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Spinodal-assisted nucleation in the two-dimensional q−state Potts model
with short-to-long-range interactions
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We study homogeneous nucleation in the two-dimensional q-state Potts model for q = 3, 5, 10, 20 and ferro-
magnetic couplings Ji j ∝ �(R − |i − j|) by means of Monte Carlo simulations employing heat bath dynamics.
Metastability is induced in the low-temperature phase through an instantaneous quench of the magnetic field
coupled to one of the q spin states. The quench depth is adjusted, depending on the value of temperature T ,
interaction range R, and number of states q, in such a way that a constant nucleation time is always obtained. In
this setup, we analyze the crossover between the classical compact droplet regime occurring in the presence
of short-range interactions R ∼ 1 and the long-range regime R � 1 where the properties of nucleation are
influenced by the presence of a mean-field spinodal singularity. We evaluate the metastable susceptibility of
the order parameter as well as various critical droplet properties, which along with the evolution of the quench
depth as a function of q, T and R are then compared with the field theoretical predictions valid in the large R
limit to find the onset of spinodal-assisted nucleation. We find that, with a mild dependence of the values of q and
T considered, spinodal scaling holds for interaction ranges R � 8 − 10 and that signatures of the presence of a
pseudospinodal are already visible for remarkably small interaction ranges R ∼ 4 − 5. The influence of spinodal
singularities on the occurrence of multistep nucleation is also discussed.
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I. INTRODUCTION

Nucleation phenomena have been the subject of numerous
studies in the last century. When a modification in the external
conditions of a thermally equilibrated medium occurs, the
system can be brought into a region where a different phase
would exist in thermal equilibrium. It may then happen that
the relaxation toward the new equilibrium state is preceded
by the formation of one or more metastable states, whose
decays are hindered by the presence of or more metastable
states, whose decays are hindered by the presence of free-
energy barriers. The nucleation of a given metastable state
occurs, according to classical nucleation theory [1–3], with
the appearance of a fluctuation-induced critical droplet con-
figuration, whose subsequent growth is favored by a decrease
of the free energy. Examples of metastable states are common
in nature and can be observed in very different contexts—from
supercooled vapors and liquids [4] to the false vacuum associ-
ated to the electroweak transition [5] and in two-dimensional
superfluids [6]. Many properties of nucleation, like metastable
lifetimes, critical droplet profile, and the cascade of decays
through which equilibration happens, depend on the specific
type of modification of the external parameters that brings
the system out of equilibrium, as well as on the microscopic
details of the interactions. In this paper, we are concerned with
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the physics of spinodal-assisted nucleation in systems with
short-to-long-range interactions, studying as a toy-model the
two-dimensional q-state Potts model.

The spinodal limit is essentially a mean-field concept and
defines the absolute limit of metastability, where a local min-
imum of the free energy turns into an inflection point. In
mean-field systems, the spinodal points sharply separate, in
the thermodynamic limit, the region where a metastable state
is infinitely long lived and the relaxation time diverges, from
the one where metastability does not occur at all. Hence
they are singularity points where the susceptibility χφ of
the order parameter diverges [7,8]. The decay of metastable
states close to the spinodal point in finite mean-field Ising
systems has been extensively studied in, e.g., Refs. [9,10],
where a finite-size scaling theory of the relaxation time has
been developed. Observations of spinodal-like singularities
are usually hindered by thermal fluctuations, and in systems
where mean field is a bad approximation, the concept of a
spinodal singularity lacks any basis. By studying simple mod-
els via Monte Carlo simulations, it is possible to monitor the
evolution of the nucleation pattern as a function of the interac-
tion range, finding the onset of spinodal-assisted nucleation.
This idea was pursued for the first time in Refs. [11–13] in
the case of the Ising model, where metastable states can be
created, e.g., with a quench of the magnetic field in the ordered
phase. For large values of the interaction range, their findings
were in agreement with the analytical predictions based on
a semiclassical treatment of the scalar φ3 theory [14–16],
which extended previous works on nucleation close to the
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condensation point [17,18]. It was found that, as opposite to
the case of short-range interactions (SRIs) where the critical
droplet is a compact object, for long-range interactions (LRIs)
and close to the spinodal point, the critical droplet consists of a
small-amplitude extended fluctuation having the properties of
a percolating cluster, which grows by compactification around
its center.

In this paper, we perform a systematic study of nucleation
in the two-dimensional q-state Potts model with ferromag-
netic couplings of the form Ji j (R) ∝ �(R − |i − j|). Our
main goal is to describe the crossover between nucleation in
the presence of SRIs (R ∼ 1) and LRIs (R � 1) for different
values of q, mapping out the region of the parameter space
exhibiting spinodal nucleation. Since the existence of a sharp
spinodal point is often assumed in the discussion of nucleation
in real systems, where this might not always be well justified,
investigating to what extent it can be observed in simple
systems, depending on the length scale of the interactions,
can give an insight on the reliability of such assumption.
Moreover, in the q-state Potts model, the complex free-energy
landscape enriches the phenomenology since many saddle
points exist and a given metastable state can decay following
different channels. In this case, the presence of the spinodal
singularity may not only affect the shape of the nucleating
droplet but modifies the decay chain through which thermal-
ization is achieved. In recent years, the study of metastability
in spin models with LRI has attracted widespread interest,
since in many materials the presence of local elastic inter-
actions can induce effective LRIs that are responsible for
mean-field-like behavior [19–21]. Typical examples of ma-
terials displaying such properties are spin crossover (SC)
compounds [22], i.e., molecular assemblies where the individ-
ual molecules can exhibit different spin states with different
degeneracies [23]. In simple models of SC materials, where
the molecular interactions are described by elastic forces
having spin-dependent bond lengths, it has been recently
shown [24] that effective Potts-like Hamiltonians with SRI
and LRI can be rigorously derived by integrating out me-
chanical fluctuations. The transition between lower and higher
spin states, which can be triggered by heating, compression,
presence of external magnetic fields or photoexcitation, can
be in some cases discontinuous, allowing for the formation of
metastable states. Metastabilities and hysteresis effects in spin
systems modeling SC materials, with ferromagneticlike LRI
competing with antiferromagneticlike SRI, have been recently
studied via Monte Carlo simulations in Refs. [20,25,26].
Identifying the onset of mean-field spinodal nucleation as a
function of the interaction range R in the q-state Potts model,
might thus be useful also for modeling the LRIs arising in SC
materials.

We concentrate on metastable states created from a com-
pletely ordered phase with all spins aligned in a given
direction by instantaneously turning on a magnetic field that
disfavors such a phase. In this setup, for R → ∞ and for all
q there exists a critical value of the magnetic field h = hsp(q)
that gives rise to a spinodal instability. By getting closer to
hsp(q), the mean-field free energy curvature of the metastable
state gets flatter and flatter along one specific direction in the
order parameter space; hence, invoking the Ostwald step rule
[27], for sufficiently large R, nucleation must take place along

this direction. For q � 3, this channel is different from the
dominant nucleation channel for shallow quenches, where a
fluctuation of one of the q − 1 equilibrium phases initiates the
decay. The critical droplet associated to the spinodal point is
instead expected to be a delocalized fluctuation where all the
q − 1 spins that are not coupled to the magnetic field locally
coexist. This regime is not to be confused with what happens
in the case of shallow quenches in the so-called coalescence
regime, where many droplets of different spins are created in
different regions of space, if the volume is sufficiently large
[28,29]. After the decay, the system retains a residual Zq−1

symmetry for a certain amount of time and, depending on the
temperature value, a second metastable state can form.

We restrict ourselves to the so-called single droplet regime
and choose the lattice volume V = L × L so as to prevent the
contemporary appearance of multiple droplets. We focus on
two temperatures: T = 0.5 Tc and T = 0.8 Tc, where Tc is the
mean-field melting temperature given by

T −1
c ≡ Jc = q − 1

2(q − 2)
ln (q − 1) , (1)

and where 2J/V is the fully connected mean-field ferro-
magnetic coupling. We use heat bath dynamics to evolve
the system, and for each simulation point we analyze up
to 2 × 102 nucleation events to evaluate several observables
such as average nucleation time, metastable susceptibility, and
droplet properties. The latter are determined exploiting the
formalism of the Coniglio-Klein clusters [30,31]. We then
compare our numerical results with the theoretical predictions
obtained through a semiclassical expansion around the mean-
field limit.

The paper is organized as follows: In Sec. II we introduce
the q-state Potts model, focusing on its mean-field limit, the
related spinodals, and the phase diagram in the T − h plane. In
Sec. III we generalize the semiclassical analysis of Ref. [14] to
the Potts model, finding the q dependence of cluster properties
and nucleation times. In Sec. IV, we describe the numerical
methods and in Sec. V we present our results. Finally, in
Sec. VI we draw our conclusions.

II. THE MODEL

The Hamiltonian of the q-state Potts model in the presence
of external magnetic fields hα is given by [32]

H = −
∑

i j

Ji jδσiσ j −
∑

i

q−1∑
α=0

hαδασi , (2)

where i, j are lattice sites, σi ∈ {0, . . . , q − 1} is the spin field,
and Ji j is the ferromagnetic coupling

Ji j =
{

dJ/A(R) > 0 if |i − j| � R
0 otherwise, (3)

where d is the dimensionality of the system and A(R) is the
number of spins that interact with any fixed σi, i.e.,∑

j

Ji j = Jd . (4)

Throughout the paper, we will often refer to the tempera-
ture T of the model Eq. (2), with couplings Eq. (3), which we
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FIG. 1. Contour plot of the free-energy isosurfaces in the z1 − z2 plane for the three-state Potts model at T = 0.8 Tc for a shallow magnetic
field h = 0.05 (a) and a strong magnetic field h = 0.36 (b). The black points correspond to the positions of the three minima of the free energy.
The oriented lines display the most probable nucleation paths.

define as T = 1/J . In the long-range limit R → ∞, the free-
energy density F/V of the system can be computed exactly
using standard combinatorial analysis [32]. As a function of
the spin occupation numbers nα = 〈δασi〉, one has

F (J, h, {n})

V
=

q−1∑
α=0

nα ln nα − Jdn2
α − hαnα, (5)

where
∑q−1

α=0 nα = 1. As is well-known, in the mean-field limit
and at zero external field, the system undergoes a continuous
phase transition for q = 2 and a discontinuous one for q �
3 ([7]) at a critical coupling Jc given by Eq. (1). Instead, in
the case of next-neighbor interactions in two dimensions, the
transition is first order only for q � 5.

As already outlined in the Introduction, in the ordered
phase J > Jc metastable states can be created by, e.g., letting
the system thermalize in one of the q degenerate minima and
then applying a magnetic field antiparallel to it. Without loss
of generality, we take this state to be the minimum rich of
zeroth spins, i.e.,

n0 > n1 = n2 = . . . = nq−1 , (6)

and turn on instantaneously a magnetic field hα = −hδα0 with
h > 0. After the quench, the system relaxes into a metastable
minimum that according to the mean-field free energy of Eq.
(5) corresponds to the following values of the occupation
numbers:

nms
0 = 1

q
[1 + (q − 1)s],

nms
1 = . . . = nms

q−1 = 1

q
(1 − s), (7)

and where the value of the scalar order parameter − 1
q−1 � s �

1 is obtained from

∂ (F/V )

∂s
∝ ln

[
1 + (q − 1)s

1 − s

]
− 2dJs + h = 0 , (8)

with ∂2F � 0, and s > 0. Depending on the magnitude of h,
different nucleation paths can be followed by the system. An
illustrative example is provided in Fig. 1, where the mean-field
free energy is plotted for q = 3 in the z1 − z2 plane, with

z1 = 2n0 − n1 − n2√
3

, z2 = n1 − n2. (9)

The triangular symmetry of the free energy is broken by the
presence of a nonzero h. For shallow quenches [Fig. 1(a)],
there are only two sectors in the z1 − z2 plane where nu-
cleation is expected to take place. These sectors host paths
connecting the metastable state with one of the two degenerate
global minima of the free energy at z2 �= 0. In this situation,
nucleation happens through the formation of a single droplet
of either spins σ = 1 or σ = 2. On the contrary, for deep
quenches of the magnetic field, an additional nucleation chan-
nel along the line z2 = 0 opens up [Fig. 1(b)]. On this line,
the system still possesses a Z2 symmetry corresponding to the
exchange of the occupation numbers n1 and n2. In this case,
the system gets into a state that does not correspond to an
absolute minimum of the free energy. Eventually, a second
decay along one of the two blue lines depicted in Fig. 1(b)
occurs and thermalization is achieved. This picture applies to
higher q as well: for h > hthr(q), a nucleation channel where
nα = nβ for α, β > 0 is always present. We will refer to this
nucleation path as the symmetric channel. A relevant question
is then whether the symmetric channel is the favored one.
According to the Ostwald step rule, the system nucleates more
often into the state separated from the metastable one by the
smallest free-energy barrier. By increasing the magnitude of
the magnetic field h, the curvature of the free-energy density
in the metastable minimum becomes smaller and smaller in
the direction of the symmetric channel (see Fig. 2), becoming
exactly zero at a spinodal point obtained by solving

∂F (s)

∂s
= ∂2F (s)

∂s2
= 0 , (10)
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FIG. 2. Mean-field free energy of the three-state Potts model for T = 0.8 Tc along the symmetric channel (a) and as a function of the
occupation number n1, keeping n2 fixed to its metastable value nms

2 (b). The solid points indicate the position of the metastable state as a
function of the magnetic field h. By increasing the value of h, the free energy along the symmetric channel develops an inflection point at
h = 0.375, while in the other direction a nonzero free-energy barrier still separates the metastable state from the stable one.

with F given by Eq. (5). The solution of the linear system
determines two spinodal lines h±

sp(J, q), where

h±
sp(J, q) = − ln

[
1 + (q − 1)s±

sp

1 − s±
sp

]
+ 2dJs±

sp , (11)

s±
sp(J, q) =

(q − 2) ±
√

(q − 2)2 + 4(q − 1)
(
1 − q

2dJ

)
2(q − 1)

.

(12)

The spinodal h−
sp corresponds to the instability point of the

metastable minimum rich of the q − 1 spins σ ∈ {1, . . . , q −
1}, since h−

sp � 0. The second solution h+
sp is instead the one

relevant to our discussion and corresponds to the absence
of a free-energy barrier along the symmetric channel. In the
following sections, we will often use hsp and ssp in place of
h+

sp and s+
sp.

The two spinodal lines h±
sp(J ) are shown in Fig. 3 together

with a sketch of the phase diagram for q = 3. They represent
second-order lines characterized by the divergence of the sus-
ceptibility

χs(J ) = 1

V

∂2F (J, h)

∂h2

∣∣
h=h±

sp
, (13)

measured in the metastable state. For all q > 2, the two
lines h±

sp(J ) intersect the horizontal axis h = 0 in exactly
two points J+

c and J−
c with J+

c < Jc < J−
c , which correspond,

respectively, to the limit of metastability of the high- and
low-temperature phases. Below J+

c , the spinodal magnetic
field h+

sp(J ) turns negative and the two spinodal lines meet in
a mean-field critical point (MFCP) at

JMFCP = 2

d

(q − 1)

q
, (14)

hMFCP = 2(q − 2)

q
− ln(q − 1) , (15)

which represents the end point of the first-order phase transi-
tion line departing from the horizontal axis at Jc.

FIG. 3. Sketch of the phase diagram of the three-state Potts
model in the mean-field limit. At h = 0 the system undergoes a
first order phase transition at Jc, while for h �= 0 the transition
point moves in the h − J plane, defining two first order lines lying
respectively in the upper and lower half-plane. For h > 0 the first
order transition line culminates in a tricritical point, followed by a
line of second-order transitions that converges to the Ising critical
point at J = 0.5 in the limit h → +∞. Instead, for h < 0 the line of
first order phase transitions terminates in a mean-field critical point
(MFCP) beyond which there are no true phase transitions, and the
high and low temperature phase are smoothly connected (crossover).
The MFCP corresponds to the intersection point of the two spinodal
lines h+

sp and h−
sp.
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III. SEMICLASSICAL EXPANSION AROUND
THE MEAN-FIELD LIMIT

In the large R limit and for deep quenches close to the
spinodal point, the decay of the metastable state can be de-
scribed analytically, following the field-theoretical approach
developed by Klein and Unger in Refs. [14–16] (see also
Refs. [33,34]).

The starting point is the partition function of the q-state
Potts model with arbitrary ferromagnetic couplings Ji j and
magnetic fields hα = −h δα0, which we conveniently rewrite
in terms of clock spins {λi} as

Z (J, h) =
∑
{λi}

exp

{∑
i j

q−1∑
k=1

Ji j

q
λk

i λ
−k
j − h

q

∑
i

q−1∑
k=1

λk
i

}
,

(16)

where λi ∈ {1, ω, ω2, . . . , ωq−1} and ω = e2π i/q. The equiv-
alence between the previous partition function and the one
obtained from the Hamiltonian of Eq. (2) follows from the
identity

q∑
k=1

λk
i λ−k

j = q δλiλ j . (17)

Field theoretical methods can be applied after performing a
Hubbard-Stratonovich transformation [35] via

∏
i j

q−1∏
k=1

exp

{
Ji j

q
λk

i λ
−k
j

}
∝

∫
[dφ]exp

{∑
i j

q−1∑
k=1

φk,iλ
k
i

+ φ∗
k,iλ

−k
i − qφ∗

k,iJ
−1
i j φk, j

}
, (18)

where we introduced the auxiliary complex fields φk with k ∈
{1, . . . , q − 1} and φ∗

k = φq−k . Inserting this equality back
into Eq. (16) and performing the sum over the original clock
spins {λi}, one gets

Z (J, h) ∝
∫

[dφ] e−S({φk,i}) , (19)

with

S ({φk,i}) =
∑

k

∑
i j

qφ∗
k,i J−1

i j φk, j −
∑

i

V ({φk,i}) , (20)

and where the local potential V ({φk,i}) is given by

V ({φk,i}) = ln

( ωq−1∑
λ=1

q−1∏
k=1

eφ∗
k,iλ

−k+φk,iλ
k− h

q λk

)
. (21)

The kinetic term on the right-hand side of Eq. (20) can be
expanded in powers of the interaction range R. Specializing
to the functional form Ji j of Eq. (3), the first two terms of the
expansion are given by

q
∑

i j

φ∗
k,i J−1

i j φk, j = q

dJ

∑
i

{
Id
2 (R)

R2

2
|∇Lφk,i|2

+ |φk,i|2 + O(R4)

}
, (22)

where ∇L is a lattice discretization of the derivative operator,
d is the dimensionality of the system, and

Id
2 (R) = 1

R2

∑
j | j − i|2Ji j∑

j Ji j
. (23)

This number quickly converges to its asymptotic value
limR→∞ Id

2 (R) = d/(d + 2). When the interaction range R

becomes infinite, the term |∇Lφk,i|2 must be zero for config-
urations having a nonzero statistical weight, and one recovers
the mean-field result discussed in the previous section. How-
ever, at finite R this term allows for instanton configurations,
i.e., nonuniform finite free-energy solutions of the equation
of motion, which climb the free-energy barrier between the
metastable minimum and states having lower free energy.
Within nonclassical nucleation theory, such field configura-
tions are identified with the critical droplets [17,18].

Before turning into the computation of the critical droplet,
we discuss the interpretation of the Hubbard fields φk . To
this purpose, we perform a field transformation defining the
Hubbard occupation numbers ñα ∈ R via

φk = Jd

q

q−1∑
α=0

ñαe−2πkαi/q ,
∑

α

ñα = 1 . (24)

In terms of {ñα}, the action takes the form

S ({ñα,i}) =
∑

i

Jd

q
Id
2 (R)

R2

2

[
(q − 1)

q−1∑
α=0

∇Lñα,i∇Lñα,i −
∑
α �=β

∇Lñα,i∇Lñβ,i

]
− Ṽ ({ñα,i}) ,

Ṽ ({ñα,i}) = ln

(
q−1∑
α=0

exp {2dJ ñα,i − h δα0}
)

− Jd

q

[
(q − 1)

q−1∑
α=0

ñ2
α,i −

∑
α �=β

ñα,iñβ,i

]
. (25)

In the mean-field limit, the Hubbard occupation numbers ñα

correspond to the occupation numbers defined in Sec. II, as
can be easily checked comparing the stationary points of the
potential in Eq. (5) with the ones obtained from the potential
Ṽ ({ñα,i}) in Eq. (25). However, away from the mean-field
limit this does not hold true and the Hubbard fields play
the role of effective magnetic fields. In the following, we

will make the assumption that close enough to the spinodal
point the quasiequilibrium properties of the spins are well
described by the Lagrangian L({nα,i}) in a neighborhood of
the metastable minimum, identifying the Hubbard occupation
numbers ñα with the spin occupation numbers nα .

Making use of the action S , we can evaluate the profile
of the critical droplet. To do so, we first replace in Eq. (25)
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the sum over the lattice volume
∑

i with a continuum integral∫
dd r, and ∇L → ∇r. This is justified under the assumption

of slowly varying fields, which holds true if R is large enough.
The critical droplets describing the decay of the metastable
state in Eq. (7) are nonuniform configurations of the form
nα (r) = nms

α + ncr
α (r) that correspond to saddle points of the

functional integral and satisfy the boundary conditions

lim
r→∞ ncr

α (r) = 0 , ∇rncr
α (r)|r=0 = 0 . (26)

As usual, these are obtained by solving the equations of mo-
tion

∇r
∂L

∂∇rnα (r)
= ∂L

∂nα (r)
,

S(nα (r)) =
∫

dd rL(nα (r)) . (27)

For general q, there are many directions in the space of the
occupation numbers nα for which a saddle point solution
exists. Here, we mainly concentrate on the direction that al-
legedly represents the dominant nucleation path in the case of
deep quenches close to the mean-field spinodal line, i.e., the
symmetric channel discussed in Sec. II. Along this path, the
occupation numbers nα with α � 1 are all equal; hence we
seek a solution of the equations of motion of the form

nα (r) =
{ 1

q [1 + (q − 1) · (sms + scr(r))] α = 0
1
q [1 − (sms + scr (r))] α > 0.

(28)

The Lagrangian L(nα (r)), when restricted to the symmetric
path, takes the form

L(s(r)) = Jd (q − 1)

q
Id
2 (R)

R2

2
|∇rs(r)|2 − Ṽ (s(r)) ,

Ṽ (s(r)) = ln
[
e(q−1)·( 2dJ

q s(r)− h
q ) + (q − 1)e− 2dJ

q s(r)+ h
q

]
− Jd

(q − 1)

q
s2(r) , (29)

up to irrelevant additive constants. For h � hsp(J, q), the
potential is almost flat in the region around the metastable
minimum s ∼ sms; thus a Taylor expansion in s(r) up to the
cubic term provides a good approximation. This gives

Ṽ (s(r)) ∼ const + a(q, J )s3(r) + b(q, h) s(r) , (30)

where

a(q, J ) =
2(dJ )2(q − 1)

√
q(q(dJ−2)+2)

dJ

3q2
,

b(q, h) = q − 1

q
(h − hsp) , (31)

and order O[s2(h − hsp)] terms have been also neglected.
The SO(d )-symmetric solution to the corresponding Euler-
Lagrange equation

R2

[
∂2

r scr(r) + d − 1

r
∂rscr(r)

]
= 1

K

∂Ṽ (scr(r))

∂scr(r)
,

K = Id
2 (R)

Jd (q − 1)

q
, (32)

with the boundary conditions of Eq. (26) and for arbitrary
coefficients, is thoroughly discussed in Refs. [14,16]. The
equation describes the one-dimensional motion of a particle
subject to the potential −Ṽ , and to a time-dependent friction
force. By neglecting the radial first derivative term, Eq. (32)
can be solved analytically, giving

scr(r) = −
√

3|b(q, h)|
a(q, J )

sech2

(
r − r0

ξcr

)
, (33)

ξcr/R =
√

2K (3|b(q, h)|a(q, J ))−
1
4 , (34)

where the center of the droplet r0 is a free parameter. The
critical droplet described by Eq. (33) is a diffuse field con-
figuration having an amplitude proportional to

√
h − hsp and

extension ξcr ∝ R (h − hsp)−1/4. The role of the neglected first
derivative term is to enhance the amplitude of the critical
fluctuation at small r � ξcr. Numerical solutions to the exact
Eq. (32) are easily obtained using shooting methods.

The free energy associated to the critical fluctuation is
instead obtained by evaluating the functional integral Eq. (19)
on the previous solution. Making use of the approximate so-
lution Eq. (33), one gets

Fdrop(J, q, h, R) = �(d )θ Rd K
d
2

∣∣b(q, h)
∣∣ 6−d

4

(a(q, J ))
d+2

4

, (35)

where θ ∼ 1.3090 and �(d ) is the solid angle in d dimen-
sions. If one uses the exact solution of Eq. (32), the free energy
of the critical droplet gets enhanced by a constant factor of
1.2564 for all values of the parameters.

After the formation of the critical droplet, the early stages
of nucleation are described, within a quasistatic approxi-
mation, through a semiclassical expansion of the functional
integral around the saddle point scr(r), via

S (scr(r) + δs(r)) � S (scr(r)) + 1

2

∫
dr dr′ δs(r)

∂2S
∂s(r)∂s(r′)

∣∣∣∣
s=scr

δs(r′) ,

M(r, r′) = ∂2S
∂s(r)∂s(r′)

∣∣∣∣
s=scr

= [−KR2∇2
r +

√
12|a(q, J )b(q, h)| + +6α(q, J )scr(r)

]
δ(r, r′) . (36)

The quadratic form M(r, r′) possesses a unique nega-
tive eigenvalue λ−(J, q, h) with corresponding eigenfunction
ψλ− (r), called the growth mode (see, e.g., Ref. [17]). Dis-

tortions of the droplet profile along this eigenmode grow
exponentially over time since they correspond to a decrease
in the free energy. For t � tnucl, where tnucl is the time where
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the critical fluctuation appears in the system, one expects the
profile of the critical droplet to evolve according to

s(r, t ) − sms = scr(r) − δeκ|λ−|tψλ− (r) , (37)

where δ is some positive constant reflecting the instability
that initiates the decay, while κ is a positive coefficient which
depends on the microscopic dynamic of the system [36]. In the
case of the q-state Potts model, using the coefficients a(q, J )
and b(q, h) in Eq. (31) and the result of Ref. [16], one gets

λ−(J, q, h) = −5
√

3

4

√
a(q, J ) |b(q, h)| , (38)

ψ−(r) = sech3

(
r − r0

ξcr

)
. (39)

Thus, as usual for spinodal nucleation, during the early stages
of growth one expects that the critical droplet compactifies
around its center, since the eigenfunction ψ−(r) drops to zero
faster than scr (r). After the saturation ofthe density at the
center, the droplet starts to expand, as already observed in
numerical simulations of the two-dimensional Ising model in
Ref. [37].

Concerning the average nucleation time τ , it can be related
to the free energy of the critical droplet via [17,36]

τ = 1

V
exp (Fdrop + f1−loop + fdyn) , (40)

where f1−loop is a contribution coming from the so-called
capillary wave approximation [8], i.e., obtained by performing
a semiclassical expansion around both the metastable min-
imum and the saddle point solution of Eq. (33), while fdyn

is the so-called dynamical prefactor [36]. Both contributions
enter as (slowly varying) logarithmic corrections of the form
f1−loop ∼ fdyn ∝ − ln |h − hsp|, that, for any fixed nonzero
value of h − hsp, are subleading with respect to Fdrop at suf-
ficiently large R. In Sec. V, we will compare the scaling of the
nucleation times obtained from Monte Carlo simulations with
the theoretical prediction of Eq. (40).

Validity of the mean-field approach

To compare the analytical prediction with the result of
numerical simulations at finite R, it is important to identify
the range of validity of the mean-field approach. In thermal
equilibrium, this is provided by the Ginzburg criterion which
states that, for a general system with order parameter φ, the
corrections to mean-field behavior close to a critical point are
small if

〈(δφ)2〉T � 〈φ〉2
T ⇒ χφ � ξ d

φ 〈φ〉2
T , (41)

where χφ and ξφ are, respectively, the susceptibility and corre-
lation length of the order parameter. The concept expressed by
the Ginzburg criterion in the previous equation can be general-
ized to describe the onset of mean-field-like behavior close to
the spinodal point [38]. A necessary condition for the validity
of the mean-field equations is that the typical mean-square
fluctuations of the order parameter must be much smaller than
the square of the amplitude of the critical fluctuation, i.e.,

〈(δφ(r))2〉ms,�d � (φcr(r = 0) − φcr (r = ∞))2 , (42)

where 〈.〉ms denotes the average in the metastable state, and the
left-hand side is averaged over a volume V� = �d . By taking
� = ξms

φ , one gets

χms
φ � (

ξms
φ

)d · (φcr(r = 0) − φcr(r = ∞))2
, (43)

where χms
φ and ξms

φ are the susceptibility and correlation
length of the order parameter, as measured in the metastable
state. Close to the spinodal point, the fluctuations of the field
s around its metastable value sms can be computed from Eqs.
[29] and [30]. Performing a Gaussian approximation around
s = sms, the two point function in momentum space takes the
usual Ornstein-Zernike form

〈δs(p)δs(−p)〉ms = 1

KR2

1

p2 + ( 12|a(J,q)b(h,q)|
K2R4

)1/2 , (44)

where K has been defined in Eq. (32), and δs = s − sms. We
thus have

χms
s = (12|a(J, q)b(q, h)|)−1/2 , (45)

ξms
s = R

√
K

(12|a(J, q)b(h, q)|)1/4
. (46)

Substituting back the values of χms
s and ξms

s into Eq. (43), and
making use of Eq. (33), one gets the following condition for
the validity of the mean-field approximation:

G
def= 3

12(d−2)/4
Rd Kd/2 |b(q, h)|(6−d )/4

a(J, q)(d+2)/4
� 1 . (47)

Therefore, if the interaction range R is large but finite and
d < 6, mean field provides a good description of the system
except for a narrow region around the spinodal point where
b(q, h) → 0. The condition expressed by Eq. (47) can be
equivalently written in terms of the free energy of the critical
droplet since

Fdrop

G
= (12)(d−2)/4�(d )

θ

3

d=2≈ 2.7. (48)

Hence, having a sufficiently large free-energy barrier is a
necessary condition to observe mean-field-like behavior. The
emergence of the spinodal Ginzburg parameter can also be
understood through RG analysis as discussed in Appendix A.

IV. NUMERICAL METHODS

The simulations have been carried out on a L × L square
lattice employing periodic boundary conditions in all direc-
tions. We considered four different values of q = 3, 5, 10, 20,
interaction ranges R ∈ {2, . . . , 15} and two values of temper-
ature, T = 0.5 Tc and T = 0.8 Tc, where Tc is the mean-field
melting temperature defined in Eq. (1). The heat bath algo-
rithm has been used to evolve the system, i.e., local spin
updates (σi = μ) → (σi = ν) are accepted with probability

P(μ → ν) = e−Hν

q−1∑
ρ=0

e−Hρ

, μ, ν ∈ {0, q − 1} , (49)

014115-7



G. GAGLIARDI AND F. MACHEDA PHYSICAL REVIEW E 104, 014115 (2021)

where Hμ is the energy of the configuration with σi = μ while
all other spins do not change. Single spin flips are proposed
randomly.

The system is evolved starting from the completely ordered
state:

σi = 0 , ∀i ∈ {1, . . . , L2}. (50)

Finite volume effects are expected to be sizable when using
large interaction ranges R since the metastable correlation
length ξms

s is expected to scale as ξms
s ∼ R(h − hsp)−1/2, and

large lattice volumes are needed to have a sufficiently small
ratio ξms

s /L. After performing preliminary tests, the choice
L = 200 seemed a good compromise and corresponds to
L/ξms

s > 6 for all simulated points.
Concerning the evaluation of the average nucleation time,

its estimate is expected to be rather noisy: nucleation is indeed
a stochastic Poisson process, and the probability to form a
critical droplet at time tnucl is exponentially distributed via

P(tnucl ) = 1

τ
exp

(
− tnucl

τ

)
, (51)

thus Var(tnucl ) = τ 2. To control the statistical errors, we ana-
lyzed 2 × 102 independent nucleation events for each value of
q, J, h and R considered. Moreover, to determine the average
nucleation time, we approximate tnucl with the time t50% that
the system takes to lose 50% of the original magnetization.
Our definition of nucleation time contains some degree of
arbitrariness and does not average exactly to τ . Intervention
methods [13] are usually required to pinpoint the instant
when the critical droplet appears in the system. However, for
spinodal nucleation one expects that the time it takes for the
critical droplet to grow and halve the magnetization is small,
as compared to tnucl. The mistake we commit by using the
previous definition is thus negligible.

On the contrary, a more precise determination of tnucl is
required if one wants to measure observables associated with
the critical droplet, such as its profile. The early stages of spin-
odal nucleation are characterized by an explosive growth that
takes place on time scales of order O(10) Monte Carlo steps
per spin (tMC/spins). In this case, instead of using intervention
methods, we evaluate tnucl on the basis of a stability analysis
of the centers of mass of the largest clusters (see Sec. V).
As reported in Ref. [13], in the case of the Ising model with
LRI, the two methods provide similar determinations of the
nucleation time.

CK clusters

In this subsection, we discuss how to properly define the
droplets in the Potts model. A geometrical cluster defini-
tion, where the droplets are identified as connected trees
of parallel interacting spins, is known to be inappropriate
[8]. Indeed, a proper droplet definition requires that its av-
erage length and size diverge, respectively, as the correlation
length ξ and susceptibility χ of the order parameter, when
approaching a second-order critical point. In the case of the
three-dimensional Ising model with nearest-neighbor interac-
tions, it was shown that the geometrical clusters do not fulfill
these properties: they were found to diverge at a temperature
T = 0.945(5)Tc [39]. In two dimensions instead, the mean

cluster size diverges with a critical exponent γp = 91/48 �=
γ = 1.75 [40].

Geometrical clusters are indeed too large and one has to
build a definition of droplets capable of disentangling the
spin-spin correlations effects from statistical fluctuations. This
problem was solved for the Ising model by Coniglio and Klein
in Ref. [30], and then extended to the Potts model by Coniglio
and Peruggi in Ref. [41]. By making use of the Kasteleyn-
Fortuin theorems [42,43], which map the partition function
of the q-state Potts model into that of a bond-correlated per-
colation problem (the so-called random cluster model), they
showed that a correct droplet definition is obtained introduc-
ing a fictitious bond between any pair of parallel interacting
spins (σi, σ j ) with probability

Pbond = 1 − exp {−2Ji j} . (52)

A Potts droplet is then defined as a maximal set of spins
connected by bonds. The Coniglio-Klein droplet definition
is particularly useful because a certain number of relations
between the connectivity properties of the droplets and the
distribution of the magnetization can be obtained analytically
[31]. For instance, at zero external field, one has

〈ρ∞〉CK = 〈|M|〉 , (53)

〈pi j〉CK = 〈mim
†
j 〉 , (54)

where mi = ∑q−1
α=0 ei2πα/qδσiα , M = 1

V

∑
i mi, ρκ is the num-

ber density of droplets of any kind with size κ , and 〈pi j〉 is the
probability that the sites i and j belong to the same droplet.
The average 〈.〉CK on the left-hand side is performed over both
spin and bond configurations. Using both renormalization
group (RG) techniques [30,41] and Monte Carlo simulations
[44], it has been extensively shown that droplet size and linear
dimension diverge, respectively, with Potts critical exponents
γ and ν.

The previous approach was further extended to the Ising
spinodal. In practice, one seeks a generalization of Eq. (52)
such that droplet observables as measured in the metastable
state become critical when approaching the spinodal value
of the magnetic field h = hsp. Since the spinodal point truly
exists only in the limit of infinite range interactions, one has to
map the mean-field free energy into that of a percolation prob-
lem, enforcing the occurrence of the percolation transition at
the spinodal point. We extended this calculation to the q-state
Potts model. The details are presented in Appendix B, where
it is shown that the probability of activating a bond between
sites of parallel spins σ is given by

Pbond =
{

1 − exp {−2qJi jn0} σ ∈ {1, . . . , q − 1}
1 − exp {−2qJi jnα>0} σ = 0.

(55)

For q = 2, our formula coincides with the one obtained in
Ref. [45]. In all our simulations, we use Eq. (55) to create
our clusters. Throughout the paper, we will denote with ŝi the
size of the largest cluster Cmax

i made of spins σ = i, and with
r̄2

i its mean square radius

r̄2
i = 1

ŝi

∑
j∈Cmax

i

∣∣�r j − �ri,com

∣∣2 , (56)
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where the sum runs over the lattice sites belonging to Cmax
i ,

and �ri,com is the position of its center of mass.

V. NUMERICAL RESULTS

We now present the numerical results obtained from Monte
Carlo simulations of the two-dimensional q-state Potts model.
As already discussed in the previous sections, we make use
of the heat bath dynamics to evolve the system from the
completely ordered configuration, with all spins pointing in
the zeroth direction. The presence of a magnetic field that
disfavours the zeroth state quickly brings the system in a
metastable state. During this phase, we measure the occu-
pation numbers ni, the susceptibility χs, as well as various
quantities related to the CK clusters. In particular, we keep
track of size, position, and shape of the largest CK cluster
for all spins that are not coupled to the magnetic field. After
nucleation has taken place, the magnetization of the zeroth
state decreases and the simulation is stopped when n0 � 0.05.

As shown in Sec. IV, if close to the spinodal point the
system shows mean-field behavior, the structure of the critical
droplet as well as the average nucleation time τ (q, J, h, R)
and the scalar susceptibility χs should display peculiar scal-
ing properties (Eqs. [45], [40], [35], and [33]). We begin
describing the latter two, which can be thought of as indirect
probes of spinodal nucleation. To facilitate the comparison
between nucleation processes occurring at different values of
q, J, h, R, we only considered quenches of the magnetic field
leading to the same average nucleation time τ , i.e., constant
free-energy barrier, for all q, J, R. Under the assumption that
the nucleation rate is dominated by the one-instanton con-
tribution, this is equivalent to fixing the Ginzburg parameter
G for all the runs (see Eqs. [40], [48]). In this way, the
simulation parameters can be changed and the spinodal point
approached without altering the mean-field character of the
process. We shall choose a τ which is large enough to ensure
the existence of a well-defined metastable state; at the same
time, it must be small enough to correspond to quenches of
the magnetic field that are sufficiently close to the spinodal
point, at least for the largest R considered in this paper. We
choose τ = 103 tMC/spins. For all values of q, J and R, we
found the value of the magnetic field h(q, J, R) that leads
to τ � 103 tMC/spins employing a bisection algorithm. The
resulting relative uncertainty on the value of τ is of order
O( 1√

nr
), where nr = 102 is the number of simulated nucleation

events used for its determination. Since the dependence of
τ on the magnetic field h is essentially exponential (Eqs.
[40], [35]), the induced uncertainty on h is small, and in our
case it is typically of order O(0.01% − 0.1%). The values of
h(q, J, R) obtained applying this procedure are collected in
Table I.

Neglecting the (slowly varying) contributions f1−loop and
fdyn in Eq. (40), one has that the average nucleation time τ

depends on the simulation parameters via

τ ∝ 1

V
exp

{
Fdrop(q, J, h, R)

}
, (57)

hence for constant τ (and volume V ) one has
Fdrop(q, J, h, R) = C, for some constant C. This implies,
making use of Eq. (35), that the distance between the

TABLE I. The complete list of simulated points on the L × L
lattice with L = 200.

q = 3

T = 0.8Tc T = 0.5Tc

R h R h
2 0.038268 2 0.702285
3 0.134851 3 1.169240
4 0.204291 4 1.418290
5 0.259780 5 1.579550
6 0.287406 6 1.656290
7 0.306491 7 1.707800
8 0.321512 8 1.746840
9 0.332419 9 1.772710
10 0.340930 10 1.793200
11 0.345875 11 1.804790
12 0.350050 12 1.815040
13 0.354212 13 1.823540
14 0.357338 14 1.831850
15 0.360058 15 1.837190

q = 5

T = 0.8Tc T = 0.5Tc

R h R h
2 0.199860 2 1.421490
3 0.380757 3 2.100510
4 0.477496 4 2.387660
5 0.549732 5 2.574710
6 0.585312 6 2.657630
7 0.610906 7 2.715320
8 0.630217 8 2.759720
9 0.644511 9 2.791430
10 0.654977 10 2.814690
11 0.661092 11 2.828930
12 0.666821 12 2.839320
13 0.672738 13 2.851310
14 0.675869 14 2.858670
15 0.678595 15 2.865320

q = 10

T = 0.8Tc T = 0.5Tc

R h R h
2 0.530407 2 2.582420
3 0.785666 3 3.440290
4 0.921141 4 3.771600
5 1.023590 5 3.991320
6 1.075340 6 4.098250
7 1.109390 7 4.164140
8 1.136840 8 4.216240
9 1.156620 9 4.255780
10 1.171870 10 4.282110
11 1.181120 11 4.299280
12 1.187740 12 4.314230
13 1.195320 13 4.328090
14 1.200920 14 4.337150
15 1.204210 15 4.344970

q = 20

T = 0.8Tc T = 0.5Tc

R h R h
2 0.934506 2 3.921590
3 1.266780 3 4.858650
4 1.455080 4 5.259390
5 1.596480 5 5.512000
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TABLE I. (Continued).

q = 20
T = 0.8Tc T = 0.5Tc

6 1.664050 6 5.638040
7 1.706540 7 5.716890
8 1.744560 8 5.783730
9 1.770640 9 5.830700
10 1.790280 10 5.864120
11 1.801930 11 5.883840
12 1.811790 12 5.902130
13 1.820050 13 5.917510
14 1.826740 14 5.927060
15 1.832230 15 5.937520

magnetic field h(q, J, R) giving τ = 103 tMC/spins and the
corresponding spinodal point hsp(q, J ), has the following
asymptotic expression:

hsp(J, q) − h(J, q, R) = qC

(q − 1)θK2π

a(q, J )

R2
. (58)

In Fig. 4 , we compare the numerical values of hsp(q, J ) −
h(q, J, R), leading to τ = 103 tMC/spins, against the theoreti-
cal prediction of Eq. (58), setting C = 16. As the figure shows,
for both temperatures the simulation results quickly converge
to the predicted values. In particular, the agreement with the
theoretical curve starts around R = 6 − 8 with a mild depen-
dence on q and J . We stress that the family of curves shown in
Fig. 4 only depends on the single parameter C. We also tried
to fit our numerical data employing an Ansatz containing the
logarithmic corrections to τ (Eq. (40)), but we could not detect
the presence of such terms.

FIG. 4. Values of hsp(q) − h corresponding to a constant average
nucleation time τ = 103 τMC/spins (filled markers) along with the
theoretical prediction from Eq. (35) (lines). The values are reported
for q = 3, 5, 10 and 20 as a function of the interaction range. The
upper and lower figures correspond, respectively, to T = 0.5Tc and
T = 0.8Tc. The error bars are smaller than the point size.

As for the magnetic susceptibility, its value has been esti-
mated during the metastable phase through

χs(q, J, h, R) = V
[〈s2〉ms − 〈s〉2

ms

]
, (59)

where

s = 1

V

V∑
i=1

q

q − 1
(δ0σi − 1

q
) . (60)

For each simulation point, we accumulated a total of O(105)
metastable configurations, and no measurement has been
taken in a given event, if nucleation occurred in less than
103 tMC/spins. Mean values and standard errors were obtained
by means of a standard Jackknife analysis. As the mean-
field analysis of the previous section shows, one expects that
close to the spinodal the metastable susceptibility scales as
χs ∼ (h − hsp)−1/2 for all q. However, if one moves toward
the spinodal point at fixed R, eventually the system enters the
regime where G � 1 and the mean-field approximation is no
longer valid. Mean-field critical behavior is instead expected
if one approaches the spinodal at constant Ginzburg parameter
G � 1 (see Sec. III A and Appendix A), as in the case of
our numerical simulations. In turn, working at (almost) con-
stant G implies b(q, h) ∝ R−2, therefore χs ∝ R (R2d/6−d in
d dimensions), as pointed out in Ref. [8]. In Fig. 5, we show
as a function of R > 3, the metastable susceptibility χs for
all q = 3, 5, 10, 20 and for T = 0.5 Tc and T = 0.8 Tc. In the
figure, χs has been rescaled by a factor qJ for visualization
purposes. The onset of the linear regime is visible at interac-
tion ranges R ∼ 8; small deviations from the fitting curve can
be presumably attributed to statistical fluctuations. We report
in Table II the values of the susceptibility χs(q, J, h, R) for the
largest interaction range we simulated (R = 15), alongside the
exact mean-field prediction, and its diverging part Eq. (46). It
must be noted that the linear behavior of the susceptibility at
fixed τ depends on whether the lines of constant nucleation
time τ , and the lines of constant Ginzburg parameter G, coin-
cide. Although this is true in the region of the parameter space
we explored, by marching toward the spinodal point at fixed
G, the logarithmic corrections to the nucleation times will no
longer be small, and the two lines will depart from each other.
In particular, since the logarithmic corrections tend to increase
the free-energy barrier that the system must overcome, the
lines of constant τ will be closer to hsp(q), resulting in larger
values of χs with respect to the observed linear behavior.

We now turn to the discussion of the structure of the nu-
cleating droplet. As we discussed, the presence of a spinodal
channel in the mean-field free energy for deep quenches of the
magnetic field should allow the system to leave the metastable
phase through the formation of a nucleating droplet consisting
of q − 1 spins. The new phase reached by the system can in
turn be unstable or metastable and a two-step decay can be
observed. In the case of shallow quenches close to the coexis-
tence curve, the spinodal channel is disfavored and nucleation
can only occur through the formation of a droplet of a single
phase. To highlight the difference between the two regimes,
we show in the panels of Figs. 7 and 8 two typical nucleation
processes in the ten-state Potts model at T = 0.8 Tc. The two
examples correspond to two extreme cases R = 10 and R = 2.
In the panels, we show several observables evaluated during
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TABLE II. Metastable susceptibility χs obtained from Monte Carlo simulations (MC) along with the prediction from the the mean-field
asymptotic formula of Eq. (45), and the exact mean-field result (m.f.). In the table, we only show the results obtained at the largest interaction
range R = 15. The values of the magnetic field are set to the ones of Table I.

T = 0.5Tc T = 0.8Tc

q R MC Eq. (45) m.f. q R MC Eq. (45) m.f.
20 15 0.2808(31) 0.264 0.205 20 15 0.755(11) 0.622 0.516
10 15 0.4411(55) 0.400 0.318 10 15 1.261(20) 0.979 0.825
5 15 0.791(11) 0.681 0.553 5 15 2.575(55) 1.829 1.563
3 15 1.429(18) 1.203 0.991 3 15 5.38(12) 3.616 3.123

Monte Carlo evolution: the occupation numbers of all spins
(a), the sizes ŝi of the largest clusters Cmax

i>0 (b), the lattice
coordinates of their center of mass (c), and the scatter plot
of ŝi against the mean square radius r̄2

i (d). In the short-
range case, nucleation proceeds classically, i.e., the nucleating
droplet corresponds to a large localized fluctuation of spins in
a single Potts state that expands by adding spins at its surface
since r̄2 ∝ ŝ. The magnetization and the cluster sizes of the
other q − 2 spins remain small, while their centers of mass
keep fluctuating randomly. In the long-range case R = 10, the
emergence of spinodal-assisted nucleation is instead rather
clear. The centers of mass of the clusters Cmax

i>0 simultaneously
stabilize in a narrow lattice region, indicating that the system
is leaving the metastable state along the symmetric channel.
The clusters grow together as is also evident from the evolu-
tion of their sizes and from the simultaneous bump in all the
occupation numbers. The bump is slightly delayed with re-
spect to the instant where the centers of mass stabilize because
it takes some time for a small amplitude delocalized fluctu-
ation to produce a visible effect in the total magnetization.
The insets in Figs. 7(b) and 8(b) also show the mean densi-
ties ŝi/(π r̄2

i ), assuming that each cluster is a nearly spherical

object with radius
√

r̄2
i . In the short-range case, as expected,

ŝi/(π r̄2
i ) = δiinucl where Cmax

inucl
is the unique nucleating cluster,

while in the long-range case after an initial transient that cor-
responds to the compactification of the clusters, we observe

ŝi/(π r̄2
i ) = 1/(q − 1) for all i ∈ {1, . . . , q − 1}, meaning that

the clusters are interpenetrating. The evolution of r̄2
i and ŝi as

a function of time shows that in the long-range case the early
stages of nucleation are characterized by a filling in of the
clusters, since they grow at almost constant r̄2

i . With the heat
bath algorithm, this regime lasts for order O(10 tMC/spins)
and can be only identified by measuring cluster observables
at fractional tMC/spins. At larger times, the growth is similar
to the one observed for R = 2, where r̄2 ∝ ŝ.

We also evaluated for R = 15, q = 20 and T = 0.8 Tc,
the profile of the nucleating droplet from time t = tnucl up
to t = tnucl + 15 tMC/spins, which roughly corresponds to the
onset of compact growth. This is shown in Fig. 6, where the
average local magnetization n(r) = 1

q−1

∑q−1
i=1 ni(r) is plotted

as a function of the distance r from the barycenter (x̄com, ȳcom)
of the centers of mass (xi,com, yi,com) of the clusters Cmax

i>0 .
Our estimate of the critical droplet profile, which takes into
account the statistical errors associated to n(r) as well as
the systematics related to the exact determination of the nu-
cleation time tnucl, is compared with the numerical solution
of Eq. (32), and we find substantial agreement between our
determination and the theoretical prediction. The time evolu-
tion of the nucleating droplet displays qualitatively what is
expected from the spatial shape of the growth mode in Eq.
(38), and already indirectly observed in Fig. 7 : the density
grows faster for r � ξ , until it reaches its maximum value
nmax(0) = 1/(q − 1) ∼ 0.0526 at the center, and the droplet
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FIG. 5. Metastable susceptibility χs as a function of the interaction range R at T = 0.8 Tc (a) and T = 0.5 Tc (b). The solid lines are the
results of a linear fit to the data in the interval R ∈ [8, 15].
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FIG. 6. Local magnetization n(r/ξ ) as a function of the distance
from (x̄com, ȳcom), and for different Monte Carlo times. Distances are
expressed in units of the mean-field correlation length ξ defined in
Eq. (33). The data correspond to simulations of the 20-state Potts
model with R = 15 and temperature T = 0.8 Tc. The semitransparent
bands stem from the statistical uncertainty on the determination of
the profile, and for t = tnucl they also take into account the uncertainty
in the exact determination of the nucleation time tnucl. Finally, the
dashed black line is the theoretical mean-field prediction obtained
solving numerically Eq. (32).

grows by enlarging its surface. Such behavior is analogous to
that already observed for the Ising model [12,37].

To characterize quantitatively the onset of spinodal nucle-
ation as a function of R, we introduce an observable φmin

com
defined as

φcom(t ) = 1

(q − 1)

q−1∑
i=1

[|xi,com(t ) − x̄com(t )|2

+ |yi,com(t ) − ȳcom(t )|2] , (61)

φmin
com = min

t
{φcom(t )} . (62)

The rationale behind the introduction of φmin
com is that in the

case of spinodal nucleation, the appearance of the critical
droplet should correspond to a drop in φcom(t ) since the
clusters Cmax

i>0 are located in the same lattice region; hence
φmin

com can be used as a sort of order parameter to describe the
crossover between SRI and LRI. During the metastable phase,
φcom(t ) highly fluctuates, since the spatial distribution of the
centers of mass is almost uniform. We measure φcom(t ) every
1/20 × tMC/spins, and then to damp out the noise we average
over all measurements taken within a time interval tave of
order 1 × tMC/spins, choosing a slightly smaller tave for larger
interaction ranges R. In Fig. [9], we show the time history
of φcom(t ) for a classical and a spinodal nucleation process.
The drop of φcom(t ) in the presence of LRI is clearly visible
and can be used to estimate the nucleation time tnucl with an
associated uncertainty of few tMC/spins. Our determination
of φmin

com is instead shown in Fig. 10 for both temperatures
T = 0.5 Tc, 0.8 Tc and for all simulated values of q, as a func-

tion of R. As is clear from the figure, the behavior is almost
independent of q and T , with φmin

com reaching a plateaux value
at R � 7 − 9. The drop is rather abrupt and hints of spinodal
nucleation are visible at very small R = 4−5.

Multistep or one-step nucleation?

Soon after the first decay, the q − 1 nucleating clusters
start interacting and depending on q and T they can repel
each other or continue to be interpenetrating. In the former
case, random fluctuations may cause some of the q − 1 spins
to rapidly disappear from the system, while the remaining
clusters keep growing in different regions of space. The occur-
rence of either the first or second scenario depends basically
only on temperature and can be understood through the fol-
lowing argument: after decaying, the occupation number n0

drops down to a negligible value and the system can be
effectively considered as a q − 1 state Potts model without
external field. The system is prepared in a high-temperature
phase given that along the symmetric channel the occupation
numbers of the q − 1 spins are locally equal. The fate of
such state thus depends on whether the initial temperature
T < Tc(q) < Tc(q − 1) allows for the existence of a disor-
dered metastable state in the q − 1 state Potts model. As
argued in Sec. III, the instability point of the high-temperature
phase occurs, in the mean-field limit, at a spinodal temperature
T −

c (q − 1), which corresponds to the intersection between the
spinodal line h−

sp(q − 1) and the horizontal axis h = 0 (see
Fig. 3). As a consequence, one expects that the new state is
metastable only if T > T −

c (q − 1). The presence of a finite
external field h pushes the exact value where a new metastable
state can exist after the first decay to slightly smaller values
of T . In the mean-field limit, such temperature can be found
exactly from the free energy Eq. (5) and is given by

T ms2
sp = 2d

q
(1 − sms2) , (63)

where sms2 < 0 is the value of the scalar order parameter s in
the global minimum of the free energy along the symmetric
channel (see Fig. 2). In the limit h → ∞, sms2 → −1/(q − 1)
and T sp

ms2 → 2d/(q − 1) = T −
c (q − 1), as expected. In the

case q = 3, since the thermal transition of the Ising model
is second order, there are no metastable states. For the other
values of q considered, we have

0.8 Tc(20) > 0.5 Tc(20) > T ms2
sp (20) ,

0.8 Tc(10) > T ms2
sp (10) > 0.5 Tc(10) ,

T mwas2
sp (5) > 0.8 Tc(5) > 0.5 Tc(5) , (64)

for all simulated values of the magnetic field; thus for LRI,
we expect a new metastable state to form at T = 0.8 Tc and
T = 0.5 Tc for q = 20, and only at T = 0.8 Tc for q = 10. For
q = 5 instead, both values of T are smaller than the spinodal
temperature T sp

ms2 and a mestastable state should never exist.
To determine how large R must be for the mean-field pre-

dictions to hold true, we analyzed for all simulation points
of Table I 102 nucleation events without stopping the simula-
tion after the first decay. We then measured how many times
the second state survived for a Monte Carlo time of at least
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FIG. 7. Example of a typical spinodal nucleation process for q = 10, T = 0.8 Tc, h = 0.95 hsp, and R = 10. We show the time history of
the occupation numbers ni (a), the sizes ŝi of the clusters Cmax

i>0 (b), and the x coordinate of their center of mass (c). The inset of(b) shows the
densities ŝi/(πr2

i ) for all clusters Cmax
i>0 . Finally, in (d) we show the sizes ŝi as a function of the mean square radii r2

i in logarithmic scale. The
blue arrows pinpoint the instant when the centers of mass collapse and nucleation occurs.
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ŝ i π
r̄2 i

(b)

0

50

100

150

200

600 650 700 750 800 850

x
co

m
i

τMC/spins

(c)

1

10

100

1000

10000

0111.0

10

100
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FIG. 8. Same quantities as in Fig. 7 for q = 10, T = 0.8 Tc, h = 0.43 hsp, and R = 2.

014115-13



G. GAGLIARDI AND F. MACHEDA PHYSICAL REVIEW E 104, 014115 (2021)

1

10

100

1000

200 400 600 800 1000 1700 1900 2100 2300 2500

φ
co

m

tMC/spins

R = 15 R = 2

FIG. 9. Time history of φcom(t ) from simulations of the ten-state
Potts model at T = 0.8 Tc, and for two different values of the in-
teraction range R. In both cases, φcom(t ) has been measured every
1/20 × tMC/spins and then averaged over a time interval tave = 1 ×
tMC/spins.

4 × 102 tMC/spins, considering it to be decayed if

max {ni}i=1,q−1 − min {ni}i=1,q−1 � 0.05 . (65)

The results are collected in Table III. For q = 10, 20 at
T = 0.8 Tc the system starts to be metastable for interaction
ranges R � 5 (q = 20) and R � 8 (q = 10). At T = 0.5 Tc

only the 20-state Potts model is metastable in the mean-field
limit; Table III indicates that signals of metastabilities are
visible for R = 12, while for R = 15 no nucleation events
have been observed. For q = 3 and q = 5, nucleation occurred
in all runs in less than 1 tMC/spins; hence we did not report
the corresponding values in Table III. In Fig. 11, we show

for the ten-state Potts model with R = 10 the time history of
the occupations numbers, and of xcom

i and ŝi for the clusters
Cmax

i>0 . The figure illustrates the different dynamics associated
to the two cases T > T sp

ms2 and T < T sp
ms2. For T = 0.5 Tc,

the second state is not metastable and soon after the first
nucleation event the clusters start to interact, with some of
them becoming increasingly larger than the others. The for-
mation of large domains, spatially well separated, indicates
the relaxation toward the equilibrium state, even though it
might take a very long time until one prevails. Instead, for
T = 0.8 Tc the occupation numbers continue to be the same
for a long time (Fig. 11, left). The system is effectively locked
in a high-temperature metastable state. The clusters Cmax

i>0 are
located in the same region of space and they keep growing at
the same rate. However, when n0 � ni>0 the bond probability
Pbond=1 − exp {−2qJi jn0} in Eq. (55) is no longer adequate
since the first metastable state decayed, and we have to switch
to Pbond = 1 − exp {−2Ji j}. The cluster sizes must therefore
drop, as they do, until eventually a new critical droplet forms
and thermalization is reached.

VI. DISCUSSION AND CONCLUSION

In this paper, we studied by means of Monte Carlo
simulations on a L = 200 square lattice the mechanism of
spinodal-assisted nucleation in the two-dimensional q-state
Potts model, for q = 3, 5, 10, 20. Focusing on the low-
temperature phase T < Tc(q), we prepared the system in a
state with all spins aligned in a given direction (zeroth di-
rection), then monitored the evolution of the metastable state
formed after an instantaneous quench of the magnetic field
that disfavors the zeroth state. Depending on the tunable pa-
rameters of the model, such as temperature, strength of the
magnetic quench, and length scale R of the spin-spin coupling,
different nucleation patterns arise. We concentrated on the
quantitative description of the crossover between the nucle-
ation regime in the presence of SRI (R ∼ 1) and LRI (R � 1),
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FIG. 10. ln[1 + φmin
com] as a function of the interaction range R for T = 0.8 Tc (a) and T = 0.5 Tc (b) for different q. The corresponding

values of the magnetic field are the ones collected in Table I.
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model with R = 10 and temperatures T = 0.8 Tc (left) and T = 0.5 Tc (right).

where different types of critical droplets allow the system to
leave the metastable state. In the short-range case, the criti-
cal droplet consists of a large-amplitude localized fluctuation
of a single spin, and thermalization is achieved in a single

step. By increasing the length scale of the ferromagnetic
coupling between the spins, the system starts to gradually
display mean-field features and nucleation can take place in a
reasonable computer time, only for magnetic fields h within

TABLE III. Average nucleation time τ̄ and percentage of events for which the second metastable state lasts at least 4 × 102 t/spins, as a
function of R, q, and T . For each simulation point, the magnetic field is set to the corresponding value in Table I.

q = 10 q = 20

R T = 0.5 Tc T = 0.8Tc T = 0.5 Tc T = 0.8 Tc

Percentage τ̄ Percentage τ̄ Percentage τ̄ Percentage τ̄

2 0% <1 0% <1 0% <1 0% <1
3 0% <1 0% <1 0% <1 0% <1
4 0% <1 0% <1 0% <1 0% 34
5 0% <1 0% <1 0% <1 100% >400
6 0% <1 0% 3 0% <1 100% >400
7 0% <1 0% 56 0% <1 100% >400
8 0% <1 78% >400 0% <1 100% >400
9 0% <1 97% >400 0% 2 100% >400
10 0% <1 100% >400 0% 11 100% >400
11 0% <1 100% >400 0% 31 100% >400
12 0% <1 100% >400 6% 136 100% >400
13 0% <1 100% >400 68% >400 100% >400
14 0% <1 100% >400 95% >400 100% >400
15 0% <1 100% >400 100% >400 100% >400
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a narrow interval below a spinodal point hsp(q). By means
of a semiclassical calculation, we showed that in this case
the critical droplet consists of a collective small-amplitude
fluctuation of all q − 1 spins orthogonal to the magnetic field,
and computed the associated decay rate as a function of the
external parameters, using the same formalism developed in
Refs. [14–16]. The field theoretical predictions have been
compared with the result of Monte Carlo simulations, includ-
ing the asymptotic expression for nucleation times, metastable
susceptibility and critical droplet profile. We find that quanti-
tative agreement is obtained for interaction ranges R ∼ O(10),
with a mild dependence on temperature and simulated values
of q, while hints of spinodal nucleation are already present for
remarkably small values of R ∼ 4 − 5. To compare nucleation
processes at different values of q and T , we considered only
magnetic quenches leading to approximately the same average
nucleation time. In the region of the parameter space where
the logarithmic corrections to the decay rates are negligible,
this corresponds to fixing the spinodal Ginzburg parameter
G. In this way, the mean-field character of the system is not
altered getting closer to the spinodal point. We provided evi-
dence that the metastable susceptibility diverges linearly with
the interaction range R for all q if one approaches the spinodal
value of the magnetic field at constant G ∝ R2(h − hsp(q)).

Moreover, spinodal nucleation brings the system in a dis-
ordered state, still far from equilibrium, where almost only
the q − 1 spins that do not couple to the magnetic field are
present. This state can be metastable or unstable depending
basically only on temperature, and a multistep decay process
can be thus observed. In the limit of large R, the condition for
the metastability of such a phase can be again inferred from
a mean-field calculation: a sharp spinodal point at T = T ms2

sp
appears close to the instability point of the high-temperature
phase in the (q − 1)-state Potts model at zero external field.
Our numerical findings become fully consistent with the
mean-field predictions for interaction ranges R of order O(10),
where the occurrence of multistep nucleation is observed only
if T > T ms2

sp .

ACKNOWLEDGMENTS

We thank Dr. Nicola Bonini for the kind support. The
simulations were performed using the Cirrus UK National
Tier-2 HPC Service at EPCC [46] funded by the Univer-
sity of Edinburgh and EPSRC (Grant No. EP/P020267/1).
G.G. is supported by MIUR (Italy) under Grant No. PRIN
20172LNEEZ.

APPENDIX A: THE SPINODAL GINZBURG PARAMETER
FROM A RG APPROACH

The RG analysis of Ref. [47] showed that in the ex-
act mean-field limit, there is a fixed point associated to the
spinodal singularity. The spinodal fixed point is approached
sending to zero a unique relevant scaling variable uh, that in
our case is proportional to h − hsp (at small h − hsp), i.e., to
the distance from the spinodal point. In Ref. [47], the scal-
ing variable uh is associated to a critical exponent yuh = 2

3 d .
This fact implies that in a neighborhood of the spinodal fixed
point, the singular part of the (metastable) free-energy density

f ms
s (uh) scales as

f ms
s (uh) = b−nd f ms

s (bnyuh uh) . (A1)

In the previous expression, we iterated n times the RG trans-
formation using a coarse-graining parameter b. Equation (A1)
implies that close to the spinodal point fs(uh) ∝ u3/2

h ∼ (h −
hsp)3/2 in agreement with Eq. (45) since sms ∼ (h − hsp)1/2

and

f ms
s (sms) = Ṽ (sms) ∝ (h − hsp)3/2 . (A2)

The spinodal fixed point turns out to be unstable below six
dimensions if a gradient term u−1

R ∇2, i.e., a finite range in-
teraction, is present in the starting Hamiltonian. This reflects
the fact that for d < 6, as h → hsp at fixed R, a well-defined
spinodal does not exist since the free energy cost associated
to the critical fluctuation goes to zero (Eq. (35)). In Ref. [47],
it was found that the coupling uR of the gradient term scales
under a RG transformation as byuR with yuR = 2 − d/3, and
for uR �= 0 and d < 6 the RG flow moves away from the
spinodal fixed point. The crossover between mean-field-like
and non-mean-field behavior can be discussed, assuming that
close to the spinodal fixed point uR = uh = 0, the singular
part of the metastable free-energy density satisfies a scaling
relation of the form

f ms
s (uh, uR) = b−nd f ms

s (bnyuh uh, bnyuR uR) . (A3)

By choosing |bnyuh uh| = 1, one gets

f ms
s (uh, uR) = |uh|3/2 f ms

s

(
1, uR/u

(yuR /yuh )
h

)
,

= |uh|3/2�
(
uR/u

(yuR /yuh )

h

)
, (A4)

where � is a universal scaling function and yuR/yuh is the
crossover exponent [48]. Close to the spinodal, uh ∝ h − hsp,
and uR ∝ R−2, hence

�
(
uR/u

(yuR /yuh )

h

) = �̂(R−2/(h − hsp)(yuR /yuh ) ),

= �̃(G−1) , (A5)

where in the last line we have used yuR/yuh = 3/d − 1/2 and
Eq. (47), and we dropped the dependence of G on J and q. The
previous expression shows that, as expected, the crossover
region corresponds to G � 1. Approaching the spinodal point
keeping G fixed allows us to be sensible to the mean-field
spinodal critical exponents. Moreover, when G � 1, also the
mean lifetime of the metastable state is very long [Eqs. (43))
and (40)]. This justifies the underlying assumption made in
writing Eq. (A3), i.e., the possibility of treating the metastable
state as an equilibrium state with a restricted partition func-
tion consisting of all microstates in the neighborhood of the
metastable minimum.

APPENDIX B: THE SITE-BOND POTTS CORRELATED
POLYCHROMATIC PERCOLATION MODEL

The Hamiltonian of the site-bond Potts correlated poly-
chromatic percolation model is given by

HDPM = −
q−1∑
α=0

∑
i j

(Jbα
)i j · (δρiρ j − 1

)
δσiα δσ jα
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× −
∑

i j

Ji j δσiσ j + h
∑

i

δσi0︸ ︷︷ ︸
HPotts

, (B1)

where ρi ∈ {0, . . . , s − 1} is an additional Potts field. This
model is particularly useful due to a generalization of
the Kasteleyn and Fortruin theorem [42,43] obtained by
Coniglio and Peruggi in Ref. [41]. The theorem states
that

∂ f DPM(Jbα
, J, h, s)

∂s

∣∣∣∣
s=1

= 〈ncl〉
N

, (B2)

where f DPM(Jbα
, J, h, s) is the free-energy density corre-

sponding to the Hamiltonian Eq. (B1), N is the total number
of spins, while 〈ncl〉 is the average total number of clusters in
the percolation model where the Potts spins σ are distributed
according to HPotts, and the probability of activating a bond
between any pair of interacting parallel spins σi = σ j = α is

Pbond = 1 − exp (−2(Jbα
)i j ) . (B3)

Our goal is to solve exactly the model Eq. (B1) in the limit of
infinite range interactions

(Jbα
)i j = d

Jbα

N
, Ji j = d

J

N
, (B4)

then finding the critical values Jcr
bα

(J, hsp(J, q)) such that 〈ncl〉
becomes critical exactly at the spinodal point. To do so, we
introduce the occupation numbers nβ

α with α ∈ {0, . . . , q − 1}
and β ∈ {0, . . . , s − 1}. nβ

α corresponds to the density of spins

σi = α of a given configuration that occupy lattice sites where
ρi = β; thus the following constraint applies:

s−1∑
β=0

nβ
α = nα ⇒

q−1∑
α=0

s−1∑
β=0

nβ
α = 1 . (B5)

In terms of the occupation numbers, the Hamiltonian Eq. (B1)
can be rewritten as

HDPM

N
= −2d

q−1∑
α=0

Jbα

[
−n2

α

2
+

s−1∑
β=0

(nβ
α )2

2

]

− 2dJ
q−1∑
α=0

n2
α

2
+ hn0 + O(

1

N
) . (B6)

In turn, a simple combinatorial calculation shows that

ZDPM =
∑
{ρ}

∑
{σ }

e−HDPM

=
∑
{nα}

∑
{nβ

α |nα}
V !

∏
α,β

1

nβ
α!

e−HDPM({nβ
α }) , (B7)

hence the mean-field free energy density f DPM reads

f DPM =
∑
α,β

nβ
α ln (nβ

α ) − HDPM({nβ
α}) . (B8)

It is now natural to impose on the nβ
α the same symmetry-

breaking pattern that led to Eq. (7), i.e., we assume that the
occupations minimizing f DPM are of the form

nβ

0

V
=

{ 1
qs [(1 + (q − 1)φ) × (1 + (s − 1)ψ0)] β = 0
1
qs [(1 + (q − 1)φ) × (1 − ψ0)] β > 0

,

nβ

α>0

V
=

{ 1
qs [(1 − φ) × (1 + (s − 1)ψα )] β = 0
1
qs [(1 − φ) × (1 − ψα )] β > 0

, (B9)

where the ψα are percolating fields describing the q clusters made up of spins σ = α. Substituting back Eq. (B9) into
Eq. (B8), and expanding the ψα up to cubic order, we get

f DPM[ψα, φ] = const + F[φ] + 1

2q2s
[(s − 1)(1 + (q − 1)φ)(qs − 2dJb((q − 1)φ − 1))ψ2

0

+ q

3
s(s − 1)(s − 2)((q − 1)φ − 1)ψ3

0 ] + 1

2q2s

s∑
α=1

[
(s − 1)(1 − φ)(qs − 2dJb(1 − φ))ψ2

α

+ q

3
s(s − 1)(s − 2)(φ − 1)ψ3

α

]
, (B10)

F[φ] = 1

q
[1 + (q − 1)φ] ln

[
1

q
[1 + (q − 1)φ]

]
+ (q − 1)

1

q
(1 − φ) ln

[
1

q
(1 − φ)

]
− dJ

q
(q − 1)φ2

+ dJb0

q2
(1 + (q − 1)φ)2 + d

q2

(
q−1∑
α=1

Jbα

)
(1 − φ)2 + h

q
(q − 1)φ . (B11)

By evaluating the derivative ∂ f
∂s |s=1, and making use of Eq.

(B2), each of the percolating fields ψα undergoes a second-
order phase transition when the coefficient of the ψ2

α term

vanishes. This yields

Jcr
b0

= q

2d[1 + (q − 1)φ]
, Jcr

bα>0
= q

2d[1 − φ]
. (B12)
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Finally, we need to impose that the transition occurs exactly
when φ = ssp. Thus, making use of Eq. (12) and noticing that
at the spinodal point

q

(1 − ssp)(1 + (q − 1)ssp)
= 2dJ, (B13)

we get the final result
Jcr

b0
= qJnα>0 , Jcr

bα>0
= qJn0 [�]. (B14)

In the Ising limit q = 2, our formula coincides with the one
determined in Ref. [45].
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