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Geometric Brownian motion under stochastic resetting: A stationary yet nonergodic process
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We study the effects of stochastic resetting on geometric Brownian motion with drift (GBM), a canonical
stochastic multiplicative process for nonstationary and nonergodic dynamics. Resetting is a sudden interruption
of a process, which consecutively renews its dynamics. We show that, although resetting renders GBM stationary,
the resulting process remains nonergodic. Quite surprisingly, the effect of resetting is pivotal in manifesting the
nonergodic behavior. In particular, we observe three different long-time regimes: a quenched state, an unstable
state, and a stable annealed state depending on the resetting strength. Notably, in the last regime, the system
is self-averaging and thus the sample average will always mimic ergodic behavior establishing a stand-alone
feature for GBM under resetting. Crucially, the above-mentioned regimes are well separated by a self-averaging
time period which can be minimized by an optimal resetting rate. Our results can be useful to interpret data
emanating from stock market collapse or reconstitution of investment portfolios.
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I. INTRODUCTION

Geometric Brownian motion (GBM) is a universal model
for self-reproducing phenomena, such as population and
wealth [1]. Perhaps the best-known application of GBM is
in mathematical finance (the Black-Scholes model) for asset
pricing [2,3]. GBM has also been used to model a myriad
of other natural phenomena such as bacterial cell division,
inheritance of fruit and flower size, body-mass distribution,
rainfall, fragment sizes in rock crushing processes, etc. (see
[4,5] for a review).

Stochastic processes governed by GBM show uncon-
strained growth phenomena, thus they are nonergodic and
nonstationary [6,7]. Nonetheless, a prevalent real world ob-
servation conforms that self-reproduction is characterized
by a stationary distribution that has power-law tails, which
hinders the practical implementation of the model [8]. A
natural way to invoke stationarity is to adapt GBM with
a stochastic resetting mechanism which intermittently stops
the current dynamics only to restart again and has spurred
extensive research interests recently in statistical physics
[9–26], stochastic processes [27–42], and in single-particle
experiments [43,44]. Furthermore, many natural phenomena
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described by GBM, often undergo catastrophes (reminis-
cent of resetting [45–49]) thus describing situations such as
pandemics or sudden stock market crashes. Although these
observations are intriguing, there is no detailed statistical anal-
ysis of GBM subject to stochastic resetting (srGBM) with a
focus on long-time statistics of self-reproducing resources or
their ergodic properties where the latter is quite fundamental
to various disciplines, ranging from economics to evolution-
ary biology [50,51]. Only ensemble average properties of
models somewhat similar to srGBM have been investigated
in a handful of economics literature [52–56], but nothing is
known on the time averaging. This article delves deeper into
these central aspects.

For brevity, the results are briefly summarized in the fol-
lowing. We show that srGBM reaches a stationary state in
the long-time limit yet the process remains nonergodic. Non-
ergodicity in srGBM is realized in the long-time behavior
of an average over a finite sample of trajectories with three
emerging regimes: (i) a frozen state regime, (ii) an unsta-
ble annealed regime, and (iii) a stable annealed regime. The
long-time and short-time behaviors of the system in these
regimes are separated by a critical timescale which depends
strongly on the resetting rate. In the first regime, named after
an analogy to the celebrated “Random Energy Model” by
Derrida [57], the long-time behavior of the system is the same
as in the standard GBM. This implies that resetting does not
affect the nonergodicity of the process. However, in the other
two regimes, resetting nontrivially ramifies the self-averaging
behavior leading to either an unstable or a stable long-time
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sample average. Importantly, in the last regime, for a large
enough sample size, the system may always be self-averaging
and thus the sample average will forever mimic ergodic be-
havior. Besides the emphasized effect on the ergodicity of
the process, we also show that when resetting is Poissonian,
there exists an optimal resetting rate that minimizes the critical
self-averaging time, thus displaying another intriguing feature
of this study.

The article is structured as follows. In Sec. II, we in-
troduce the model, provide preliminary results, and discuss
the simulation procedure. We present exact results for the
moments and the probability density function for the GBM
with stochastic resetting in Sec. III. Sections IV and V, re-
spectively, are dedicated to discuss ergodic and self-averaging
properties of GBM with stochastic resetting. We conclude in
Sec. VI with a summary of our work and future directions.

II. MODEL

A. Preliminaries

Motion of a particle governed by srGBM is described by
the following Langevin equation:

dx(t ) = (1 − Zt )x(t )[μdt + σdW ] + Zt [x0 − x(t )], (1)

where x(t ) is the position of the particle (but could be self-
reproducing resources such as biomass or capital) at time t ,
dt denotes the infinitesimal time increment, and dW is an
infinitesimal Wiener increment, which is a normal variate with
〈dWt 〉 = 0 and 〈dWt dWs〉 = δ(t − s)dt . Here, μ and σ are
called the drift and noise amplitude. Resetting is introduced
with a random variable Zt which takes the value 1 when there
is a resetting event in the time interval between t and t + dt ;
otherwise, it is zero. Without any loss of generality, we also
assume that resetting brings the particle back to its initial
condition x(0) = x0.

The solution to Eq. (1) can be found by interpreting srGBM
as a renewal process: each resetting event renews the pro-
cess at x0 and between two such consecutive renewal events,
the particle undergoes the simple GBM. Thus, between time
points 0 and t , only the last resetting event, occurring at the
point

tl (t ) = max
k∈[0,t]

k : {Zk = 1}, (2)

is relevant and the solution to Eq. (1) reads (following Itô
interpretation)

x(t ) = x0 e[μ−(σ 2/2)][t−tl (t )]+σ {W (t )−W [tl (t )]}. (3)

In what follows we will assume stochastic resetting so that
the probability for a reset event is given by P(Zt = 1) = r dt .
In the limit when dt → 0, this corresponds to an exponential
resetting time density fr (t ) = re−rt , and tl is distributed ac-
cording to

f (tl |t ) = δ(tl )e
−rt + re−r(t−tl ), (4)

such that
∫ t

0 dtl f (tl |t ) = 1. Intuitively, the first term on the
right-hand side corresponds to the scenario when there is no
resetting event up to time t while the second one accounts for
multiple resetting events. Notably, writing stochastic solutions
[such as Eq. (3)] on a single trajectory level in the presence

FIG. 1. srGBM dynamics. Position of the particle evolves multi-
plicatively via Eq. (1) until a random event characterized by Zt = 1
occurs. At this moment, the position is reset to x0 = 1 and the dy-
namics is renewed. The blue line describes a numerical simulation of
the Langevin equation (1), whereas the orange line is the solution (2)
and (3). In this example, we set μ = 0.05, σ 2 = 0.02, and r = 0.16.

of resetting is quite useful, as will be seen below. We further
stress that Eq. (3) also holds for complex restart time distribu-
tions with a straightforward generalization of Eq. (4) that can
be obtained from Refs. [14,35].

B. Method of simulation

The basic ingredient used to numerically simulate srGBM
is to generate a trajectory using Eq. (1). This is done à la
Langevin. Concretely, to obtain the distribution of the position
of the particle at time t , we discretize the time t = n�t , where
n is an integer. We initialize the position of the particle at
x(0) = 1, and then, at each step (τ = 1, . . . , n), the particle
can either reset or it can evolve according to the laws of GBM.
Thus,

(1) with probability 1 − r�t (r is the rate of resetting); the
particle undergoes GBM so that

x(τ�t )=x[(τ − 1)�t] + x[(τ − 1)�t][μ + σ
√

�tη(τ�t )],
(5)

where η(�t ) is a Gaussian random variable with mean 0 and
variance 1, and �t is the microscopic time step;

(2) with complementary probability r�t , resetting occurs
such that

x(τ�t ) = x(0) = 1. (6)

In Fig. 1 we have compared Eq. (3) with the Langevin
simulation to find an excellent match.

III. NONEQUILIBRIUM PROPERTIES OF GBM UNDER
STOCHASTIC RESETTING

In this section, we discuss nonequilibrium properties of
GBM subjected to stochastic resetting. We first present exact
results for the moments at all times. Next, we discuss the
nonequilibrium steady state of GBM under stochastic reset-
ting.

A. Moments

Moments of srGBM can be computed easily by applying
the law of total expectation. In practice, the mth moment
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TABLE I. Moments behavior in srGBM.

Limiting behavior

Moment Exponential Linear
divergence divergence Convergence

〈x(t )〉 r < μ r = μ r > μ

Eq. (A8) (∼e(μ−r)t ) (∼rt) [∼r/(r − μ)]
〈x2(t )〉 r < 2μ + σ 2 r = 2μ + σ 2 r > 2μ + σ 2

Eq. (A11) (∼e(2μ+σ 2−r)t ) (∼rt) [∼r/(r − 2μ − σ 2)]

is obtained by raising Eq. (3) to the mth power and then
averaging with respect to the noise and f (tl |t ) respectively:

〈xm(t )〉 = xm
0 e[mμ+m(m−1)(σ 2/2)]t 〈e−[mμ+m(m−1)(σ 2/2)]tl (t )〉tl

= xm
0

mμ + m(m − 1) σ 2

2 −r
[μ e[mμ+m(m−1)(σ 2/2)−r]t − r].

(7)

In general, three regimes for the evolution of the mth moment
can be identified based on the relation between the drift,
noise amplitude, and the resetting rate. First, when r > rm ≡
mμ + m(m − 1) σ 2

2 , the mth moment converges to a limiting
value r/(r − rm). At r = rm, a sharp transition occurs, and
the moment diverges linearly in time, i.e., 〈xm(t )〉 ∼ 1 + rt .
For r < rm, this divergence becomes exponential. Table I
summarizes the relationship between the parameters and the
resulting behavior for the first two moments, i.e., the ensemble
average and the second moment. The different limiting points
of divergence for the moments can be seen as a hallmark mul-
tiplicative property of srGBM. For completeness we present a
complementary renewal-based derivation for the moments in
Appendix A.

B. Probability density function

The probability density function (PDF) of a reset process
satisfies the following renewal equation [11]:

Pr (x, t |x0) = e−rt P0(x, t |x0) + r
∫ t

0
e−ruP0(x, u|x0)du, (8)

where P0(x, t |x0) is the PDF of the reset-free (r = 0) process
and in case of GBM reads [5,58]

P0(x, t |x0) = 1

x
√

2πσ 2t
exp

⎛
⎝−[

ln
(

x
x0

) − (
μ − σ 2

2

)
t
]2

2σ 2t

⎞
⎠.

(9)

The steady state is then found by taking Laplace transform
of Eq. (8), i.e., Pss

r (x|x0) = limt→∞ Pr (x, t |x0) = rP̂0(x, r|x0),
where P̂0(x, s|x0) ≡ ∫ ∞

0 e−st P0(x, t |x0) dt . Following this (see
Appendix B), we find that the stationary distribution has a
power law whose right tail is given by

Pss
r (x|x0) ∼ C(x0)x−α−1 if x > x0, (10)

for some normalizing constant C(x0) that is dependent on the
initial condition and a shape parameter

α = −(μ − σ 2/2) +
√

(μ − σ 2/2)2 + 2rσ 2

σ 2
. (11)

The attained stationarity is not enough to render the model
ergodic. In standard GBM, nonergodicity arises due to the
noise-induced fluctuations which exhibit a net-negative effect
on the time-averaged particle position, but do not affect the
ensemble average. Therefore, in order to observe stationary-
like behavior on the long run one must track the evolution of
an infinite number of trajectories [59]. Introducing stochastic
resetting does not alter this phenomenon. This is because the
long-time average of a finite sample of trajectories (defined
below) will be dominated by extremely rare nonreset trajecto-
ries. However, as will be shown below, resetting represents
an additional source of randomness that not only increases
the net-negative effect on the time-averaged position but also
under certain circumstances may induce a similar effect on
the ensemble average. As a result, we observe a variety of
long-time regimes for the sample average due to resetting. We
discuss these issues next.

IV. ERGODIC PROPERTIES

In srGBM, the nonergodicity of the sample average is man-
ifested in the same way as in GBM, that is, by the difference
between the time average and ensemble growth rate [6]. This
is captured by the following estimator of the growth rate of a
sample of GBM trajectories:

gest(t, N ) ≡ 1

t
log (〈x(t )〉N ), (12)

where

〈x(t )〉N = 1

N

N∑
i=1

xi(t ) (13)

is known as the finite sample average with the property
limN→∞〈x(t )〉N = 〈x(t )〉. A similar estimator was used to
study ergodic properties in continuous-time random walk [59]
and anomalous diffusion in disordered materials [60].

The ensemble growth rate 〈g〉 is found by fixing the period
t and taking the limit as the sample grows infinitely, i.e.,

〈g〉 = lim
N→∞

gest(t, N ). (14)

On the other hand, the time-average growth rate ḡ is found
by fixing the sample size N and letting time remove the
stochasticity,

ḡ = lim
t→∞ gest(t, N ). (15)

The nonergodicity of the process is manifested in the noncom-
mutativity of the two limits. Concretely, it can be shown that
the ensemble average growth rate is 〈g〉 = g(t ), which can be
obtained by substituting Eq. (7) with m = 1 in Eq. (12). On the
other hand, we find that the time-average growth rate is ḡ = 0.
Let us first present a proof for the simplest case N = 1, and
afterwards generalize the results for arbitrary sample sizes.
We start by substituting the solution x(t ) from Eq. (3) into
Eq. (12) to obtain (setting x0 = 1)

gest(t, N = 1) =
(

μ − σ 2

2

)(
1 − tl

t

)
+ σ

t
[W (t ) − W (tl )],

(16)
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FIG. 2. Ergodicity breaking in srGBM. Long-time sample aver-
age (t = 105) as a function of r for various sample sizes. For each
sample size, 104 random realizations were generated and the median
results are shown. We set μ = 0.02, σ 2 = 0.01. The black vertical
line indicates the threshold r = μ where the ensemble average be-
comes convergent.

from where it follows that (Appendix C)

〈gest(t, N = 1)〉 =
(

μ − σ 2

2

)(
1 − 〈tl〉

t

)
(17)

and

Var[gest(t, N = 1)] =
(

μ − σ 2

2

)2 Var[tl ]

t2
+ σ 2

t

(
1 − 〈tl〉

t

)
,

(18)

where “Var” stands for variance. These results hold for any
resetting time density. In particular, for Poissonian resetting,
〈gest(t, N = 1)〉 = Var[gest(t, N = 1)] = 0 in the limit t →
∞. This essentially implies that the distribution of gest(t, N =
1) must converge to a Dirac delta function asymptotically. In
other words, as t → ∞, the observed growth rate ḡ will differ
from 0 with probability zero.

The proof for arbitrary N is based on extreme value theory
[6,61]. In particular, we will show that ḡ is bounded from
above and below, and that these bounds coincide. The upper
bound can be shown by observing that for a fixed t and sample
size N

gest(t, N ) � max
i

1

t
log xi(t ) = max

i
g[i]

est(t, N = 1), (19)

since the system size is finite. Taking the limit with respect to
time, it follows that

ḡ � max
i

lim
t→∞ g[i]

est(t, N = 1) = 0. (20)

In a similar manner, for the lower bound we have

ḡ � min
i

lim
t→∞ g[i]

est(t, N = 1) = 0. (21)

Hence, the bounds for ḡ saturate to a threshold which is zero
implying ḡ = 0 for any fixed sample size.

To numerically illustrate this nonergodicity, we plot the
long run sample average 〈x(t )〉N as a function of resetting rate
r for various sample sizes in Fig. 2. We simulate the sample
average by generating N independent and identical copies of

the Langevin simulation, i.e.,

〈x(τ�t )〉N =
∑N

i xi(τ�t )

N
. (22)

As described in the main text, 〈x(τ�t )〉N will resemble the
ensemble average as long as τ�t < tc, and afterwards it will
collapse to its time-average behavior.

For r � μ, the ensemble average diverges (dashed black
line). However, the time average is convergent resulting in the
sample average to converge. Even in the regime when r >

μ the sample average is closer to the time average and there
are apparent differences with the ensemble average. This is
best seen in the single system (marked with a circle), which
is dominated by the time-average behavior (dash-dotted black
line). As the sample size increases, the sample average draws
closer to the magnitude of the ensemble average but it always
remains convergent.

To explain the differences in observations belonging to
different sample sizes, one can use an analogy with random
energy model (REM) studied by Derrida [57,62]. In REM,
there exists a critical inverse temperature tc below which the
quenched and annealed averages are identical, whereas above
tc, only the quenched average is observed and the system is
frozen in a small number of configurations of energy [63].
In srGBM, tc corresponds to a critical self-averaging time
until which the sample average resembles the corresponding
ensemble value, i.e., the time until Eq. (14) is valid. However,
note that in the absence of resetting, the critical self-averaging
time is strictly determined by and is proportional with the
sample size. Hence, as the sample size increases the sample
average will spend a longer time resembling the ensemble
average. These dynamics are accumulated and effectively
reflected in the observed time average at the end. In stark
contrast, we show that in srGBM, tc depends on both the sam-
ple size and the resetting strength thus resulting in different
long-time regimes. This is discussed next.

V. SELF-AVERAGING PROPERTIES

In srGBM, the critical self-averaging time can be estimated
by the relative variance of the sample average, namely,

RN (t ) ≡ Var(〈x(t )〉N )

〈〈x(t )〉N 〉2
, (23)

where 〈·〉 and Var(·) notations, without N as a subscript, refer
to the averages over all possible sample average realizations.
Using Eq. (13) and the property for variance of sums of inde-
pendent and identically distributed random variables, Eq. (23)
can be rewritten as

RN (t ) = 1

N

〈x2(t )〉 − 〈x(t )〉2

〈x(t )〉2
. (24)

If RN (t ) 
 1, the system is self-averaging, i.e., the sample av-
erage will be close to the ensemble average. Thus, the system
will be self-averaging until the critical point tc which occurs at
RN (tc) = 1. We can use this information and rephrase Eq. (24)
as

N + 1 = 〈x2(tc)〉
〈x(tc)〉2

, (25)
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FIG. 3. Self-averaging in srGBM. (a) Critical self-averaging time tc as a function of r for various sample sizes N . tc is seen to be minimized
at r∗ = μ for large sample size. The vertical lines indicate the thresholds r = μ and r = 2μ + σ 2 at which the ensemble average and second
moment respectively become convergent. (b) Long-time (t = 105) probability of observing a microstate that is among the largest 1% averaged
across 104 simulations. The median results are shown, and the filled region is the 5th and 95th percentile. Three regimes correspond to (i)
r < μ (frozen), (ii) 2μ + σ 2 > r > μ (unstable annealed), and (iii) r > 2μ + σ 2 (stable annealed). (c) Statistics of example simulations for
the probability of observing a microstate that is among the largest 1%. Different colors indicate the regimes mentioned in (b). Parameters:
μ = 0.02, σ 2 = 0.01, and N = 104.

which is the governing relation to determine tc. This is done by
plotting Eq. (25) as a function of r in Fig. 3(a). Starting at r =
0, the self-averaging time tc first decreases and then increases
as a a function of resetting rate r. Depending on the trade-off
between resetting rate (r), drift (μ), and noise strength (σ ),
the system exhibits three different regimes which we explore
in the following.

A. Frozen state

In the regime r < μ, if we were to start with N microstates
with equally distributed energies, during the self-averaging
period, inequality will increase and the system will eventually
end up in a frozen configuration, as in REM. This is because
both the ensemble average, given by Eq. (A8) [putting m = 1
in Eq. (7)], and the second moment, given by Eq. (A11)
[putting m = 2 in Eq. (7)], are divergent. Thus, we can re-
spectively approximate them as

〈x(t )〉 ≈ μ

μ − r
exp [(μ − r)t]x0 (26)

and

〈x2(t )〉 ≈ 2μ + σ 2

2μ + σ 2 − r
exp[(2μ + σ 2 − r)t]x2

0 . (27)

Putting these two equations in Eq. (25) we can get an ap-
proximate equation for the critical self-averaging time in this
regime as

tc ≈ 1

r + σ 2
log

[
(N + 1)

μ2(2μ + σ 2 − r)

(μ − r)2(2μ + σ 2)

]
. (28)

For a large enough sample this reduces to

tc ≈ 1

r + σ 2
log [(N + 1)], (29)

which is precisely the behavior observed in Fig. 3(a).
We quantify the degree of freezing with the probability

P1%(t ) that the system occupies a microstate that is among
the largest 1% of the sampled particle energies in time t

[Fig. 3(b)]. Numerically, this is easily done by relabeling the
N trajectories, i.e., without loss of generality we assume that
x1(τ�t ) � x2(τ�t ) � · · · � xN (τ�t ). Then, P1%(τ�t ) in the
period τ�t is estimated as

P1%(τ�t ) =
∑N/100

j x j (τ�t )∑N
i xi(τ�t )

. (30)

In the economics literature, P1% is interpreted as a measure
of income inequality and its observed dynamics are expressed
through changes in the model parameters, reflecting shocks
(changes in model parameters due to external forces) in the
system conditions [55,64]. Thus, a value of P1% closer to
unity indicates a frozen configuration. An example for how
P1% behaves as a function of time is given in Fig. 3(c) with a
dashed line.

B. Unstable state

In the regime when μ < r < 2μ + σ 2 the ensemble av-
erage, given by Eq. (A8), converges to a stationary value,
whereas the second moment, given by Eq. (A11), remains
divergent. Specifically, then the ensemble average is approxi-
mated as

〈x(t )〉 ≈ r

r − μ
x0, (31)

while the evolution of the second moment remains the same
as in Eq. (27). Putting these two equations in Eq. (25), we find
the critical self-averaging time to be

tc ≈ 1

2μ + σ 2 − r
log

[
(N + 1)

r2(2μ + σ 2 − r)

(r − μ)2(2μ + σ 2)

]
. (32)

Again, for a large enough sample the above equation reads

tc ≈ 1

2μ + σ 2 − r
log [(N + 1)], (33)

which is clearly an increasing function of r, as can be seen in
Fig. 3(a). In words, beyond r > μ, increments in r reflect in an
increased self-averaging time. Since tc is a decreasing function
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of resetting rate r when r < μ and an increasing function
when μ < r < 2μ + σ 2, it must be the case that the function
attains a a local minimum on the interval [0, 2μ + σ 2] at the
point r∗ = μ. Note that the transition point coincides with
the threshold required for the ensemble average to become
convergent. This is indeed observed in Fig. 3(a). We remark
that for a small sample size, the optimal resetting rate r∗
that minimizes tc, is weakly dependent on the sample size N .
Therefore, optimization of tc with respect to resetting rate r is
one of the central features of this work.

Moreover, in this state, the resetting rate is large enough
to squeeze the effect of the drift and constrain the ensemble
average, but the second moment remains divergent. Due to
this, after the self-averaging period even if the particle’s posi-
tion is reset, it will quickly return to its preresetting position.
Thus the system will not always be trapped in a small num-
ber of configurations [Fig. 3(b)]. Instead, the share P1% will
randomly phase between large and small values over time.
This, in turn implies that the state of the configurations will
be unstable over time as evidenced in Fig. 3(c), with the
dash-dotted line. This is a significant impact of resetting on
the long-time behavior of GBM.

C. Stable state

As r is further increased and above 2μ + σ 2, the second
moment also becomes convergent and a third regime appears.
In this case, in the long-time limit the second moment is
convergent and reads

〈x2(t )〉 ≈ r

r − 2μ − σ 2
x0. (34)

By combining the above equation with Eq. (31), we get that
the long-time relative variance in this regime is approximately
constant:

RN (t ) ≈ 1

N

[
(r − μ)2

r(r − 2μ − σ 2)
− 1

]
. (35)

It can be observed that in this case the sample average
resembles the ensemble value [Fig. 3(a)] and exhibits di-
verse configurations [Fig. 3(b)]. Consequently, the probability
P1% of observing extreme configurations stabilizes over time
[Fig. 3(c), dotted line]. This is the onset of a stable annealed
regime. In this state, for a large enough sample size N , the
system may forever mimic ergodic behavior. More precisely,
self-averaging will always occur in the system if RN (t ) in
Eq. (35) is less than 1. This leads to the condition

N >
μ2 + rσ 2

(r − 2μ − σ 2)r
. (36)

This is remarkably different from the previous two regimes,
where for any fixed sample size, we would eventually observe

discrepancies between the ensemble and sample averages, and
is another important feature induced by resetting on GBM.

VI. CONCLUSION

In this work, we performed a detailed analysis on the
spatial and ergodic properties of srGBM. While discrete-time
stochastic and deterministic multiplicative processes with
resetting have been studied in [27,28], a detailed and sys-
tematic investigation for the spatial and ergodic properties
for the continuous-time multiplicative process such as GBM
was still missing. The emergence of three regimes, namely,
frozen/quenched, an unstable, and a stable annealed state are
especially noteworthy. The ensemble properties of the second
and third regimes have been explored to a great extent in
the income inequality literature [55]. Indeed, most identified
power laws in nature have exponents such that the average
is well defined but the variance is not, implying that the sec-
ond regime is an expected outcome [65]. Nonetheless, recent
studies in economics also identify nonergodic and divergent
behavior in samples of srGBM trajectories, thus suggesting
the existence of the first regime [50,66]. A typical example
of srGBM would be investment portfolios with reconstitution
(addition or removal of constituents) [67] where one might
observe such a multistable landscape. Naturally, the results
presented here for srGBM lend themselves as a baseline to de-
pict the long run behavior of the above-mentioned scenarios.
This empirical investigation represents an intriguing research
question which we leave for future work.

From a technical perspective, it is important to stress
that the solution (3), time-average growth rate (16), and the
critical self-averaging time (25) are universal and do not
depend on the resetting time density. It remains to be seen
how the statistical properties of GBM alter intricately under
arbitrary resetting time density. Moreover, the dependence
of tc on generic resetting time distribution suggests that we
may observe diverse properties for the optimality based on
the resetting strategy that we employ (similar to various op-
timizations of the mean first passage time under resetting
[30]). Finally, GBM, besides being a canonical model for
self-reproduction, is also used to describe diffusion processes
where the particle spreads very fast, such as heterogeneous
and turbulent diffusion [68,69]. Exploring the applications of
resetting strategies on GBM thus also represents a potential
research avenue that is of broad interest.
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APPENDIX A: CALCULATION OF MOMENTS FOR srGBM

In the main text we showed how to derive the moments of srGBM using the law of total expectation. In this section, we
present alternative derivations for the moments using Fokker-Planck and a renewal approach, respectively.
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1. Fokker-Planck approach

The Fokker-Planck equation for the GBM with exponential resetting to the initial position Pr (x, t = 0|x0) = δ(x − x0) reads

∂

∂t
Pr (x, t |x0) = −μ

∂

∂x
xPr (x, t |x0) + σ 2

2

∂2

∂x2
x2Pr (x, t |x0) − rPr (x, t |x0) + rPr (x, t = 0|x0), (A1)

where r is the rate of resetting to the initial position x0. The last two terms in the right-hand side of Eq. (A1) represent,
respectively, the loss of the probability from position x = x0 due to the resetting and consecutively a gain in the probability
at the initial position x0 from all the other positions in space. Taking Laplace transform on both sides of Eq. (A1) gives

sP̂r (x, s|x0) − Pr (x, t = 0|x0) = −μ
∂

∂x
xP̂r (x, s|x0) + σ 2

2

∂2

∂x2
x2P̂r (x, s|x0) − rP̂r (x, s|x0) + r

s
Pr (x, t = 0|x0), (A2)

where ĝ(s) = L[g(t )] = ∫ ∞
0 g(t )e−st dt is the Laplace transform of g(t ). Rewriting the above equation, one gets

sP̂r (x, s|x0) − Pr (x, t = 0|x0) = s × 1

s + r

[
−μ

∂

∂x
xP̂r (x, s|x0) + σ 2

2

∂2

∂x2
x2P̂r (x, s|x0)

]
, (A3)

which, upon an inverse Laplace transform, gives us the following convoluted equation:

∂

∂t
Pr (x, t |x0) = ∂

∂t

∫ t

0
η(t − t ′)

[
−μ

∂

∂x
xPr (x, t ′|x0) + σ 2

2

∂2

∂x2
x2Pr (x, t ′|x0)

]
dt ′, (A4)

where η(t ) = e−rt . Note that a similar equation was also used in Ref. [58] to explore the properties of a generalized GBM
process subject to subdiffusion (without resetting). In what follows, we would like to write a dynamical equation for the moments
〈xm(t )〉 ≡ ∫ ∞

0 xm(t )Pr (x, t |x0) dx using Eq. (A4). To see this, we multiply both sides of Eq. (A4) by xm and integrate over x to
find

∂

∂t
〈xm(t )〉 =

[
σ 2

2
m(m − 1) + μm

]
μ

d

dt

∫ t

0
η(t − t ′)〈xm(t ′)〉dt ′. (A5)

In Laplace space, the solution to this equation reads

〈x̂m(s)〉 = s−1

1 − η̂(s)
[

σ 2

2 m(m − 1) + μm
]xn

0, (A6)

where η̂(s) = L[e−rt ] = 1
s+r , and x0 = x(0) is the fixed initial condition. For m = 1, the solution of the equation for the ensemble

average (first moment or the mean value) in Laplace space is given by

〈x̂(s)〉 = s−1

1 − μη̂(s)
x0 = s−1

1 − μ/(s + r)
x0, (A7)

which can be inverted to obtain the following expression for the mean:

〈x(t )〉 = x0

μ − r
[μe(μ−r)t − r]. (A8)

Similarly, for m = 2, using Eq. (A5), we obtain the following equation for the second moment:

∂

∂t
〈x2(t )〉 = (σ 2 + 2μ)

d

dt

∫ t

0
η(t − t ′)〈x2(t ′)〉dt ′, (A9)

with a solution in Laplace space

〈x̂2(s)〉 = s−1

1 − (σ 2 + 2μ)η̂(s)
x2

0 = s−1

1 − (σ 2 + 2μ)/(s + r)
x2

0, (A10)

which can be inverted to obtain the following expression for the second moment:

〈
x2(t )

〉 = x2
0

2μ + σ 2 − r
[(2μ + σ 2)e(2μ+σ 2−r)t − r]. (A11)

Finally, inverting Eq. (A6), we arrive at Eq. (7) as was mentioned in the main text.

2. Renewal approach

It is now well understood that resetting is a renewal process in the sense the process erases its memory after each resetting.
This leads to an advantage since the solution of the reset process Pr (x, t |x0, 0) can be written in terms of the underlying reset-free
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process P0(x, t |x0, 0). Following Ref. [11], we can write

Pr (x, t |x0, 0) = e−rt P0(x, t |x0, 0) +
∫ t

0
re−ruP0(x, u|x0, 0)du, (A12)

which is essentially Eq. (8). This equation can be interpreted in terms of a renewal process, i.e., each resetting event to the initial
position x0 renews the process at a rate r. Between two consecutive renewal events, the particle undergoes its original dynamics.
In fact Eq. (A12) can also be obtained from Eq. (A4) using a subordination approach used in [58]. To show this, note that the
solution of Eq. (A4) can be represented by the subordination integral

Pr (x, t |x0) =
∫ ∞

0
P0(x, u|x0)h(u, t )du, (A13)

where h(u, t ) is a subordination function. For the present case of exponential waiting time for resetting, the subordination
function for srGBM reads (see Ref. [58])

ĥ(u, s) = 1

sη̂(s)
e−u/η̂(s) = s + r

s
e−u(s+r) → h(u, t ) = e−rtδ(t − u) + re−ruθ (t − u). (A14)

Thus

Pr (x, t |x0) =
∫ ∞

0
P0(x, t |x0, 0)[e−rtδ(t − u) + re−ruθ (t − u)]du (A15)

from where we recover the renewal form given in Eq. (A12). Taking Laplace transform on the both sides of the above equation
gives

P̂r (x, s|x0) = P̂0(x, s + r|x0) + r

s
P̂0(x, s + r|x0) = s + r

s
P̂0(x, s + r|x0), (A16)

where P̂0(x, s) is the Laplace transform of the underlying propagator. By multiplying Eq. (A16) with xm(s) and integrating out
x, the mth moment of srGBM in Laplace space can be written as

〈x̂m(s)〉 = s + r

s
〈x̂m(s + r)〉r=0, (A17)

where 〈x̂m(s)〉r=0 is the mth moment without resetting in the Laplace space. Note that the equations derived so far do not depend
on the specific choice of underlying dynamics. Moving forward, we will turn our focus to the GBM process. In particular, the
GBM propagator reads

P0(x, t |x0, 0) = 1

x
√

2πσ 2t
exp

⎛
⎝−

[
log

(
x
x0

) − (
μ − σ 2

2

)
t
]2

2σ 2t

⎞
⎠, (A18)

which is a log-normal distribution. The moments, obtained from Eq. (A18), read

〈xm(t )〉r=0 = xm
0 e[σ 2m(m−1)/2+μm]t . (A19)

Computing the Laplace transforms 〈x̂m(s)〉r=0 from above and substituting into Eq. (A17) gives us the moments of srGBM in
Laplace space. Inverting them, we recover the results as given by Eq. (7).

APPENDIX B: FULL EXPRESSION FOR THE STATIONARY DISTRIBUTION

In this section, we provide the full expressions for the steady state. To this end, we recall Eq. (A12) and take the limit t → ∞.
The first term on the right-hand side of Eq. (A12) drops out and we are left with

Pss
r (x|x0) = lim

t→∞ Pr (x, t |x0) =
∫ ∞

0
re−ruP0(x, u|x0, 0)du = rP̂0(x, r|x0). (B1)

Thus to compute the steady state, we need the Laplace transform of the underlying propagator. In particular, for GBM, they can
be computed from Eq. (A18). Eventually, we have

P̂0(x, s|x0) = 1√
(μ − σ 2/2)2 + 2σ 2s

⎧⎨
⎩

(
x
x0

)−[
√

(μ−σ2/2)2+2σ2s−(μ−σ2/2)

σ2 ]−1
, x > x0,(

x
x0

)[
√

(μ−σ2/2)2+2σ2s+(μ−σ2/2)

σ2 ]−1
, x � x0.

(B2)

Thus, using Eq. (B1), we arrive at the following expressions for the nonequilibrium steady state for srGBM:

Pss
r (x|x0) = rσ 2

ασ 2 + (
μ − σ 2

2

)
{(

x
x0

)−α−1
, x > x0,(

x
x0

)α+2[μ−(σ 2/2)]−1
, x � x0,

(B3)
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where

α = −(μ − σ 2/2) +
√

(μ − σ 2/2)2 + 2rσ 2

σ 2
(B4)

is the shape parameter. The right tail (x > x0) of this result has been highlighted in Eq. (10) in the main text.

APPENDIX C: CALCULATION OF MOMENTS FOR THE srGBM GROWTH RATE

Here we derive the moments of the srGBM growth rate given in Eqs. (17) and (18). We start by noting that the estimator of
the growth rate when N = 1 can be found by inputting Eq. (3) in Eq. (12), i.e.,

gest(t, N = 1) =
(

μ − σ 2

2

)(
1 − tl

t

)
+ σ

t
[W (t ) − W (tl )], (C1)

where for simplicity we have set x(0) = 1. In order to derive the moments of srGBM, we are going to utilize three basic properties
of the Wiener process. That is, the process is characterized with a first moment, 〈W (t )〉 = 0, second moment 〈W 2(t )〉 = t , and a
covariance 〈W (t )W (s)〉 = min{t, s}.

Using this information, we can average Eq. (C1) first with respect to the Wiener noise, and then with respect to tl to get the
first moment

〈gest(t, N = 1)〉 =
(

μ − σ 2

2

)(
1 − 〈tl〉

t

)
. (C2)

To derive the variance, we first square Eq. (C1), and get

g2
est(t, N = 1) =

(
μ − σ 2

2

)2(
1 − tl

t

)2

+ 2

(
μ − σ 2

2

)(
1 − tl

t

)σ

t
[W (t ) − W (tl )] + σ 2

t2
[W (t ) − W (tl )]

2. (C3)

Again, we take the average of Eq. (C3) first with respect to the Wiener noise, and then with respect to tl . The computation goes
as follows:

〈
g2

est(t, N = 1)
〉 =

(
μ − σ 2

2

)2〈(
1 − tl

t

)2
〉
+ 2

(
μ − σ 2

2

)(
1 − 〈tl〉

t

)
σ

t
(〈W (t )〉 − 〈W (tl )〉) + σ 2

t2
〈[W (t ) − W (tl )]

2〉 (C4)

=
(

μ − σ 2

2

)2〈(
1 − tl

t

)2
〉
+ σ 2

t2
(〈W 2(t )〉 − 〈W (t )W (tl )〉 + 〈W 2(tl〉) (C5)

=
(

μ − σ 2

2

)2〈(
1 − tl

t

)2
〉
+ σ 2

t

(
1 − 〈tl〉

t

)
, (C6)

where we have used properties of the Wiener process. Finally, variance of gest(t, N = 1), as given in Eq. (18) in the main text, is
recovered from the following:

Var[gest(t, N = 1)] = 〈
g2

est(t, N = 1)
〉 − 〈gest(t, N = 1)〉2 (C7)

=
(

μ − σ 2

2

)2 Var[tl ]

t2
+ σ 2

t

(
1 − 〈tl〉

t

)
, (C8)

where Var[tl ] = 〈t2
l 〉 − 〈tl〉2.
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