-
tions in the population and the switching of the environment.
We use the notation A(n) for the M × M matrix with elements
Aσ→σ ′ (n). We also set Aσ→σ (n) = −∑

σ ′ �=σ Aσ→σ ′ (n). The
combined dynamics of population and environment are then
described by the master equation

d

dt
P(n, σ, t )

=
∑

r

[Rr,σ (n − νr )P(n − νr, σ, t ) − Rr,σ (n)P(n, σ, t )]

+ λ
∑
σ ′

[Aσ ′→σ (n)P(n, σ ′, t ) − Aσ→σ ′ (n)P(n, σ, t )]. (3)

The rates λAσ→σ ′ (n) can depend on the state of the popu-
lation, n. This means that n and σ do not necessarily evolve in
time independently. However, as mentioned above the state n
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of the system is kept constant during each τ -leaping step. This
in turn means that the transition rates for the environment also
remain constant during each step.

We now focus on one such time step, starting at time t
and ending at t + �t . We assume that n remains constant
during this time interval. For the remainder of Sec. III A we
suppress the potential dependence of A on n, although it is
always implied. We write ρσ (t ′) for the probability that the
environment is in state σ at time t ∈ [t, t + �t]. We then have
the master equation

dρ

dt ′ = λAρ (4)

for the environmental dynamics. The stationary distribution
ρ∗ for the environment is the solution of Aρ∗ = 0. If A de-
pends on n, then ρ∗ will also be a function of n. Assuming
that the environmental process is irreducible this stationary
distribution is unique for any one n.

The stochastic matrix A has one zero eigenvalue, which we
write as μ1 = 0. The remaining eigenvalues are denoted by
μ2, . . . , μM . We then have μ2, . . . , μM < 0. The correspond-
ing (right) eigenvalues are written as v1 = ρ∗ (the eigenvector
corresponding to eigenvalue 0), and v2, . . . , vM , respectively,
for the remaining eigenvectors. These are all understood to be
column vectors of length M.

We note that the general solution of Eq. (4) can be written
in the form

ρ(t ′) = ρ∗ +
M∑

�=2

c�eλμ�(t ′−t )v�, (5)

with coefficients c� determined by the initial condition at
the beginning of the time step t ′ = t . More precisely these
coefficients can be obtained from the linear system

M∑
�=2

c�v� = ρ(t ) − ρ∗. (6)

We remark that there are M − 1 coefficients, c� (� =
2, . . . , M). The system in Eq. (6) technically consists of M
equations, but these are not independent due to normalization
of the probabilities on the right-hand side. We assume that
the Markov process for σ has a unique stationary distribution
ρ∗ with full support, and that all other conditions are met
which are required so that set of coefficients c� in Eq. (6)
is well defined and unique. In other words, we assume that
the environmental process σ (t ) is a Markov process that is
irreducible (i.e., all states communicate) and positive recurrent
(i.e., there exists a finite expected time to return to any state)
so the above conditions are met [40].

Calculating the probability qσ→σ ′ (�t ) to find the environ-
ment in state σ ′ at the end of the time step if it was in σ at the
beginning of the step is now mainly a matter of computing the
coefficients c�. We write c�,σ for the value the coefficient c�

takes when ρσ ′ (t ) = δσ ′,σ (i.e., when the system starts in state
σ at the beginning of the step).

We then have

qσ→σ ′ (�t ) = ρ∗
σ ′ +

M∑
�=2

c�,σ eλμ��tv�,σ ′ , (7)

where v�,σ ′ is the σ ′-entry of the eigenvector v� of A.
If the matrix A depends on the population state n, then

the parameters μ�, v�,σ ′ , and c�,σ can also depend on n. For
simplicity of notation we have not included this potential
dependence in the above equations.

B. Time-averaged reaction rates as random variables

The τ -leaping algorithm proceeds in discrete time intervals
of length �t . We continue to focus on one such interval [t, t +
�t]. The state of the population at the beginning of the step is
n and we assume that this state does not change until the end
of the interval. We do however take into account the fact that
the state of environment σ can undergo changes in the interval
from t to t + �t . As a consequence, Rr,σ (n) (at fixed n) is also
a function of time.

We then introduce the time-averaged quantities

Rr (n) ≡ 1

�t

∫ t+�t

t
dt Rr,σ (t )(n), (8)

noting that the time average is over the duration of the time
step only as opposed to a long-term asymptotic time average.
Given that the time step �t is finite (�t < ∞) and assuming
that the environment fluctuates with finite rates (λ < ∞), the
quantity Rr (n) is a stochastic variable as it depends on the
realization of the environmental process. In one given time
interval, the rates Rr (n) for different r will be correlated as
they all derive from the same path of the environment. As
we will show below, the fluctuations of the random variables
Rr (n) in any one time step are inversely proportional to λ�t
to leading order. In the limit λ�t → ∞ the Rr (n) become
deterministic.

We assume that the distribution for σ at the beginning of
the time step is the stationary distribution ρ∗. This is the case,
for example, if then environmental state is drawn from the
stationary distribution at the beginning of the simulation. The
distribution for σ (t ′) is then also the stationary distribution
at each time t ′ ∈ [t, t + �t]. Writing 〈. . .〉 for the aver-
age over realizations of the environmental process, we then
have

〈Rr (n)〉 = R∗
r (n), (9)

with R∗
r (n) as in Eq. (2).

However, σ (t ′) (t ′ ∈ [t, t + �t]) will generally be cor-
related with σ (t ). Neglecting these correlations means to
operate in the adiabatic limit. We would like to retain some of
these correlations. To compute second moments 〈Rr (n)Rs(n)〉
we first use Eq. (8). This leads to averages of the type
〈Rr,σ (t1 )(n)Rs,σ (t2 )(n)〉, where t1 and t2 are two times in the
interval from t to t + �t . The second moments can then be
expressed in terms of qσ→σ ′ (·) as follows:

〈Rr (n)Rs(n)〉

= 1

�t2

∑
σσ ′

∫ t+�t

t
dt1

∫ t1+�t

t1

dt2{ρ∗
σ qσ→σ ′ (t2 − t1)

× [Rr,σ (n)Rs,σ ′ (n) + Rr,σ ′ (n)Rs,σ (n)]}. (10)
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Further details are given in Appendix A. Using Eq. (7) we
find

〈Rr (n)Rs(n)〉 − R∗
r (n)R∗

s (n)

= 1

�t2

∑
σσ ′

M∑
�=2

{
ρ∗

σ c�,σ v�,σ ′

× [Rr,σ (n)Rs,σ ′ (n) + Rr,σ ′ (n)Rs,σ (n)]

×
∫ t+�t

t
dt1

∫ t1+�t

t1

dt2eλμ�(t2−t1 )

}
. (11)

For fixed � ∈ {2, . . . , M} the integral in the last expression
evaluates to∫ t+�t

t
dt1

∫ t1+�t

t1

dt2eλμ�(t2−t1 ) = − �t

λμ�

+ 1

(λμ�)2
[eλμ��t − 1].

(12)

For λ�t � 1 the first term dominates after inserting into
Eq. (11), as also observed in Ref. [41]. We are then left with

〈Rr (n)Rs(n)〉 − R∗
r (n)R∗

s (n)

= − 1

λ�t

∑
σσ ′

M∑
�=2

{
1

μ�

Rr,σ (n)Rs,σ ′ (n)

× [ρ∗
σ c�,σv�,σ ′ + ρ∗

σ ′c�,σ ′v�,σ ]

}
. (13)

The main challenge in implementing the τFE algorithm is
then to find the average rates from Eq. (9) for all r, and the
second moments from Eq. (13) for any pair r, s of reactions
affected by the environment.

We reiterate that the above considerations are for the
regime λ�t � 1, i.e., many environmental switches must oc-
cur in each time step �t . It is this assumption that allows us
to think of Rr (n) as a Gaussian random variable. This in turn
is a key component of the τFE algorithm. As a consequence
the algorithm can only be expected to be accurate when λ is
sufficiently large (fast environmental dynamics).

C. Description of the algorithm

Without loss of generality, we assume that only the rates
for the reactions r = 1, . . . , L (L � R) depend on the envi-
ronmental state σ .

The τFE algorithm with time step �t proceeds as follows:
(1) Initiate the population in state n(0). Set time to t = 0.
(2) Compute R∗

r (n) for r = 1, . . . , L using Eq. (2), and
the covariances 
rs(n) ≡ 〈Rr (n)Rs(n)〉 − R∗

r (n)R∗
s (n) using

Eq. (13) for every pair r, s ∈ {1, . . . , L}.
(3) (i) First consider the reactions with rates dependent on

the environment: Draw correlated Gaussian random numbers
�1, . . . , �L such that 〈�r〉 = R∗

r (n), and 〈�r�s〉 − 〈�r〉〈�s〉 =

rs(n). If �r < 0 for any r ∈ {1, . . . , L} set, then �r = 0.

(4) For the remaining reactions r ∈ {L + 1, . . . , R} set �r =
Rr (n). These are the reactions with rates independent of the
environment.

(5) Draw independent Poissonians random numbers mr ,
r = 1, . . . , R, each with parameter �r�t .

(6) Update the state of the population, n(t + �t ) =
n(t ) +∑

r mrνr .
(7) Increment time by �t and go to 2.
We note that the mean of the �r in step 3(i) is of order

(λ�t )0, and their variance of order (λ�t )−1. Truncation of the
�r will therefore only be required very rarely when λ�t � 1.

Evaluating the expressions in Eqs. (2) and (13) in step 2
requires eigenvalues μ� of the transition matrix A(n) for the
environment, the eigenvectors, v� (including the stationary
distribution v1 = ρ∗), and the coefficients c�,σ for all σ . If
the environmental process is independent of the state of the
population (the Aσ→σ ′ are not functions of n), then these
quantities do not depend on n, and only need to be calculated
once at the beginning.

We stress that the τFE algorithm does not generate sample
paths of the environmental process σ (t ). Instead the algorithm
captures the statistics of σ in a Gaussian approximation for the
transition rates Rr (n), as expressed above in step 3 (i). Using
this approximation, the algorithm then propagates the state n
forward in time, without generating a sample path for σ .

In setting up the algorithm we perform an average over
trajectories of the environmental process in each time step
(retaining some fluctuations), assuming that the environment
starts is drawn independently from its stationary distribution
at the beginning of each step. In effect, the algorithm captures
correlations of the environmental path within one time step,
but it discards correlations of σ (t ) from the beginning of one
time step to the beginning of the next.

We also draw attention to the fact that the objects mod-
elled as Gaussian random variables are the transition rates
Rr (n) (as opposed to individual parameters appearing in these
rates). For example if a death rate depended on a carrying
capacity Kσ (as in a Lotka-Volterra model), and was of the
form Rr,σ (n) = n2/Kσ , then our algorithm would not treat K
as a Gaussian random quantity, but instead the full rate Rr (n).
Similarly, the adiabatic limit is obtained by averaging Rr,σ (n)
over the stationary distribution of σ , and not Kσ . Models of
this type are discussed for example in Refs. [11–13].

In Sec. IV we first test the τFE algorithm on different
models with discrete environments. The algorithm can also
be adapted to the case of environmental dynamics with con-
tinuous states. This is discussed in Sec. V.

IV. APPLICATION OF THE τFE ALGORITHM TO
MODELS WITH DISCRETE ENVIRONMENTAL STATES

We now consider three examples of systems with discrete
environmental states.

The first example (Sec. IV A) is a genetic circuit. The role
of the environment is here played by a process of binding and
unbinding to promoters of the genes described by the model.
Gene regulatory systems can exhibit timescale separation as
discussed for example in Refs. [32,42,43]. Mathematically the
model describes a population with two types of individuals
and an environment with two states (bound and unbound).
The environmental dynamics depends on the state of the
population.

The second example (Sec. IV B) is a toy model with two
species in the population and three environmental states. The
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environmental process in this example is independent of the
state of the population.

Section IV C finally focuses on a bimodal genetic switch
with two species in the population, and an environmental
process with three states, and with rates which depend on the
state of the population.

A. Genetic circuit: Two system-independent environments,
two species

This system models the dynamics of two genes, which
produce two different regulatory proteins: X (a transcription
factor) and Y (an inhibitor that titrates X into an inactive
complex). Specifically, we use the activator-titration circuit
described in Ref. [32]. The reactions are as follows:

∅ �βX−−→ X, ∅ �βY,σ−−−→ Y, (σ = 0, 1),

X
δX−→ ∅, Y

δY−→ ∅,
(14)

X + Y
α/�−−→ ∅,

E0
λnX κY /�−−−−→ E1, and, E1

λθY−→ E0,

where the Eσ denote states of the environment (σ = 0, 1).
These two environmental states represent situations in which a
transcription factor X is bound to the promoter of gene Y (state
E1), or no transcription factor is bound (E0), respectively.
The first two reactions in Eq. (14) describe the production
of the two proteins (X and Y ). The production rates are βX

and βY,σ . The former is independent of the environmental
state, the latter explicitly depends on σ (i.e., on the presence
or absence of a bound transcription factor). The reactions in
the second line of Eq. (14) describe degradation of X and
Y , and the reaction in the third line captures titration. The
binding and unbinding processes of the transcription factor are
described by the reactions in the last line. The parameter � in
the reaction rates determines the typical number of particles
in the system, for further details see [32]. We write nX for
the number of X -particles in the system, and similarly nY is
the number of Y -particles. One finds nX , nY = O(�) in the
stationary state.

Mathematically, the model consists of two species in the
population (with numbers of particles nX , nY ), and two envi-
ronmental states, σ = 0, 1. We therefore have S = 2, M = 2.
Eqs. (9) and (13) can be evaluated explicitly for this case,
see also Ref. [38]. The only process affected by the state of
the environment is the production of Y , with rate βY,σ . This
rate becomes a (clipped) Gaussian random variable in the τFE
algorithm, with first moment

〈βY 〉 = β∗
Y = θY βY,0 + nX κY βY,1/�

θY + nX κY /�
, (15)

and with variance

σ 2
βY βY

≡ 〈
β̄2

Y

〉− β∗
Y

2

= 2nX κY θY /�

λ�t (nX κY /� + θY )
(βY,0 − βY,1)2. (16)

Further details of the derivation can be found in Appendix B.
Simulation results for this model are shown in Fig. 1. In

Figs. 1(a) and 1(b) we illustrate typical sample paths obtained

FIG. 1. Simulation output for the model of the genetic-circuit
in Eq. (14). Panel (a) shows a sample path obtained from Gillespie
simulations of the full model. Panel (b) is a sample path from the τFE
algorithm [λ = 103 in panels (a) and (b)]. Panels (c) and (d) show
the stationary distributions of nX + nY and nX − nY , respectively,
for λ = 103, while panels (e) and (f) are for λ = 104. In panels
(c)–(f) we report the Jensen-Shannon divergence (JSD) between the
distributions obtained using the two different simulation methods.
Remaining parameters: � = 103, βX = 2, βY,0 = 0, βY,1 = 10, δX =
δY = 1, κY = 1, θY = 0.5, and α = 10. For the τFE we have used a
time step �t = 0.1.

from Gillespie simulations of the full model (population
and environment), and from the τFE algorithm, respectively.
We also show the stationary distributions for the quantities
nX + nY and nX − nY as obtained from both simulation algo-
rithms. The distributions in Figs. 1(c) and 1(d) are for λ = 103

(i.e., moderately fast environmental dynamics), there are then
remaining discrepancies between the τFE algorithm and sim-
ulations of the full model. In Figs. 1(e) and 1(f) the timescale
separation is larger (λ = 104). The agreement improves as
indicated by the Jensen-Shannon divergence (JSD) [44,45]
given in the figure.

We note at this point that the average CPU time to run
a sample path up to time t = 103 with parameters as in
Figs. 1(e) and 1(f) is 2.94 s for the Gillespie algorithm, and
0.03 s for the τFE algorithm (with a time step �t = 0.1).
These average simulation times are obtained from ten runs.
They indicate that the τFE algorithm can significantly in-
crease efficiency while producing results of the quality shown
in Fig. 1. We stress that our primary interest is the relative
comparison of computing times, and not on absolute simula-
tion times [46]. It is also important to keep in mind that, by
construction, the τFE algorithm can only be expected to be
accurate for sufficiently large values of λ, i.e., sufficiently fast
environmental processes.

B. Birth-death process: Three environments, two species

Next, we consider a two-species birth-death process sub-
ject to an external environment which can be in one of three
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different states. This is a toy model chosen for illustration and
does not represent any specific natural system. However, it
captures elements of models of population dynamics.

The species in the population are labeled A and B, and
the environmental states σ = 0, 1, 2. Particles of type A are
produced with rate �ασ , and particles of type B with rate
�βσ . The subscript σ indicates explicit dependence on the
state of the environment. Particles are removed with constant
per capita rates dA and dB, respectively. The parameter �

again sets the typical size of the population. We write nA and
nB for the number of individuals of either species. The en-
vironmental states cycle stochastically through the sequence
σ = 0, 1, 2, 0, . . . , with rate constants λk1, λk2 and λk0 for the
three transitions. Mathematically, the reactions in this model
are

∅ �ασ−−→ A, ∅ �βσ−−→ B, (σ = 0, 1, 2),

A
dA−→ ∅, B

dB−→ ∅, (17)

E0
λk1−→ E1, E1

λk2−→ E2, E2
λk0−→ E0,

where as before Eσ denotes the environment. The rates k0, k1,

and k2 are constant parameters, independent of the population
state.

Details of the calculation of the average rates and their
second moments can be found in Appendix C. The average
production rates for the two types of particles are

α∗ = k0α0 + k1α1 + k2α2

k0 + k1 + k2
,

(18)
β∗ = k0β0 + k1β1 + k2β2

k0 + k1 + k2
,

while the covariance σαβ = σβα ≡ 〈ᾱβ̄〉 − α∗β∗ takes the
form

σαβ = θ2

λ�t

{
(α0 − α1)(β0 − β1)

(
3k2

0 − k0,1k0,2
)

+ (α1 − α2)(β1 − β2)
(
3k2

1 − k1,0k1,2
)

+ (α0 − α2)(β0 − β2)
(
3k2

2 − k2,0k2,1
)}

, (19)

with

θ2 ≡ k0k1k2

(k0k1 + k1k2 + k2k0)3
, (20)

and kσ,σ ′ = kσ − kσ ′ , for σ, σ ′ ∈ {0, 1, 2}. The variance σαα ≡
〈ᾱᾱ〉 − (α∗)2, is obtained by replacing all instances of βσ on
the right-hand side of Eq. (19) with ασ . The analog σββ is
obtained similarly by replacing ασ with βσ .

In Fig. 2 we report results from numerical simulations for
this model, both from conventional Gillespie algorithm of the
full systems of environment and population, and using the
τFE algorithm. Figures 2(a)–2(f) show the stationary distri-
butions of nA + nB and nA − nB. As seen from the data for
example in Fig. 2(a) the τFE algorithm displays deviations
from Gillespie simulations of the full model when the envi-
ronmental process is not sufficiently fast. We quantify these
deviations again through the Jensen–Shannon divergence be-
tween the two distributions. The deviations reduce as the
timescale separation λ is increased, i.e., when the environmen-

FIG. 2. Simulation output of the two-species birth-death process
in an environment with three states [Eq. (17)]. Panels (a), (c), and
(e) show the stationary distribution of nA + nB obtained using the
Gillespie algorithm for the full model, and the τFE algorithm. Data
is shown for different values of λ. Panels (b), (d), and (f) show the
stationary distribution of nA − nB. Parameters used: k0 = k1 = k2 =
1, � = 20, dA = dB = 0.1, α0 = β0 = β1 = α2 = 0, and α1 = β2 =
1. In panels (a)–(f) we report the Jensen-Shannon divergence (JSD)
between the two distributions obtained from Gillespie simulations
of the full model and from the τFE algorithm. Panels (g) and (h):
Spectral densities SAA(ω) and SAB(ω) [Eq. (21)] obtained from sim-
ulations using the Gillespie algorithm (full line), the τFE algorithm
(open circles), and from conventional τ -leaping simulations of the
model in the adiabatic limit (asterisks). Parameters in panels (g) and
(h) are as in panels (e) and (f), i.e., λ = 150. The time step for the
τFE algorithm and for conventional τ -leaping in the adiabatic limit
is �t = 0.1.

tal process becomes faster relative to the dynamics within the
population.

To examine if the τFE algorithm accurately reproduces
dynamical features (i.e., properties of the system beyond the
stationary distribution), we show spectral densities of the time
series for nA and nB in Figs. 2(g) and 2(h). The spectral
densities are defined as

SAA(ω) = 〈|n̂A(ω)|2〉,
(21)

SAB(ω) = 〈n̂†
A(ω)n̂B(ω)〉,

where n̂A(ω) and n̂B(ω) are the Fourier transforms of nA(t )
and nB(t ), respectively. The dagger denotes complex conju-
gation. The data from the τFE algorithm (open symbols) in
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FIG. 3. Stationary distribution for the numbers of mRNA and protein molecules (nM and nP, respectively) in the model of a genetic
switch [Eq. (17)]. Data is shown for different values of λ and for simulations of the full model by means of the Gillespie algorithm, and the
τFE algorithm. Parameters: N = 2, � = 50, b0 = b1 = 1, b2 = 20, d = 9.2, β = 50, δ = 1, k+ = 0.025, k− = 1. The stationary distribution
is obtained from a long run up to time t = 105. For the τFE algorithm we use �t = 100/λ. For each of the three values of λ we report the
Jensen-Shannon divergence (JSD) between the distributions obtained from the two simulation methods.

Figs. 2(g) and 2(h) compares well with spectra obtained from
direct Gillespie simulations of the full model (solid lines).
This shows the τFE method indeed captures the dynamics of
nA and nB. We also provide a comparison against the spectral
densities obtained from conventional τ -leaping simulations in
the adiabatic limit, i.e., simulations with constant rates α∗ and
β∗ for the production events [Eq. (18)]. These are shown as
full markers in Figs. 2(g) and 2(h). One then finds more sub-
stantial systematic deviations. This is because environmental
fluctuations are discarded in the adiabatic limit. The τFE
algorithm on the other hand captures the stochasticity of the
environment to subleading order in λ−1 in each iteration step.

C. Bimodal genetic switch: Three system-state dependent
environments, two species

We now consider a model studied in Refs. [26,47], describ-
ing a single gene G with a promoter site which can bind to a
total of up to N molecules of protein. The number of protein
molecules bound, σ , plays the role of the environment in this
setting. The rate for transitions from σ to σ + 1 depends on
the number of protein molecules. The reactions in this model
can be summarized as follows:

Gσ + P
λk+/�−−−⇀↽−−−
λk−

Gσ+1, for σ < N,

Gσ
�bσ−−→ Gσ + M, (22)

M
d−→ ∅, M

β−→ M + P, P
δ−→ ∅,

where M and P refer to molecules of mRNA and protein,
respectively. The production rate bσ for mRNA depends on
the number of protein molecules bound to the promoter. We
refer to Refs. [26,47] for further details. In the following we
write nM and nP for the numbers of particles of either type.
One interesting feature of this model is that the distribution of

the protein and mRNA populations can become bimodal, as
illustrated in Fig. 3. This leads to bistability, with trajectories
transitioning between the two modes of the joint distribution
of nP and nM . Hence, the model describes a genetic switch.

In this model only the production rate of mRNA molecules
is affected by the state of the environment. The average
mRNA-production rate is found as

b∗ = k2
−b0 + k−k̃+b1 + k̃2

+b2

k2− + k−k̃+ + k̃2+
, (23)

with k̃+ = k+nP/�. The second moment of the production
rate takes the form

σ 2
bb ≡ 〈b̄2〉 − b∗2

= θ2

λ�t
{(b0 − b1)2k−(k2

− + k̃+k− − k̃2
+)

+ (b0 − b2)22k−k̃+(k− + k̃+)

+ (b1 − b2)2k̃+(k̃2
+ + k̃+k− − k2

−)}, (24)

with

θ2 = 2k−k̃+
(k2− + k−k̃+ + k̃2+)3

. (25)

Details of the calculation leading to Eqs. (23) and (24) can be
found in Appendix D.

Figure 3 shows the stationary joint distribution of the
number of mRNA and protein molecules for different values
of the timescale separation parameter λ. The figure shows
data from Gillespie simulations of the full model [Figs. 3(a)–
3(c)], and data from the τFE algorithm [Figs. 3(d)–3(f)]. The
τFE algorithm captures the distribution profile with two local
maxima. For low values of λ (i.e., a relatively slow environ-
mental process) the distribution obtained from τFE tends to be
wider than those from the Gillespie algorithm. The agreement
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FIG. 4. Sojourn times t� and th near the two modes of the bistable
genetic switch (see also Fig. 3). Panels (a) and (b) show the dis-
tribution of the time spent in the vicinity of each mode (see text
for details); data obtained from τFE algorithm is shown along with
results from exact Gillespie simulations of the full model (λ = 2000).
In each panel we report the Jensen–Shannon distance between the
two distributions. Panels (c) and (d) show the mean sojourn times
as a function of the timescale parameter λ. The parameters are as in
Fig. 3, the lower mode is (nM , nP ) = (10, 500), and the upper mode
(nM , nP ) = (30, 1800). For the τFE algorithm we use a time step of
�t = 100/λ.

improves for faster environments, as indicated again by the
Jensen–Shannon distances in Fig. 3.

In Fig. 4, we show the distribution and means of the so-
journ times t� and th near the lower and higher modes of the
stationary distribution. More precisely this is the time between
entering and leaving a designated region around each of the
modes. The lower maximum of the stationary distribution
is sharper than the upper maximum (Fig. 3). Accordingly,
we have chosen a smaller region at the lower mode than
at the upper mode. For the lower mode, we use the region
0 � nM � 20, 0 � nP � 1100 which encloses the mode at
(nM, nP ) = (10, 500). For the higher mode we use the re-
gion 20 � nM � 80, 1100 � nP � 2700 enclosing the mode
at (nM, nP ) = (30, 1800).

The data shown in the figure is constructed from one long
sample path (run until t = 106), recording the points in time
at which the system enters or leaves either region. Gillespie
simulations operate in continuous time and the τFE algorithm
in discrete time. To remove any artefacts resulting from this
difference, the same time resolution (0.05) is used in both
algorithms for the measurement of arrival and departure times.
Because the lower mode is sharper than the upper maximum
and because the sizes of the two detection regions are different
the sojourn time t� at the lower mode is found to be smaller
than that at the higher mode, th.

The distributions of sojourn times in Figs. 4(a) and 4(b)
indicate that the τFE algorithm captures this dynamic quan-
tity, provided the environmental process is sufficiently fast.
This is confirmed in Figs. 4(c) and 4(d), where we show the

TABLE I. Mean computation time (in seconds) required to sim-
ulate one sample path up to t = 103 of the bimodal genetic-switch
system defined in Eq. (22). Measurements are from ten independent
sample runs, using Gillespie simulations of the full model, and the
τFE algorithm, respectively. Parameters are as in Fig. 3. For the τFE
algorithm we set �t = 100/λ.

λ Gillespie τFE

1250 1.35 0.04
2500 1.89 0.08
5000 2.62 0.17
10 000 4.30 0.31
20 000 7.77 0.57

mean sojourn times as a function of the relative speed λ of
the environment compared to the population dynamics. As
seen in both panels, the τFE algorithm generates accurate
measurements of the mean sojourn times 〈t�〉 and 〈th〉 in the
limit λ � 1.

At the same time, stochastic effects due to the random
environmental process are captured for large but finite λ. This
can be seen in Fig. 4(d): the mean sojourn time 〈th〉 drops sig-
nificantly as the environmental process becomes slower, and
hence additional noise is injected into the population (there
is no environmental noise in the adiabatic limit). While there
are quantitative differences compared to exact simulations,
the τFE algorithm captures this reduction of 〈th〉. Figure 4(c)
reveals that there are also limitations to the precision of the
τFE algorithm. The mean sojourn time 〈t�〉 near the lower
mode is affected much less by a reduction of the timescale
separation parameter λ than the mean sojourn time at the
upper mode. This indicates that the escape from this region is
driven mostly by intrinsic noise rather than by environmental
stochasticity. While the data from the two algorithms remains
within approximately 10% for sufficiently fast environmental
dynamics (λ � 104) the τFE algorithm is unable to capture
the small rise of 〈t�〉 observed in Gillespie simulations for
intermediate values of λ.

In Table I we compare the the computing time required for
both the Gillespie algorithm and the τFE method for different
values of λ. The data in the table is the CPU time required to
generate one sample path up to time t = 103, averaged over
ten runs. The model parameters are as in Figs. 3 and 4.

The full model comprises the reactions in the population
and the environmental switching. The rates for the former
reactions are independent of λ, the rates for the latter scale
linearly in λ. Accordingly, one expects the computing time
for Gillespie simulations of the full model to be linear in λ,
with a nonzero intercept. The data in the table is consistent
with this. We note that Gillespie algorithm does not require
any time discretization.

The running time for the τFE algorithm depends on the
choice of the time step. The time step in turn affects the accu-
racy of the outcome. If �t is large, then τFE simulations are
fast, but the approximation to the continuous-time full model
becomes less good. This is because the “leap condition” must
be met [37], for the models studied here effectively dictating
that �t must be (much) smaller than unity. On the other hand,
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the time step must not be too small as the construction of the
τFE algorithm requires sufficient averaging of the environ-
mental process in each step [Eqs. (11)–(13)].

Due to these constraints, the choice of time step for the
τFE algorithm is not a trivial matter. Broadly speaking, we
calibrated the time step by requiring that the outcome of τFE
simulations reproduces results from full Gillespie simulations
in a regime in which λ is sufficiently large that we can expect
the fast-switching approximation to be valid, but where λ is
not so large that Gillespie simulations become unrealistic.
Once this agreement has been checked, the choice of time
step can then be extrapolated to regimes of even faster en-
vironments in which full Gillespie simulations are no longer
possible within reasonably computing time.

Following this idea, the time step for the τFE algorithm in
Figs. 3 and 4, and in Table I is chosen inversely proportional
to λ (�t = 100/λ). This choice ensures that each time step
captures a sufficient number of switches of the environmental
state, and for sufficiently large λ the leap condition is also
met. For λ � 1000, however, the leap condition is no longer
met for this choice. This is the reason for the choice �t = 0.1
in Fig. 2. We make the same choice in Fig. 1, but we have
checked that this latter figure does not materially change if
�t = 100/λ.

Accordingly, we expect the computing time for the τFE
algorithm to scale linearly in λ, with no intercept. Again, the
running times we measured in our simulations are consistent
with this expectation. Overall, Table I shows that the τFE

algorithm is able to generate data of the accuracy as in Figs. 3
and 4 while reducing the computing effort approximately ten-
fold compared to full Gillespie simulations.

V. NUMERICAL SIMULATION OF
CONTINUOUS-ENVIRONMENTAL SYSTEMS

A. Setup

We turn now to systems which are subject to an en-
vironment with continuous states. Specifically, we follow
Ref. [20] and assume that the environmental state σ follows
an Ornstein–Uhlenbeck process (see also Refs. [22,48]),

dσ

dt
= λ(m − σ ) +

√
2λv2 η(t ), (26)

where η(t ) is Gaussian white noise of unit amplitude, in par-
ticular, 〈η(t )η(t ′)〉 = δ(t − t ′). The parameter m is the average
value of σ in the long run, while v controls the magni-
tude of noise. As before, the parameter λ > 0 indicates how
quickly the environment changes relative to the dynamics in
the population; λ is the equivalent of 1/τc in the notation of
Ref. [20].

The probability distribution of finding the environment
in state σ at time t , given that was in state σ ′ at time
t ′, can be obtained from the Fokker–Planck equation for
the Ornstein–Uhlenbeck process, and is given by (see, e.g.,
Refs. [49,50])

qσ ′→σ (t − t ′) =
√

1

2πv2(1 − e−2λ(t−t ′ ) )
exp

{
− [σ − σ ′e−λ(t−t ′ ) − m(1 − e−λ(t−t ′ ) )]2

2v2(1 − e−2λ(t−t ′ ) )

}
. (27)

For t → ∞ (and t ′ fixed) this quantity tends to the station-
ary distribution

ρ∗
σ =

√
1

2πv2
exp

[
− (σ − m)2

2v2

]
. (28)

We note that it is not a requirement for the τFE algorithm
that the environment follows an Ornstein–Uhlenbeck process.
However, both functions qσ ′→σ (t − t ′) and ρ∗

σ are required, as
discussed in more detail below.

We proceed to describe how the τFE algorithm can
be implemented for models with continuous environments
(Sec. V B).

In the case of discrete environments, continuous-time sam-
ple paths of the full model can be generated using the
conventional Gillespie algorithm. This is an exact procedure:
the ensemble of these sample paths faithfully describes the
statistics of the full model. In Sec. IV we have used this as
a benchmark to test the τFE algorithm. We are not aware
of any analogous exact simulation method for models of dis-
crete populations in a stochastic environment with continuous
states. To test the τFE algorithm we therefore compare out-
comes against those from approximation methods to generate
paths of the combined set of the population and the envi-
ronment. Several such methods exist, we describe these in

Sec. V C. The tests of the τFE algorithm against the baseline
of these methods are described in Sec. VI.

B. Implementation of the τFE algorithm
for continuous environments

We proceed similar to discrete case in Sec. III, replacing
the sums over σ in Eqs. (2) and (10) with integrals. We then
have

R∗
r (n) =

∫ ∞

−∞
dσρ∗

σ Rr,σ (n), (29)

and the relation for the second moments turns into

〈Rr (n)Rs(n)〉 = 1

�t2

∫ ∞

−∞
dσ

∫ ∞

−∞
dσ ′

∫ t+�t

t
dt1

×
∫ t+�t

t1

dt2i{ρ∗
σ qσ→σ ′ (t2 − t1)

× [Rr,σ (n)Rs,σ ′ (n) + Rr,σ ′ (n)Rs,σ (n)]}.
(30)

Depending on the form of the stationary distribution ρ∗
σ ,

the kernel qσ→σ ′ (t2 − t1) and the rates Rr,σ (n) the integrals
in Eqs. (29) and (30) can be carried out, and closed-form
analytical expressions can be obtained. In Sec. VI we explore
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a number of different examples, further scenarios are also
discussed Appendix F. Once the average rates and the second
moments are calculated, the τFE algorithm is implemented as
described in Sec. III C.

C. Conventional simulation approaches for discrete populations
in continuous environments

In this section we summarize “conventional” approaches
to simulating discrete Markovian systems subject to environ-
mental dynamics with continuous states. By “conventional”
we mean methods which produce explicit (approximate) sam-
ple paths of the environmental process. This is in contrast to
the τFE algorithm, which generates paths only of the system
proper.

1. Gillespie algorithm with discretized environmental
states (GADE)

This approach is based on a discretization of the space of
environmental states, time remains continuous. Once such a
discretization for the environmental states is carried out, the
combined states of the population and environment are also
discrete. Simulations can be carried out using the conventional
Gillespie method. We will refer to this method as GADE
(Gillespie approach with discretized environment).

The key step in this approach is to find an appropriate
dynamics in the space of discretized environmental states.
We describe this in the context of the Ornstein–Uhlenbeck
process in Eq. (26). We discretize the environmental state
into integer multiples of �σ , i.e., the environment takes
states . . . ,−2�σ,−�σ, 0,�σ, 2�σ, . . . . Transitions from
one state k�σ can only occur to states (k ± 1)�σ . The tran-
sition rates are constructed such that this discrete process
recovers the continuous Ornstein–Uhlenbeck dynamics in the
limit �σ → 0. The details of the construction are described in
Appendix E, we here only report the main outcome. Specifi-
cally, the rates to transition from state k�σ to (k ± 1)�σ can
be chosen as

T ±
k = λ

2�σ

[
±(m − k�σ ) + 2v2

�σ

]
. (31)

This process can then be simulated using the standard Gille-
spie algorithm, along with the events in the population. We
note that the rates T ±

k need to be nonnegative, i.e., we re-
quire |m − k�σ | < 2v2/�σ , for all k. In practice, this can
be achieved by truncating the set of possible states k�σ .
More precisely, we disallow transitions out of the region
{k : |m − k�σ | � K}, with a given cutoff K . Provided that K
is sufficiently large truncations will only be required rarely.
Once a cutoff K is chosen we must require �σ � 2v2/K
to guarantee nonnegativity of the T ±

k . The variance of the
Ornstein–Uhlenbeck process for σ is given by v2 in the long
run [Eq. (28)], so K ∝ v is a sensible choice. This results in
maximum value for �σ which is also proportional to v.

2. Discrete-time simulation with explicit environmental
dynamics (DEED)

Approximate sample paths of the combined system of
population and environment can also be generated in a

discrete-time simulation. We refer to this as DEED (discrete-
time simulation with explicit environmental dynamics). The
time step �t needs to be sufficiently small to capture
the details of the environmental process with characteristic
timescale τc = λ−1. We therefore require �t � λ−1. One pos-
sible implementation is as follows:

(1) Suppose we have arrived at time t , and the state of the
population is n(t ) and that of the environment σ (t ). Obtain
σ (t + �t ) from Eq. (26) using the Euler-Maruyama method
[51].

(2) Use σ (t ) and n(t ) to calculate the rates pr (t ) = �t ×
Rr,σ (t )[n(t )] for r = 1, . . . , R.

(3) Provided �t is small enough, the pr (t ) are all less than
one. To lowest order in �t they are the probabilities that a
reaction of type r occurs in the next �t . For each r = 1, . . . , R
implement one reaction of this type with probability pr (t ).
With probability 1 − pr (t ) no reaction of type r occurs. Ex-
ecuting all reactions that fire, one obtains n(t + �t ).

(4) Increment time by �t , and go to step 1.
Step 3 disregards the possibility that a particular reaction

fires multiple times during one time step. This is a valid ap-
proximation, provided that the pr (t ) = �t × Rr,σ (t ) are much
smaller than one. As an alternative step 3 could be replaced by
a conventional τ -leaping step. The number of reactions of type
r that fire is then a Poissonian random variable with parameter
pr (t ).

3. Thinning algorithm by Lewis

A population subject to a dynamic external environment
with continuous state space can also be simulated using the
so-called thinning algorithm by Lewis [52]. This algorithm
generates a statistically faithful ensemble of sample paths for
Markovian systems with discrete states and transition rates
with explicit external time dependence.

In the context of our model the population is such a sys-
tem. If the environmental dynamics is independent of the
population, then realizations σ (t ) for the environment can be
generated in advance independently from the population. For
instance, sample solutions of the Ornstein-Uhlenbeck process
in Eq. (26) could be generated. Each such realization σ (t ) then
determines a realization of time-dependent rates Rr (n, t ) ≡
Rr,σ (t )(n) for the population. The Lewis algorithm can then
be used to produce sample paths for the population dynamics.

In practice, numerical approximation schemes are re-
quired to generate realizations for the environment. For
example, Eq. (26) can be solved numerically using the Euler–
Maruyama method, with time step �t . As discussed above
this time step needs to be sufficiently small (�t � λ−1) to
resolve the short-time features of the environmental process.
The Lewis algorithm then uses this as an input and generates
sample paths for the population in continuous time.

We stress that none of these methods are exact. For
the GADE algorithm the environmental state is discretized,
DEED operates in discretized time, and the thinning algo-
rithm requires paths of the environmental process, which are
generated by discretizing the corresponding stochastic differ-
ential equation for the environmental state. As discussed in
Sec. V A there is therefore no exact benchmark to calibrate the
τFE algorithm against. Among the approaches listed above,
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we think GADE algorithm is probably most suitable as a
benchmark, as it does not introduce any discretization of time.
Comparison against the outcome of GADE simulations can
therefore be useful to confirm the validity of the τFE approach
for genuinely new problems, and the choice of time step. The
τFE algorithm (which we will demonstrate to be computa-
tionally more efficient for fast environments) can then be used
in parameter regimes which are not easily accessible within
reasonably computing time by the other methods.

VI. APPLICATION OF THE τFE TO
CONTINUOUS-ENVIRONMENTAL MODELS

In this section we test the τFE algorithm on a number of
different examples of models with continuous environmental
states. Simulation outcomes are compared against those from
the algorithms described in Sec. V C.

A. Toy model: Population dynamics with production
and removal rates proportional to σ2

We first consider a production-removal process for a single
species. The environmental state σ (t ) follows the Ornstein–
Uhlenbeck process in Eq. (26). The corresponding transition
kernel qσ→σ ′ (τ ) is given in Eq. (27), and the stationary distri-
bution ρ∗

σ in Eq. (28). The production rate in the population
is assumed to be Rb,σ = βσ 2, and the removal rate Rd,σ =
δσ 2. These are not chosen with any particular natural sys-
tem in mind, instead this example serves as an illustration
(see also Appendix F for similar calculations for two related
examples).

From Eq. (29) we obtain

R∗
b = β(m2 + v2),

R∗
d = δ(m2 + v2). (32)

The second moments of the rates Rb(n) and Rd (n) can be
calculated from Eq. (30). We find

〈Rb(n)Rd (n)〉 − R∗
b(n)R∗

d (n) = βδv2e−2λ�t

λ2�t2
{8m2eλ�t + e2λ�t [8m2(λ�t − 1) + v2(2λ�t − 1)] + v2}. (33)

for the covariance. The expressions for the variances are sim-
ilar, with suitable replacements βδ → β2 and βδ → δ2 in the
prefactor in Eq. (33). This covariance matrix and the means in
Eq. (32) are then used in the τFE algorithm.

Figure 5 shows simulation results from the τFE algorithm,
as well as from the GADE and DEED schemes (Secs. V
C 1 and V C 2, respectively). Figure 5(a) shows that all
simulation methods result in linear growth (parameters are
such that β > δ, i.e., the growth rate is always larger than the
death rate). Figure 5(b) confirms that GADE and DEED both
generate the correct statistics for the stationary distribution
of the environmental process [the solid line is the Gaussian
distribution in Eq. (28)]. In Fig. 5(c) we focus on a fixed time
t = 10, and show that all three simulation methods results in
very similar distributions for the number of individuals in the
population n at that time. Figure 5(d) finally shows a dynamic
quantity, the Fourier spectrum S(ω) of the time series n(t ), or
equivalently the Fourier transform of the correlation function
of n. Again, all three simulation methods produce very similar
results.

In Table II we compare the average computing time re-
quired by the different algorithms to generate a trajectory
up to time t = 103. We show data for varying values of the
typical timescale λ−1 of the environmental process. GADE
does not require any discretization of time. For the DEED
approach we use �t = 1/(100λ). For the τFE method we
choose �t = 10/λ. This is in-line with the requirements �t �
λ−1 for DEED, and �t � λ−1 for τFE. The choice of time
steps will be discussed in further detail below.

The data in the table indicates that the simulation
timescales approximately linearly with λ for all three algo-
rithms tested, provided λ is sufficiently large. This is to be
expected: The rates for the environmental events in the GADE
simulations (Sec. V C 1) scale as λ, and therefore dominate
the events in the population for λ � 1. Each typical Gillespie

step then advances time by an amount proportional to λ−1, and
O(λ) such steps are required to reach the designated end time.
A similar argument applies to the DEED algorithm (Sec. V
C 2) and for the τFE algorithm: For both of these we use
time steps �t ∝ λ−1, so again the number of iteration steps
required scales as λ.

The key message from Table II is that, for the choice of
time steps made in the table, the computing time required
by the τFE algorithm is substantially lower than that for the
other two simulation methods. Given the linear dependence
on λ, this increase in efficiency can be extrapolated to en-
vironments operating on timescales faster than the smallest
timescale shown in the table (i.e., to the range λ > 104). We
note that, due to the smaller time step, DEED produces a finer
resolution of sample paths in time than τFE. When we make
our comparison we have average macroscopic quantities in
mind (such as those in Fig. 5), and not necessarily the gener-
ation of individual paths with the highest possible resolution
in time.

TABLE II. Mean computing time (in seconds) required for one
simulation run of the model described in Sec. VI A until t = 103.
Data is from ten independent runs, parameters are as in Figure 5,
i.e., β = 1.1, δ = 1.0, m = 1, and v2 = 5 × 10−4. For GADE we set
�σ = 10−3; for the DEED approach we set λ�t = 1/100; for the
τFE algorithm we set λ�t = 10.

λ−1 GADE DEED τFE

1 × 10−2 28.47 3.84 0.79 ×10−2

5 × 10−3 53.20 7.88 0.16 ×10−1

1 × 10−3 288.30 40.91 0.08
5 × 10−4 576.69 82.78 0.15
1 × 10−4 3022.47 397.63 0.79
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FIG. 5. Simulation results for a production-removal process with
rates b = βσ 2 and d = δσ 2 (Sec. VI A), for the different algorithms
described in Sec. V. Parameters used: β = 1.1 and δ = 1.0, m = 1,
λ = 103, and v2 = 5 × 10−4. Panel (a): mean value of the number
of individuals as function of time, obtained from 103 runs. Panel
(b): stationary distribution of the environmental state, ρ∗

σ , for the
GADE method and the DEED approach (the τFE algorithm does
not simulate the environment). The solid line in panel (b) is the an-
alytical solution from Eq. (28). Panel (c): distribution of the number
of particles n in the population at time t = 10. Panel (d): spectral
density [Eq. (21)] obtained from 103 runs. We use �σ = 10−3 for
the GADE simulations, and �t = 1/(100λ) = 10−5 for DEED. For
the τFE algorithm, we set �t = 10/λ = 10−2.

We now briefly discuss the choice of time steps for the
τFE method and for DEED. In principle, we could have in-
creased or decreased the step for either method. This would
then reduce or increase the computing time required to reach
the designated end point. It might also affect the accuracy
of the outcome. Our choice of �t = 10/λ for τFE is moti-
vated by the good agreement with GADE in Fig. 5, noting
that GADE does not require any discretization of time. Sim-
ilarly, for the example discussed below in Sec. VI B good
agreement with analytical predictions is found for this choice,
see the regime of small λ−1 in Fig. 6. Our conclusion is
therefore that the τFE algorithm is able to produce results of
the accuracy as in Fig. 5 with computing times as reported
in Table II.

The DEED algorithm requires �t � λ−1 to be able
to resolve the environmental dynamics. Our choice �t =
1/(100λ) in Table II is well below this requirement, and the
algorithm can in principle be speed up by choosing a larger
time step. If we were to exhaust the limit and used �t = λ−1

for DEED, then this would reduce the computing time by
about a factor of one hundred in Table II. For for λ−1 = 10−3

this would mean a reduction from approximately 40 to 0.4 s
per sample path. Using this larger time step also results in
noticeable deviations in measurements of the quantities in
Fig. 5 from continuous-time GADE simulations. But even if
we accept this and use the hundredfold larger time step for
DEED, the τFE algorithm would remain approximately five

FIG. 6. Mean switching time (MST) from the high to the low
state in the model described in Sec. VI B. For the τFE algorithm
we used �t = 10/λ, for GADE �σ = 0.01, and for DEED �t =
10−4. Theory curves are from Eqs. (8) and (10) in Ref. [20]. Model
parameters are as in the top right panel of Fig. 2 in Ref. [20] (� =
5000, v = 0.1, α0 = 0.01, x0 = 0.93).

times faster, requiring 0.08 s per sample path at λ−1 = 10−3;
see Table II.

We have also conducted tests with Lewis’ thinning algo-
rithm. To do this we have first generated sample paths of the
Ornstein–Uhlenbeck process for the environment [Eq. (26)]
using an Euler–Maruyama scheme. This is then fed into
the Lewis’ algorithm for systems with time dependent rates.
Given that the typical timescale of the environment is λ−1,
the largest sensible time step for the Euler–Maruyama scheme
is �t = λ−1, similar to DEED. This choice minimises the
computing time for the Lewis’ approach. We therefore use
this time step to compare the efficiency of the Lewis’ ap-
proach with that of τFE. We find that the thinning algorithm is
considerably slower than the τFE approach. For λ−1 = 10−3,
for example, we obtain a simulation time of approximately
13 s per run up to t = 103 compared to 0.08 s for τFE (see
Table II).

B. Genetic switch with Hill-like regulatory function

As a final example we consider a model of protein pro-
duction subject to a continuous environment discussed in
Ref. [20]. The model entails positive feedback, in that the
presence of protein has the potential to increase production of
protein. There is one single species in the model (protein), we
write the number of protein molecules as n. We also define
x = n/�, where � is again a model parameter setting the
typical size of the system. The production rate of protein is
given by

f (x, σ ) = α0 + (1 − α0 + σ )�(x − x0), (34)

where 0 < α0 < 1 and x0 > 0 are constants, and where �(x)
is the Heaviside function. Protein molecules also decay with
unit rate. In the absence of environmental influence (σ ≡ 0),
the production rate is thus unity when x > x0, and α0 < 1
when x < x0. For σ ≡ 0 the mean re-scaled number of protein
follows the rate equation

˙̄x = f (x̄) − x̄, (35)
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where time is measured in units of generations. We choose
α0 < x0 < 1. Eq. (35) has three fixed points x∗

1 < x∗
2 < x∗

3 ,
where x∗

1 = α0 and x∗
3 = 1 are attractors, and x∗

2 = x0 is a
repeller. Similar to Ref. [20], we refer to x∗

1 and x∗
3 as the “low”

and “high” states, respectively.
The environmental process σ (t ) modulates the production

rate when x > x0. As in Ref. [20] we asssume that σ follows
an Ornstein-Uhlenbeck process of the form given in Eq. (26).
The noisy system has the potential to switch between the
“high”” and “low” states. To test the performance of the τFE
algorithm, we focus on the mean switching time (MST) to
transit from the high state to the low state. This time is studied
and calculated in Ref. [20], we denote it by 〈τhigh→low〉. In
simulations we start the system in the high state, and measure
the first time the system reaches the low state.

Only the production of protein is affected by the state σ

of the environment, we write Rprod,σ (n) = f (x, σ ), with f as
in Eq. (34). Inserting this in Eqs. (29) and (30), and after
straightforward calculations, we obtain

R∗
prod(n) = α0 + (1 − α0)�(n/� − x0), (36)

and the second moment

〈(Rprod(n))2〉 − [R∗
prod(n)]2

= 2v2

λ2�t2
[λ�t + (e−λ�t − 1)]�(n/� − x0). (37)

In Fig. 6 we show the MST measured in simulations us-
ing the different approaches described in in Sec. V. Assaf
et al. [20] report nonmonotonous behavior of the MST as a
function of τc = λ−1. As seen in Fig. 6 the τFE algorithm
reproduces this behavior. For fast environmental dynamics
(low λ−1) the MST obtained from the τFE algorithm is in
good agreement with measurements obtained from the other
simulation methods, and with the analytical approximations
from Ref. [20]. The agreement extends over several decades
of values of τc = λ−1.

At the same time we observe that the τFE algorithm re-
quires significantly less computing time than the GADE or
DEED approaches. For λ−1 = 10−1 for example, we mea-
sured an average computing time of 2 × 10−3 s to generate
one run of the system up to time 103 with the τFE algorithm
(�t = 10/λ). GADE required 0.674 s, and DEED 4.2 s (for a
time step �t = 10−4).

We note that we have implemented DEED as described
in Sec. V C 2. In particular at most one reaction of each
type can fire in each time step (step 3 of the algorithm). This
requires a sufficiently small time step �t to ensure pr (t ) < 1
for all r. This is achieved by our choice �t = 10−4. Alterna-
tively step 3 of the DEED algorithm could be replaced by a
(conventional) τ -leaping step. Larger choices of the time step
�t are then possible, up to the limit of �t ≈ λ−1 to ensure
that the environmental dynamics are captured appropriately.
Focusing on λ−1 = 10−1 we expect that increasing the time
step by a factor of a thousand (from 10−4 to 10−1) would
reduce the simulation time by at most a factor of a thousand
for a τ -leaping version of DEED. This would result in a
computing time of approximately 4 × 10−3 for one simulation
run up to t = 103 instead of the 4.2 s reported for DEED
in the previous paragraph. This is comparable with the CPU

time required by the τFE algorithm (2 × 10−3 s), but would
resolve environmental fluctuations with lower accuracy. For
example one observes systematic deviations for the stationary
distribution of the environment in Fig. 5(b).

VII. DISCUSSION AND CONCLUSIONS

In summary, we have presented τFE, a variant of the τ -
leaping stochastic simulation algorithm for systems subject to
fast environmental dynamics. Just like conventional τ -leaping
the algorithm operates in discrete time. The rates of the reac-
tions in the system proper are treated as constant during each
time step, and the numbers of different reactions firing in one
step have Poissonian statistics.

The key difference compared to conventional τ -leaping is
the external environment. In the full continuous-time model
reaction rates which depend on the environmental state fluc-
tuate in time even when the state of the population does not
change. An adiabatic approximation would consist of assum-
ing an infinitely fast environment and of replacing the reaction
rates by their means with respect to the stationary distribution
of the environmental process. This is justified if the relaxation
timescale of the environmental process is infinitely shorter
than the time step of the simulation.

The τFE algorithm goes beyond this approximation, and
is based on time averages of reaction rates over the finite
time step. For finite speeds of the environment these average
rates are random variables. If the environmental dynamics is
fast, then we can make a Gaussian approximation. The rates
feeding into the τ -leaping step are clipped Gaussian random
numbers designed to retain the first and second moments of
the actual environmental dynamics. It is important to note
that this not the same as drawing an environmental state σ

from the stationary distribution ρ∗
σ , and then using the rates

Rr,σ (n) for the next τ -leaping step. Instead, the covariance
matrix of the rates Rr (n) in Eq. (8) is calculated as described
in Eqs. (10) for discrete environments, and in Eq. (30) for
continuous environmental states.

The choice of time step for the τFE algorithm requires
careful consideration. On the one hand, the time step must
be long enough to justify the averaging procedure over the
environmental dynamics and the Gaussian assumption for the
reaction rates in the τ -leaping step. Broadly speaking λ�t
must be sufficiently large (λ�t � 1). At the same time the
so-called leap condition for the τ -leaping part of the algo-
rithm must be fulfilled [37]. This means that the state of the
system must not change significantly in each iteration step, as
a constant state n of the population is an assumption made in
setting up the τ -leaping. Mathematically, this means that the
change of the number of particles in the system in a time step
must be much smaller than the typical number of particles in
the system. Assuming that the stoichiometric coefficients do
not scale with the system size � this means that �t × Rr,σ (n)
must be much smaller than �. Noting that Rr,σ (n) is of order
� in many applications we thus require that �t is much
smaller than one. For λ � 1 and �t proportional to λ−1 this
condition is often relatively easy to meet in practice.

We have tested the τFE algorithm on a number of systems
with discrete and continuous environments. This includes ex-
amples of systems which can be addressed analytically and
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models motivated by applications in biology. Our tests focus
on stationary distributions, but also dynamic features such as
Fourier spectra of fluctuations or first-passage time distribu-
tions. In all cases we have tested the τFE method produces
good agreement with results from conventional simulation
methods in the regime of fast environmental dynamics. This is
the regime for which τFE is designed. Naturally, quantitative
deviations are found when the timescales of the environmental
dynamics and system proper are insufficiently separated.

We stress that τFE goes beyond simulations in the adia-
batic limit, and is able to capture the dependence of macro-
scopic observables on the timescale separation, provided this
dependence is sufficiently strong [see, e.g., Figs. 4(d) and 6)].
At the same time our analysis also reveals limitations of the
algorithm. If the dependence of observables on the timescale
separation is weak, such as in Fig. 4(c), then τFE may not be
able to fully resolve these dependencies. When the environ-
ment is fast the quantitative agreement with simulations of the
full system is however still within approximately 10% in the
example in Fig. 4(c).

The computing time required for the τFE algorithm to gen-
erate sample paths up to a designated end time is proportional
to the inverse time step. The time step on the other hand is
typically a multiple of the characteristic timescale λ−1 of the
environmental dynamics. This means that the computational
effort scales approximately linearly in the timescale separa-

tion λ. In all cases we have tested we found that τFE is
considerably more efficient for the measurement of macro-
scopic quantities than alternative simulation algorithms.

In summary, we think the τFE algorithm has passed the
initial selection of tests presented in this paper. It provides
an promising approach to probing the regime of fast environ-
mental dynamics, and captures effects induced by extrinsic
noise beyond the adiabatic limit. The algorithm is particularly
valuable for systems in which the regime of intermediate
timescale separation can be accessed with conventional simu-
lation methods. The accuracy of the τFE algorithm can then
be assessed in this regime (an example can be found in Fig. 6).
If the comparison is favourable, then it is justified to use τFE
in the regime of increasing timescale separation.
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APPENDIX A: SECOND MOMENTS OF RATES

In this Appendix we calculate the second moments of the quantities Rr (n) (r = 1, . . . , R) defined in Eq. (8). Without loss
of generality we assume that the time interval in question starts at t = 0, the end point is then �t . Assuming the space of
environmental states is discrete, we have

〈Rr (n)Rs(n)〉 = 1

�t2

∫ �t

0
dt1

∫ �t

0
dt2〈Rr,σ (t1 )(n)Rs,σ (t2 )(n)〉

= 1

�t2

∫ �t

0
dt1

∫ �t

t1

dt2〈Rr,σ (t1 )(n)Rs,σ (t2 )(n)〉 + 1

�t2

∫ �t

0
dt2

∫ �t

t2

dt1〈Rr,σ (t1 )(n)Rs,σ (t2 )(n)〉

= 1

�t2

∑
σσ ′

∫ �t

0
dt1

∫ �t

t1

dt2 ρ∗
σ qσ→σ ′ (t2 − t1)Rr,σ (n)Rs,σ ′ (n)

+ 1

�t2

∑
σσ ′

∫ �t

0
dt2

∫ �t

t2

dt1 ρ∗
σ ′qσ ′→σ (t1 − t2)Rr,σ (n)Rs,σ ′ (n)

= 1

�t2

∑
σσ ′

∫ �t

0
dt1

∫ �t

t1

dt2 ρ∗
σ qσ→σ ′ (t2 − t1)Rr,σ (n)Rs,σ ′ (n)

+ 1

�t2

∑
σσ ′

∫ �t

0
dt1

∫ �t

t1

dt2 ρ∗
σ qσ→σ ′ (t2 − t1)Rr,σ ′ (n)Rs,σ (n). (A1)

In the first step we have applied the definition of the over-bar average [Eq. (8)]. In the third step we have carried out the
average over realizations of the environmental process. In the last step we have renamed t1 ↔ t2 and σ ↔ σ ′ in the second term.
Therefore,

〈Rr (n)Rs(n)〉 = 1

�t2

∑
σσ ′

∫ �t

0
dt1

∫ �t

t1

dt2 ρ∗
σ qσ→σ ′ (t2 − t1)[Rr,σ (n)Rs,σ ′ (n) + Rr,σ ′ (n)Rs,σ (n)]. (A2)

Up to a shift of the start point of the time step, this is identical to Eq. (10).
As explained in Section V B, the sums over σ become integrals when the environment takes continuous states. We then find

Eq. (30).
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When the environmental space is discrete, we can use Eq. (7) and find

〈Rr (n)Rs(n)〉 = 1

�t2

∑
σσ ′

∫ �t

0
dt1

∫ �t

t1

dt2ρ
∗
σ ρ∗

σ ′Rr,σ (n)Rs,σ ′ (n) + Rr,σ ′ (n)Rs,σ (n)]

+ 1

�t2

∑
σσ ′

M∑
�=2

∫ �t

0
dt1

∫ �t

t1

dt2ρ
∗
σ c�,σ v�,σ ′e−λμ�(t2−t1 )[Rr,σ (n)Rs,σ ′ (n) + Rr,σ ′ (n)Rs,σ (n)]

= Rr,avg(n)Rs,avg(n)

+ 1

�t2

∑
σσ ′

M∑
�=2

ρ∗
σ c�,σ v�,σ ′[Rr,σ (n)Rs,σ ′ (n) + Rr,σ ′ (n)Rs,σ (n)]

∫ �t

0
dt1

∫ �t

t1

dt2eλμ�(t2−t1 ). (A3)

APPENDIX B: FURTHER DETAILS FOR SYSTEMS WITH TWO SPECIES AND TWO ENVIRONMENTAL STATES

The case of two species and two environmental states (S = 2, M = 2) was studied in Ref. [38], and a simple version of the
τFE algorithm was presented for this restricted case. We assume σ switches from state 0 to state 1 with rate λk1, and from 1 to
0 with rate λk0. The environmental transition matrix then becomes

A =
(−k1 k0

k1 −k0

)
, (B1)

whose eigenvalues are μ1 = 0 and μ2 = −(k0 + k1). The respective eigenvectors take the form

v1 = ρ∗ = 1

k0 + k1

(
k0

k1

)
and v2 =

(
1

−1

)
, (B2)

where ρ∗ has been normalized to represent the stationary distribution for σ . The coefficients c2,0 and c2,1 are obtained from
Eq. (6), for the initial conditions ρ(0) = (1, 0) and ρ(0) = (0, 1). We find

c2,0 = k1

k0 + k1
and c2,1 = −k0

k0 + k1
. (B3)

Putting all together in Eq. (13), and after straightforward calculations we arrive at


rs ≡ 〈Rr (n)Rs(n)〉 − R∗
r (n)R∗

s (n) = θ2

λ�t
[Rr,1(n) − Rr,0(n)][Rs,1(n) − Rs,0(n)], (B4)

where θ2 = 2k0k1/(k0 + k1)3. The indices r and s stand for reactions affected by the environment. As explained in Sec. III C, to
simulate the τFE algorithm we need to draw correlated Gaussian random numbers Rr with means

R∗
r (n) = k0Rr,0 + k1Rr,0

k0 + k1
, (B5)

for r = 1, 2, and covariance matrix

� =
(


11 
12


21 
22

)
. (B6)

One way to do this is by drawing independent Gaussian random numbers z1 and z2 with mean zero and unit variance, and then
to set (

R1(n)
R2(n)

)
=
(

R∗
1(n)

R∗
2(n)

)
+ C

(
z1

z2

)
, (B7)

with a matrix C that fulfils CCT = �, where T denotes the transpose. This matrix is not unique. We use

C = �√
θ2/(λ�t ){[R1,1(n) − R1,0(n)]2 + [R2,1(n) − R2,0(n)]2}

. (B8)

APPENDIX C: BIRTH-DEATH PROCESS WITH TWO SPECIES AND THREE ENVIRONMENTAL STATES

In the example in Sec. IV B we have the following transition matrix for the environmental process

A =
⎛
⎝−k1 0 k0

k1 −k2 0
0 k2 −k0

⎞
⎠. (C1)
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The eigenvalues of this matrix are

μ1 = 0, μ2 = − 1
2 (k0 + k1 + k2 + �), and, μ3 = − 1

2 (k0 + k1 + k2 − �), (C2)

with � =
√

k2
0 + k2

1 + k2
2 − 2(k0k1 + k1k2 + k2k0). The associated eigenvectors take the form

v1 = ρ∗ = 1

k0k1 + k1k2 + k2k0

⎛
⎝k2k0

k0k1

k1k2

⎞
⎠, (C3)

and

v2 =
⎛
⎝(−k0 + k1 − k2 + �)/(2k2)

(k0 − k1 − k2 − �)/(2k2)
1

⎞
⎠, v3 =

⎛
⎝(−k0 + k1 − k2 − �)/(2k2)

(k0 − k1 − k2 + �)/(2k2)
1

⎞
⎠. (C4)

Using Eq. (6) and three sets of initial conditions (each concentrated on one environmental state) we find

c2,0 = k1k2(k0 + k1 + k2 − �)

2�(k0k1 + k1k2 + k2k0)
, c3,0 = − k1k2(k0 + k1 + k2 + �)

2�(k0k1 + k1k2 + k2k0)
, (C5)

as well as

c2,1 = −k2(k0(k1 + 2k2) + k1(−k1 + k2 + �))

2�(k0k1 + k1k2 + k2k0)
, c3,1 = k2(k0(k1 + 2k2) + k1(−k1 + k2 − �))

2�(k0k1 + k1k2 + k2k0)
, (C6)

and finally

c2,2 = k0
(−k2

1 − k2
2 + k0(k1 + k2) + k1� + k2�

)
2�(k0k1 + k1k2 + k2k0)

, c3,2 = k0
(
k2

1 + k2
2 − k0(k1 + k2) + k1� + k2�

)
2�(k0k1 + k1k2 + k2k0)

. (C7)

Putting all together in Eqs. (2) and (13) and after further tedious but straightforward calculations, we arrive at the expressions in
Eqs. (18) and (19).

To draw the correlated Gaussian random numbers ᾱ and β̄ required for the τ -leaping step, we proceed as in Appendix B. We
construct the covariance matrix � [Eq. (B6)] and then find a matrix C such that CCT = �. We then draw independent Gaussian
random numbers z1 and z2 with mean zero and unit variance, and use an expresion analogous to that in Eq. (B7) to obtain ᾱ and
β̄. The matrix C we use is

C = A

⎛
⎜⎜⎝

σαα + B

σαβ

1

1
σββ + B

σαβ

⎞
⎟⎟⎠, (C8)

with σαα and σαβ as given in Eq. (19), and

A = σαβ√
σαα + σββ + B

, (C9)

and

B =
√

3k0k1k2

λ�t (k0k1 + k1k2 + k2k0)2
|α0(β2 − β1) + α1(β0 − β2) + α2(β1 − β0)|. (C10)

APPENDIX D: BIMODAL GENETIC SWITCH

For the model in Sec. IV C the rates of the environmental transitions depend on the number of proteins nP in the population.
We assume that nP remains constant during each τ -leaping step. The environmental transition matrix then becomes

A =
⎛
⎝−k̃+ k− 0

k̃+ −k̃+ − k− k−
0 k̃+ −k−

⎞
⎠, (D1)

with k̃+ = k+nP/�. The eigenvalues of this matrix are

μ1 = 0, μ2 = −k− − k̃+ −
√

k−k̃+, μ3 = −k− − k̃+ +
√

k−k̃+, (D2)
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while the associated eigenvectors take the form

v1 = ρ∗ = 1

k2− + k−k̃+ + k̃2+

⎛
⎝ k2

−
k−k̃+

k̃2
+

⎞
⎠,

v2 =
⎛
⎝

√
k−/k̃+

(−√
k− −

√
k̃+)/

√
k̃+

1

⎞
⎠, and, v3 =

⎛
⎝ −

√
k−/k̃+

(
√

k− −
√

k̃+)/
√

k̃+
1

⎞
⎠. (D3)

Applying Eq. (6) for different initial conditions as above, we obtain

c2,0 = k̃3/2
+

2
√

k−(k− +
√

k−k̃+ + k̃+)
, c3,0 = − k̃3/2

+
2
√

k−(k− −
√

k−k̃+ + k̃+)
, (D4)

as well as

c2,1 = − k̃+ +
√

k−k̃+
2(k− +

√
k−k̃+ + k̃+)

, c3,1 = − k̃+ −
√

k−k̃+
2(k− −

√
k−k̃+ + k̃+)

, (D5)

and finally

c2,2 = k−
2(k− +

√
k−k̃+ + k̃+)

, c3,2 = k−
2(k− −

√
k−k̃+ + k̃+)

. (D6)

Putting this together in Eqs. (2) and (13) and after straightforward calculations, we arrive at the expressions in Eqs. (23) and
(24).

Since only one reaction is affected by the environmental state, it is only necessary to drawn one Gaussian random number
with mean b∗ and variance σbb in each step of the τFE algorithm, with b∗ and σbb given in Eqs. (23) and (24), respectively.

APPENDIX E: GILLESPIE ALGORITHM WITH DISCRETIZED ENVIRONMENTAL DYNAMICS (GADE)

In this Appendix we briefly describe the constructions of the rates given in Eq. (31). They define a continuous-time dynamics
on a discrete state space approximating the Ornstein–Uhlenbeck process in Eq. (26).

Matching the first moments of movements. We first look at the mean drift of σ , i.e., the mean change of σ per unit time.
Suppose the environment is in a given state σ . The mean drift in the Ornstein–Uhlenbeck process [Eq. (26)] is then λ(m − σ ).

Suppose now the above discrete-σ process is in state σ = k�σ . Then σ increases to σ + �σ with rate T +
k and decreases to

σ − �σ with rate T −
k . The expected change (per unit time) is therefore �σ × (T +

k − T −
k ).

We conclude that we need to impose

�σ × (T +
k − T −

k ) = λ(m − k�σ ). (E1)

1. Matching the variance of movements

Next we look at the variance of movements of σ . For the Ornstein–Uhlenbeck process in Eq. (26) the second moment of
movements (per unit time) is given by 2λv2. In the discrete-σ process, the second moment of movements is (�σ )2 × (T +

k + T −
k ).

To match the Ornstein–Uhlenbeck process, we then need to impose

(�σ )2 × (T +
k + T −

k ) = 2λv2. (E2)

2. Overall solution

Simultaneously solving Eqs. (E1) and (E2) for T +
k and T −

k we arrive at Eq. (31).

APPENDIX F: ADDITIONAL EXAMPLES OF PRODUCTION-REMOVAL PROCESSES IN CONTINUOUS ENVIRONMENTS

In this Appendix we include results for the variances and covariances 〈Rr (n)Rs(n)〉 − R∗
r (n)R∗

s (n) for two further exemplar
systems in which the environment follows the Ornstein–Uhlenbeck process in Eq. (26). We set m = 0 for both examples. Both
systems describe production and removal dynamics of a single species. In the first example, production and removal rates are
proportional to σ when σ > 0 and zero otherwise. In the second example the rates are each proportional to |σ |. These examples
are not used in the main paper, we report them here for completeness, as they may prove useful for future applications of the
τFE algorithm.
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1. Rates Rr,σ (n) = αrσ�(σ )

We look at the example Rr,σ (n) = αrσ�(σ ), where �(σ ) is the Heaviside function, �(σ ) = 1 for σ > 0 and �(σ ) = 0
otherwise. For m = 0, we find

R∗
r (n) = αr

v√
π

, (F1)

and

〈Rr (n)Rs(n)〉 − R∗
r (n)R∗

s (n) = αrαsv
2

24π�t2

{
1

λ2
[24π (λ�t − 1) − π2 + 12 log2(2)]

+ 4e−λ�t

λ2

[
3
(

6
√

e2λ�t − 1 + π
)

− 4eλ�t log
(√

e2λ�t − 1 + eλ�t
)

+ 6 tan−1

(
1√

e2λ�t − 1

)]

− 32

λ2
Re(i sin−1(eλ�t )) − 6

[
1

λ2
log2

(√
1 − e−2λ�t + 1

)
+ 4�t

λ
log

(√
1 − e−2λ�t + 1

)

− 4�t log(2)

λ
− log(4)

λ2
log

(√
1 − e−2λ�t + 1

)
− 4�t

λ
tanh−1

(
e−λ�t

√
e2λ�t − 1

)

− 2

λ2
Li2

(
1

2

(
1 −

√
1 − e−2λ�t

))
+ log2(2)

λ2
+ 2�t2

]
− 24

}
, (F2)

where Re(·) denotes the real part, and Li2(·) is the polylogarithm of order 2.

2. Rates Rr,σ (n) = αr|σ|
For this case (and setting again m = 0), we find

R∗
r (n) = αr

2v√
π

, (F3)

and 〈
Rr (n)Rs(n)

〉− R∗
r (n)R∗

s (n)

= αrαsv
2

6π�t2

{
12�t

λ

[
−2 log

(√
1 − e−2λ�t + 1

)
+ 2 tanh−1

(√
1 − e−2λ�t

)
+ π + log(4)

]

+ 1

λ2

[
72e−λ�t

√
e2λ�t − 1 − 6 log2

(
1

2

(√
1 − e−2λ�t + 1

))
+ 24e−λ�t tan−1

(
1√

e2λ�t − 1

)

− 48 tanh−1
(

e−λ�t
√

e2λ�t − 1
)

+ 12Li2

(
1

2

(
1 −

√
1 − e−2λ�t

))
− π2 − 12π + 12 log2(2)

]
− 12

(
�t2 + 2

)}
. (F4)
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