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Subdiffusion equation with Caputo fractional derivative with respect to another function
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We show an application of a subdiffusion equation with Caputo fractional time derivative with respect to
another function g to describe subdiffusion in a medium having a structure evolving over time. In this case a
continuous transition from subdiffusion to other type of diffusion may occur. The process can be interpreted
as “ordinary” subdiffusion with fixed subdiffusion parameter (subdiffusion exponent) α in which timescale is
changed by the function g. As an example, we consider the transition from “ordinary” subdiffusion to ultraslow
diffusion. The g-subdiffusion process generates the additional aging process superimposed on the “standard”
aging generated by “ordinary” subdiffusion. The aging process is analyzed using coefficient of relative aging
of g-subdiffusion with respect to “ordinary” subdiffusion. The method of solving the g-subdiffusion equation is
also presented.
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I. INTRODUCTION

A type of diffusion is usually defined by time evolution
of the mean-square displacement (MSD) σ 2(t ) of a diffus-
ing particle. If σ 2(t ) ∼ tα , then we have superdiffusion for
α > 1, normal diffusion for α = 1 and “ordinary” subdiffu-
sion when 0 < α < 1. If σ 2(t ) ∼ η(t ), where η is a slowly
varying function, then we have ultraslow diffusion (slow sub-
diffusion). A slowly varying function fulfils the condition
η(at )/η(t ) → 1 when t → ∞ for any a > 0. In practice,
slowly varying function is considered as a combination of
logarithmic functions. Within the continuous time random
walk (CTRW) model subdiffusion is defined as a process in
which a time distribution between particle jumps has a heavy
tail which makes the average time infinite, but the jump length
distribution has finite moments [1–7]. This process occurs in
media, such as gel, where particles diffusion is very hindered
[8]. Recently, it has been shown that a membrane which can
retain diffusing molecules for a very long time generates
subdiffusion in an external medium [9]. Subdiffusion is de-
scribed by the equation with integral operators with respect to
time variable [2–7,10,11]. The operators are usually defined
as the Riemann-Liouville fractional time derivative of order
1 − α or the Caputo fractional time derivative of order α.
Ultraslow diffusion is an extremely slow process, qualitatively
different from “ordinary” subdiffusion. It is described by in-
tegrodifferential equations with the integral operator which
is not identified frequently as a fractional time derivative
[12,13]. This process was observed in diffusion of water in
aqueous sucrose glasses [14] and languages dynamics [15].
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Superdiffusion is a process in which anomalously long jumps
of a particle can be made with a relatively high probability,
as in a turbulent medium [1–3] and in motion of endogenous
intracellular particles in some pathogens [16]. The probability
distribution of jump length has a heavy tail while the average
waiting time for the particle to jump is finite. The CTRW
model provides superdiffusion equation with the fractional
Riesz derivative with respect to a spatial variable [2–5].

The parameter α depends on the medium property. When
the medium structure evolves over time, the parameter can
change. The CTRW model leads to the subdiffusion equation
with the time-fractional Caputo derivative of order α when the
subdiffusion parameter α is assumed to be constant. In prac-
tice, these assumptions are met in a homogeneous medium
which structure does not change with time. If these assump-
tions are not met, then models with distributed subdiffusion
parameter have been used [17], where superstatistics approach
is applied; subdiffusion can be accelerated or delayed depend-
ing on the distribution of α [18]. In other models subdiffusion
equations with a fractional time derivative of the order de-
pending on time and/or on a spatial variable have been used
[19–22]. Ultraslow diffusion with parameter evolving in time
was considered in Ref. [23]. If a structure of a diffusing
medium changes substantially, then the type of diffusion may
also change. An example of a process in which the medium
structure can be changed is diffusion of an antibiotic in a
bacterial biofilm. A biofilm has a gel-like structure and subdif-
fusion of an antibiotic is expected [24]. Bacteria have different
defense mechanisms against the effects of an antibiotic [25].
One of them is an increasing compaction of the biofilm, which
changes the biofilm structure and leads to hindering diffusion
of the antibiotic.

In some models of anomalous diffusion different fractional
derivatives, not equivalent to each other, have been involved
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in the diffusion equation. The list of the references regarding
this issue is long enough, see for example [26,27]. The ex-
amples of anomalous diffusion equations are Erdelyi-Kober
fractional diffusion equation [28], diffusion equations with
Antagana-Baleanu-Caputo and Antagana-Baleanu-Riemann-
Liouville fractional derivatives, in which the Mittag-Leffler
function is involved in the kernel of fractional derivative
operator [29], a Wiman type [30] and a Prabhakar-type
fractional diffusion equation [27,31] in which a kernel of
integral operator with respect to time is expressed in terms
of the three-parameter Mittag-Leffler function, and Cattaneo-
Hristov diffusion equation with Caputo-Fabrizio fractional
derivative [32], see also Ref. [33] and the references cited
therein. A further generalization of fractional derivatives are
fractional g-derivatives with respect to another functions g
[34]. We mention that these derivatives are defined frequently
for the function denoted as ψ and the derivatives are called
ψ-fractional derivatives with respect to another function.
However, in the analysis of anomalous diffusion processes,
the letter ψ is commonly used to denote the distribution of the
waiting time for a particle to jump. Therefore, in this paper
we denote the derivative with the letter g. These derivatives
significantly expand the possibilities of defining new diffusion
equations. For example, the g-Caputo derivative with respect
to time [35] and to spatial variable [36] have been involved in
anomalous diffusion equations.

Subdiffusion equation with the Caputo or Riemann-
Liouville fractional derivative can be solved by means of
the Laplace transform method. However, solving some other
fractional diffusion equations can require special methods. For
example, the solution of the fractional Hilfer-Prabhakar and
Cattaneo-Hristov diffusion equation can be obtained using
the Elzaki transform [27]. Frequently, numerical methods of
solving subdiffusion equations with a variable subdiffusion
parameter [19,22,37] and for equations containing a fractional
g-derivative [38] have been used.

The aim of our study is to show an application of the
subdiffusion equation with g-Caputo fractional derivative to
describe subdiffusion in a medium having a structure evolving
over time. In the following, we call the subdiffusion equation
with fractional g-Caputo time derivative as the g-subdiffusion
equation, and the process described by this equation as g–
subdiffusion. The g-subdiffusion process is defined by both:
the parameter α and a function g, where

(i) α is a subdiffusion parameter for the process taking
place in an initial time interval,

(ii) g controls the rest of the process.
We also show a method of solving the g-subdiffusion

equation. In particular, we show that this equation describes
subdiffusion in a system in which the type of diffusion
changes from “ordinary” subdiffusion with fixed α to ultra-
slow diffusion. The Green’s function for the process is also
found. One of the properties characterizing subdiffusion is
the aging process. In general, the aging means that the pro-
cess is not invariant with the translation in the time domain.
“Standard” aging of subdiffusion with fixed α is due to a
heavy tail of distribution of time which is needed to take
a particle step [4,39–42]. For ultraslow diffusion the tail is
superheavy [43]. We show that the aging of the g-subdiffusion
process is a combination of “standard” subdiffusive aging and

an additional aging process described by the function g, the
latter may be due to changes in the medium structure.

The organization of the paper is as follows. In Sec. II we
show a standard Laplace transform method for solving ”ordi-
nary” subdiffusion equations with the fractional Caputo time
derivative. In Sec. III we present the method of solving the
g-subdiffusion equation. In this method the Laplace transform
with respect to the function g is used. As an example, we
derive the Green’s function for a homogeneous system. In
Sec. IV we show that the appropriate choice of the g function
provides the equation describing the transition process from
“ordinary” subdiffusion to ultraslow diffusion. The aging pro-
cess of g-subdiffusion is considered in Sec V. We define the
relative aging coefficient ρα,g of the g-subdiffusion process in
relation to subdiffusion with a fixed parameter α. The final
remarks and conclusions are in Sec. VI.

II. SUBDIFFUSION EQUATION WITH “ORDINARY”
CAPUTO FRACTIONAL DERIVATIVE

We show how to obtain the Green function for the subdiffu-
sion equation with the ordinary Caputo derivative. Although
the results are well known, we present them in some detail
as they are the basis for the solving method of g-subdiffusion
equation.

The fractional subdiffusion equation with “ordinary” Ca-
puto derivative of the order α ∈ (0, 1) is

C∂αP(x, t |x0)

∂tα
= D

∂2P(x, t |x0)

∂x2
, (1)

where the Caputo fractional derivative is defined for 0 < α <

1 as
Cdα f (t )

dtα
= 1

�(1 − α)

∫ t

0
(t − t ′)−α f ′(t ′)dt ′, (2)

α is a subdiffusion parameter and D is a generalized diffu-
sion coefficient. To solve the equation the Laplace transform
method can be used, the Laplace transform is defined as

L[ f (t )](s) =
∫ ∞

0
e−st f (t )dt . (3)

Due to the relation

L
[Cdα f (t )

dtα

]
(s) = sαL[ f (t )](s) − sα−1 f (0), (4)

where 0 < α � 1, we get

sαL[P(x, t |x0)](s) − sα−1P(x, 0|x0) (5)

= D
∂2L[P(x, t |x0)](s)

∂x2
.

The Green’s function P(x, t |x0) is the solution to subdiffu-
sion equation for the initial condition

P(x, 0|x0) = δ(x − x0), (6)

where δ is the delta Dirac function. For unbounded system this
function vanishes at ±∞, the boundary conditions are

P(−∞, t |x0) = P(∞, t |x0) = 0. (7)

To solve Eq. (5) with the initial condition Eq. (6) the standard
Fourier transform method can be used. In terms of the Laplace
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transform the Green’s function for the above boundary
conditions is

L[P(x, t |x0)](s) = 1

2
√

Ds1−α/2
e− sα/2√

D
|x−x0|, (8)

this equation has already been derived in Ref. [6]. Using the
formula [44]

L−1[sνe−asβ

](t ) = 1

t1+ν

∞∑
k=0

1

k!�(−ν − βk)

(
− a

tβ

)k

≡ fν,β (t : a), (9)

where a, β > 0, � is the Gamma-Euler function, we obtain

P(x, t |x0) = 1

2
√

D
f−1+α/2,α/2

(
t ;

|x − x0|√
D

)
. (10)

The function f in Eq. (10) is the Mainardi function which
is the special case of the Wright function and the H-Fox
function, the Mainardi function often appears in solutions
to subfiffusion equation [45]. We mention that the inverse
Laplace transform of Eq. (8), Eq. (10), can be represented
by the inverse one-sided Levy stable density [7,10], see also
Ref. [46].

Since the mean particle position does not change in time
and equals x0, the time evolution of the MSD σ 2 of a particle
is calculated using the formula

σ 2(t ) =
∫ ∞

−∞
(x − x0)2P(x, t |x0)dx. (11)

From Eqs. (8) and (11) we get

L[σ 2(t )](s) = 2D

s1+α
. (12)

Using the formula L−1[1/s1+ν] = tν/�(1 + ν), ν > −1, we
obtain

σ 2(t ) = 2Dtα

�(1 + α)
. (13)

III. SUBDIFFUSION EQUATION WITH G-CAPUTO
FRACTIONAL DERIVATIVE

We assume that the function g, defined for t � 0, fulfils
the conditions g(0) = 0, g(∞) = ∞, and g′(t ) > 0 for t > 0.
The g-Caputo fractional derivative Cdα

g f̃ (t )/dtα of the order
α with respect to the function g is defined for 0 < α < 1 as

Cdα
g f̃ (t )

dtα
= 1

�(1 − α)

∫ t

0
[g(t ) − g(t ′)]−α f̃ ′(t ′)dt ′. (14)

The values of function g are given in a time unit. When
g(t ) = t , the g-Caputo fractional derivative takes the form of
the “ordinary” Caputo derivative (2).

The g-subdiffusion equation reads

C∂α
g P̃(x, t |x0)

∂tα
= D

∂2P̃(x, t |x0)

∂x2
, (15)

throughout this paper we denote the functions related to
the g-subdiffusion process described by Eq. (15) with tilde.
To solve Eq. (15) it is convenient to use the g-Laplace

transform [47]

Lg[ f̃ (t )](s) =
∫ ∞

0
e−sg(t ) f̃ (t )g′(t )dt . (16)

This transform has the following property that makes the
procedure for solving Eq. (15) similar to the procedure for
solving Eq. (1) using the “ordinary” Laplace transform

Lg

[Cdα
g

dtα
f̃ (t )

]
(s) = sαLg[ f̃ (t )](s) − sα−1 f̃ (0). (17)

Both transforms are related to each other by the following
relation:

Lg[ f̃ (t )](s) = L[ f̃ (g−1(t ))](s). (18)

Equation (18) and the Lerch’s uniqueness of the inverse
Laplace transform theorem provide the following rule:

Lg[ f̃ (t )](s) = L[ f (t )](s) ⇔ f̃ (t ) = f (g(t )). (19)

The above relation is the basis of the method of solving the
g-subdiffusion equation.

Due to Eq. (17), in terms of the g-Laplace transform the
g-subdiffusion equation is

sαLg[P̃(x, t |x0)](s) − sα−1P̃(x, 0|x0)

= D
∂2Lg[P̃(x, t |x0)](s)

∂x2
. (20)

The structure of Eq. (20) as a differential equation
with respect to x variable is the same as the structure of
Eq. (5). The solution to Eq. (20) for the boundary conditions
P̃(−∞, t |x0) = P̃(∞, t |x0) = 0 and the initial condition

P̃(x, 0|x0) = δ(x − x0) (21)

is

Lg[P̃(x, t |x0)](s) = 1

2
√

Ds1−α/2
e− sα/2√

D
|x−x0|. (22)

From Eqs. (8) and (22) we obtain

Lg[P̃(x, t |x0)](s) = L[P(x, t |x0)](s). (23)

Due to the relation Eq. (19) we have

P̃(x, t |x0) = P(x, g(t )|x0), (24)

and from Eq. (10) we get

P̃(x, t |x0) = 1

2
√

D
f−1+α/2,α/2

(
g(t );

|x − x0|√
D

)
. (25)

The time evolution of MSD σ̃ 2(t ) = ∫ ∞
−∞(x − x0)2

P̃(x, t |x0)dx reads

σ̃ 2(t ) = σ 2(g(t )) = 2D(g(t ))α

�(1 + α)
. (26)

IV. FROM SUBDIFFUSION TO ULTRASLOW DIFFUSION

When analyzing ultraslow diffusion process, where func-
tions such as logarithm occur, the time variable should be
expressed in dimensionless units as t/τ0 where τ0 is a pa-
rameter given in a time unit. For the sake of simplicity, in
the following we assume τ0 = 1. Ultraslow diffusion may
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be defined as a diffusion process in which σ 2(t ) ∼ η(t ) for
t → ∞, where η is a slowly varying function. We consider
the following ultraslow diffusion equation:

1

�(α)

∫ t

0
μ(t − t ′, α − 1)

∂P(x, t ′; x0)

∂t ′ dt ′

= Du
∂2P(x, t ; x0)

∂x2
, (27)

α > 0, where

μ(t, β ) =
∫ ∞

0
dζ

t ζ ζ β

�(1 + ζ )
, (28)

β > −1 is the Volterra-type function [48,49], and Du is a
ultraslow diffusion coefficient. In the long-time limit the
Green’s function for Eq. (27) is

P(x, t |x0) = 1

2
√

Dulnαt
e− |x−x0 |√

Du lnα t , (29)

the derivation of Eq. (29) is shown in Appendix. Equation (29)
provides in the long-time limit

σ 2(t ) = 2Dulnαt . (30)

Subdiffusion of a single particle is described by Eq. (1), in this
case we have σ 2(t ) ∼ tα .

We use the g-subdiffusion equation to describe a transition
process from subdiffusion to ultraslow diffusion. We assume

g(t ) = t

1 + Bt
[1 + A ln(1 + Ctγ )]. (31)

The asymptotic form of the function Eq. (31) is

g(t ) =
{

t, t → 0,
Aγ

B ln t, t → ∞.
(32)

From Eqs. (26) and (32) we get

σ̃ 2(t ) ∼
{

tα, t → 0,

lnα t, t → ∞.
(33)

Thus, g-subdiffusion equation transforms continuously
subdiffusion (at small times) into ultraslow diffusion (at long
times). For “moderate” times these processes are mixed. The
transition from subdiffusion to ultraslow diffusion is illus-
trated in Figs. 1–3, all quantities are given in arbitrarily chosen
units. In Fig. 1 the Green’s functions Eq. (10) for subdiffusion
equation are compared to the Green’s functions Eq. (25) for
g-subdiffusion equation with g given by Eq. (31). For small
times good coincidence of these functions is observed. For
long times, the Green’s functions for g-subdiffusion equation
cannot be approximated by the Green’s functions for subdif-
fusion equation. In this case the scatter of the plots of Green’s
function for g-subdiffusion equation is much smaller than the
scatter of the Green’s functions for the “ordinary” subdif-
fusion equation. This fact suggests that for long times the
Green’s functions Eq. (25) for g-subdiffusion equation may
describe ultraslow diffusion. A comparison of the solutions to
the ultraslow diffusion equation and g-subdiffusion equation
is shown in Fig. 2. This plot shows that solutions to the
g-subdiffusion equation Eq. (25) can be well approximated by
solutions of the ultraslow diffusion equation Eq. (29) for long
times. The transition from subdiffusion to ultraslow diffusion

FIG. 1. Solutions to the fractional subdiffusion equation Eq. (10)
(solid lines with filled symbols) and to g-subdiffusion equation
Eq. (25) with g given by Eq. (31) with A = 2, B = 1, C = 0.6, and
γ = 2 (dashed lines with open symbols) for times given in the leg-
end, for both cases the parameters are α = 0.6, D = 10, and x0 = 0,
all quantities are given in arbitrarily chosen units.

is shown in Fig. 3 in which time evolution of MSD for three
processes is presented.

V. AGING PROPERTY OF G-SUBDIFFUSION PROCESS

One of the aging process features is that the average num-
ber of particle jumps in the time interval (ta, ta + �t ) depends
not only on the length of the interval �t but also on the time
ta. For subdiffusion described by the equation with ”ordinary”
Caputo derivative Eq. (1) a diffusive medium does not change
its properties with time. In this case the aging process is gen-
erated by a heavy-tailed distribution of time which is needed
for a particle to jump.

FIG. 2. Solutions to the ultraslow diffusion equation Eq. (29)
(solid lines with filled symbols) for α = 0.6 and Du = 15, and to
g-subdiffusion equation Eq. (25) (dashed lines with open symbols)
with g given by Eq. (31) for times given in the legend, the other
parameters are the same as in Fig. 1.
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FIG. 3. Time evolution of MSD for subdiffusion Eq. (13), g-
subdiffusion Eq. (26), and ultraslow diffusion Eq. (30) for the
parameters given in Figs. 1 and 2.

The mean number of jumps in the time interval (0, t ),
〈n(t )〉, is related to the MSD as follows [4]:

σ 2(t ) = l2〈n(t )〉, (34)

where l2 is the variation of the length of a particle jump. From
Eqs. (13) and (34) we get

〈n(t )〉 = κtα, (35)

where κ = 2D/l2�(1 + α). The mean number of particle
jumps in the time interval (ta, ta + �t ) is

〈n(ta,�t )〉 = 〈n(ta + �t )〉 − 〈n(ta)〉. (36)

The above function is usually considered for two extreme
cases of �t � ta and �t 
 ta. From Eqs. (35) and (36) we
get

〈n(ta,�t )〉 =
⎧⎨
⎩

καtα−1
a �t, �t � ta,

κ (�t )α, �t 
 ta.
(37)

Equation (37) has already been derived in Ref. [41], see
also Ref. [42]. For ultraslow diffusion we obtain 〈nu〉 from
Eqs. (30), (34), and (36)

〈nu(ta,�t )〉 =
⎧⎨
⎩

κu

taln1−α (ta )
�t, �t � ta,

κulnα (�t ), �t 
 ta,
(38)

where κu = 2Du/l2�(1 + α). For the g-subdiffusion process
we have

〈ñ(t )〉 = κgα (t ), (39)

and

〈ñ(ta,�t )〉 = 〈ñ(ta + �t )〉 − 〈ñ(ta)〉. (40)

From Eqs. (39) and (40) we get

〈ñ(ta,�t )〉 =
⎧⎨
⎩

καgα−1(ta)g′(ta)�t, �t � ta,

κgα (�t ), �t 
 ta.
(41)

FIG. 4. Plots of the function Eq. (43) for different γ given in the
legend, here α = 0.6, the other parameters are the same as in Fig. 1.

We consider the aging effect for relatively small �t , when
�t � ta. Let us define the relative aging coefficient ρg,α for
the g-subdiffusion process with the parameter α,

ρg,α (ta) = 〈ñ(ta,�t )〉
〈n(ta,�t )〉 = gα−1(ta)g′(ta)

tα−1
a

. (42)

The coefficient ρg,α shows the relation of the aging effect
generated in the g-subdiffusion process to the aging effect in
the “ordinary” subdiffusion process with a fixed α. For the
process considered in Sec. IV we have

ρg,α (ta) = [1 + A ln(1 + Ctγ
a )]α−1

(1 + Bta)α

×
[

1 + A ln(1 + Ctγ
a )

1 + Bta
+ ACγ tγ

a

1 + Ctγ
a

]
. (43)

In the limit of long time, we have ρα,g(ta) ∼ 1/tα
a ln1−α (ta).

When ta → ∞ we have ρg,α (ta) → 0. Based on Figs. 4–7 we
briefly consider the influence of two exponents α and γ on the

FIG. 5. Plots of the function Eq. (43) for different α given in the
legend, here γ = 2.0, the other parameters are the same as in Fig. 1.
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FIG. 6. Plots of the function Eq. (43) for t ∈ [100, 1000], the
description is as in Fig. 4.

function ρα,g. Figures 4–7 show the dependence of the coeffi-
cient ρg,α on time ta. The plots have been made for different
γ (Figs. 4 and 6) and for different α (Figs. 5 and 7). For small
ta the coefficient γ apparently affects on the coefficient ρg,α ,
while the effect of the parameter α is barely noticeable. For
relatively long times, the effect of α on ρα.g is greater than
for small times, but it is much smaller than the effect of the
exponent γ . This is because the coefficient ρα,g describes a
change in the aging process of g-subdiffusion compared to
aging of “ordinary” subdiffusion when α is the same for both
processes. Then, the effect of α on ρα,g is relatively small.

VI. FINAL REMARKS

The subdiffusion process in which the subdiffusion param-
eter α as well as a type of diffusion may change in time
can be described by an equation containing the fractional
Caputo time derivative with respect to another function g. This
equation has been called the g-subdiffusion equation and it
describes a g-subdiffusion process. The process is defined by
the parameter α and the function g. The final remarks and
conclusions are as follows.

FIG. 7. Plots of the function Eq. (43) for t ∈ [100, 1000], the
description is as in Fig. 5.

(i) At some initial time interval g-subdiffusion is described
by a fractional subdiffusion equation with a fixed parameter α

which corresponds to the g-subdiffusion equation for g(t ) = t .
Thus, the general form of the function g is

g(t ) = t + h(t ), (44)

where the function h fulfils the conditions h(0) = 0, h′(t ) >

−1 and h(t ) > −t for t > 0. For g given by Eq. (31) we have
h(t ) = t[A ln(1 + Ctγ ) − Bt]/(1 + Bt ), in the limit of long
time there is h(t ) < 0. The subdiffusion parameter α depends
on the structure of the medium. If the structure evolves over
time such that it affects subdiffusion, then h(t ) �= 0. If the
change in the properties of the medium leads to an additional
difficulty in subdiffusion, then h(t ) < 0. When the change
of medium structure facilitates subdiffusion (e.g., the density
of the medium is reduced), then h(t ) > 0. We mention that
normal diffusion can be considered here as a special case of
subdiffusion for which α = 1; then the subdiffusion equation
Eq. (1) takes the form of the normal diffusion equation.

(ii) For the function

g(t ) = t + Dβtβ/α, (45)

where β > α, we get the relation σ̃ 2(t ) ∼ tβ in the long-time
limit. For β > 1 we get the relation characteristic for superdif-
fusion. Apparently, it is possible to apply the g-subdiffusion
equation to describe superdiffusion. However, within the
CTRW model superdiffusion is created by anomalously long
particle jumps which can be done with relatively high proba-
bilities. The probability density of the particle jump length has
a heavy tail. This leads to the superdiffusion equation with the
fractional derivative with respect to a spatial variable. This
is not the case considered within the g-subdiffusion model
in which a type of diffusion is defined by the function g(t ).
Therefore, in our opinion, the problem of whether transition
from subdiffusion to superdiffusion can be described by the
g-subdiffusion equation is still open.

(iii) Replacing in the subdiffusion equation the “ordinary”
fractional Caputo derivative by the g-Caputo derivative pro-
vides a rescaling of the time variable. In general, the change
of the timescale in the particle random walk model can lead to
subdiffusion [50]. Changing timescale can be made by means
of subordinated method when two stochastic processes are
entangled with each other, one of them randomly sets the
operating time [4,51–53]. Examples of processes that lead to
a rescaling of a diffusion are passages through the layered
media [54], local rules for transporting molecules which im-
ply that each step of a molecule is a multistep process [55],
anomalous diffusion in an expanding medium [56], diffusing
diffusivities where the diffusion coefficient evolves over time
[57], aging phenomenon [39], and positional resetting process
[58]. In the g-subdiffusion process time is rescaled by the
deterministic function g.

(iv) The change of timescale influences on the aging pro-
cess. As an example, we have considered aging process which
is manifested by time evolution of the average number of a
diffusing particle jumps doing in a relatively short period of
time. This function depends explicitly on ta. The function ρg,α

can be treated as a “measure” how far is the g-subdiffusion
aging process from aging of “ordinary” subdiffusion. We
have shown that the transition from subdiffusion to ultraslow
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diffusion creates an “additional” aging process which pro-
vides 〈ñ(ta,�t )〉 � 〈n(ta,�t )〉 when ta → ∞.

(v) We have shown the procedure of solving the g-
subdiffusion equation. The procedure consists of two stages:

(a) the subdiffusion equation with the ordinary Caputo
derivative Eq. (1) with a fixed parameter α is first solved,

(b) next, we put t → g(t ) in the obtained solution.
We have focused our attention on determining the Green’s

function for g-subdiffusion equation for an unbounded sys-
tem. Using the methods of images the Green’s function
P̃(x, t |x0) can be derived for a system with fully imperme-
able walls and/or fully absorbing walls [53,59] as well as
with a partially absorbing wall [13]. If particles diffuse in-
dependently of each other, then the concentration of particles
C̃(x, t ) being a solution to the g-subdiffusion equation can be
calculated for any initial concentration C̃(x, 0) using the for-
mula C̃(x, t ) = ∫

�
P̃(x, t |x0)C̃(x0, 0)dx0, where � is a particle

position domain.
Let C(x, t ) be the solution to subdiffuion equation Eq. (1)

with initial and boundary conditions as for the g-subdiffusion
equation with the same α. We assume that the boundary
conditions do not depend explicitly on time. Then, we get
Lg[C̃(x, t )] = L[C(x, t )]. Due to Eq. (19) we get C̃(x, t ) =
C(x, g(t )). Thus, the procedure for solving the g-subdiffusion
equation can be quite widely used.

(vi) Concluding, if the medium structure significantly
changes over time, then the diffusion process can be described
by the g-subdiffusion equation. The function g depends on
a time evolution of the medium structure. In general, g-
subdiffusion equation can describe a process in which the
subdiffusion parameter changes with time. If the changes are
very strong, then we have a process in which the type of
diffusion changes continuously. As we have mentioned in
Sec. I, such processes may occur in antibiotic diffusion in a
bacterial biofilm. The time evolution of the medium structure
provides changes in the aging process. The measure of an
additional aging effect is expressed by the coefficient ρα,g.
The diffusion processes in which the parameter α changes

have been described, among others, by subordinated method
using Laplace exponent with two indexes [52,60], bifractional
equation [61], and biexponent distribution of time to take a
particle next step [21,62]. In Ref. [63] diffusion on comb-
like structured medium with two annealing mechanisms was
studied. One of them, typical for subdiffusion with fixed α, is
static and created by quenched disorder, the other is created by
an annealed disorder mechanism. Processes as the mentioned
above can be described by the g-subdiffusion equation with
appropriate chosen function g.
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APPENDIX: GREEN’S FUNCTION FOR EQ. (27)

Since L[μ(t, α − 1)](s) = �(α)/s lnαs, α > 0 [49], the
ultraslow diffusion equation Eq. (27) reads in terms of the
Laplace transform

v(s)

s
[sL[P(x, s|x0)](s) − δ(x − x0)]

= Du
∂2L[P(x, s|x0)](s)

∂x2
, (A1)

where v(s) = 1/lnα (1/s). The solution to Eq. (A1) is

L[P(x, s|x0)](s) =
√

v(s)

2s
√

Du
e−|x−x0|

√
v(s)
Du . (A2)

The strong Tauberian theorem states that the rela-
tions L[φ(t )](s) ≈ R(s)/sρ as s → 0 and φ(t ) ≈
R(1/t )/�(ρ)t1−ρ as t → ∞ implies the other under
conditions that ρ > 0, R is a slowly varying function,
and φ(t ) � 0 is ultimately monotonic function like t → ∞.
Applying this theorem to Eq. (A2), we get Eq. (29) in the
long-time limit.
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