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Debye Brownian oscillator and Debye-type noise: A series solution versus Monte Carlo simulation
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For the Debye Brownian oscillator, we present a series solution to the generalized Langevin equation
describing the motion of a particle. The external potential is considered to be a harmonic potential and the spectral
density of driven noise is a hard cutoff at high finite frequencies. The results are in agreement with both numerical
calculations and Monte Carlo simulations. We demonstrate abnormal weak ergodic breaking; specifically, the
long-time average of the observable vanishes but the corresponding ensemble average continues to oscillate with
time. This Debye Brownian oscillator does not arrive at an equilibrium state and undergoes underdamped-like
motion for any model parameter. Nevertheless, ergodic behavior and equilibrium can be recovered concurrently
using a strong bound potential. We give an understanding of the behavior as being the consequence of discrete
breather modes in the lattices similar to the formation of an additional periodic signal. Furthermore, we compare
the results calculated by cutting off separately the spectral density and the correlation function of colored noise.
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I. INTRODUCTION

The well-known Debye theory in condensed matter was
established initially to study the heat capacity of metallic
materials [1–3]. Because lattice vibrational modes in the crys-
tal are limited in actual systems, the theory simplifies the
frequency distribution of phonons in the crystals; specifically,
the high frequencies are cut off at an appropriate frequency
ωs, called the Debye frequency [3]. The theory has widely
been used in equilibrium statistical situations, for instance,
molecular magnets [4], thermal conductance of materials [5],
glasses [6–9], and crystals [10–12]. Brownian dynamics asso-
ciated with the generalized Langevin equation (GLE) was also
shown to emerge from an open Hamiltonian system of a par-
ticle in a bath potential [13]. Any realistic spectral density for
noise decays at large frequencies because physical quantities
should seemingly not diverge [14]. Moreover, the Brownian
limit for the GLE may not be a justifiable approximation
for collisions with a pure solid. If ωs is large, the memory
function in the GLE is represented by a Dirac δ function and
therefore the corresponding noise reduces to white noise. The
Debye frequency cutoff affects the properties of the system
significantly. For example, the dissipative dynamics models
usually assume a particle is coupled weakly to a heat bath,
in which the frequency distribution of oscillators needs to be
cut at high frequencies. However, an improper selection of the
Debye frequency may lead to a negative specific quantity [15].
A focus on the dynamic effect arising from the choice of the
Debye frequency cutoff is required in noise-driven stochastic
processes.

In practice, the absence of some frequencies may lead to
nonstationary calculated results of an observable; therefore,
the question arises: Can a bounded potential make the particle
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subjected to such colored noise approach an equilibrium state?
In particular, does a nonlinear Debye Brownian oscillator
(DBO) reveal ergodic behavior? As is well known, the ergodic
hypothesis states that the long-time average of an observ-
able Ō(t ), limt→∞ Ō(t ) = t−1

∫ t
0 O(t ′)dt ′, and the ensemble

average 〈O〉 are identical [16]. However, ergodicity should be
broken in some complex structures such as glass, supercooled
liquids, Lorentz gases, and laser-cooled atoms [17–22]. For
many-body systems that need times too long to observe the er-
godic behavior, the time average of an observable is difficulty
to establish. This kind of weak ergodicity breaking has been
illustrated in Refs. [23,24], in which the ensemble average of
the observable is assumed to be stationary and equals zero as
long as a symmetric bounded potential is added to the system.

In essence, our approach is a fusion of Zwanzig’s work
with the theory of generalized Brownian motion [13]. This
allows us to easily treat lattices dynamics at finite temperature
using the methods of stochastic theory. Our finding departs
from the available ergodicity breakdown in one fundamental
way. We augment the standard conditions with ideas related to
the Khinchin theorem [25,26] for generalized Brownian mo-
tion, which states that an observable is ergodic if its associated
correlation function is irreversible. Note that a precondition
needs to be assumed; specifically, the process must be sta-
tionary. A corollary arises—a nonstationary process leads to
the breakdown of ergodicity. The DBO possesses an opposite
averaging behavior in comparison with the usual averaging
behavior; expressly, its long-time mean position vanishes
but the corresponding ensemble average continues oscillating
with time.

In this paper, we focus on nonergodic behaviors of the
DBO. The concern regarding the position of the particle arises
because with current technology individual molecules can
now be tracked with exquisite precision. We use a series
expansion to obtain an analytic solution of the linear GLE
driven by a Debye-type colored noise. However, the Laplace
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transform technique [27] encounters a mathematical dilemma
[28–30] because the Laplace transform of the response func-
tion has an infinite number of singularities in the complex
plane. The dynamics of a particle subject to a nonlinear
bound potential and Debye-type colored noise (i.e., a non-
linear DBO) is simulated. We demonstrate that the ergodic
behavior of the system can be recovered by introducing a
strong bounded potential. We reveal abnormal weak ergodic
breaking and compare two different types of truncation for
the noise spectral density (NSD) and the noise correlation
function. Finally, in Appendix A, we propose an equivalent
model in which white noise combined with a periodic driving
force is treated to simplify the Debye treatment.

II. DBO AND ITS SERIES SOLUTION

The generalized Brownian motion of a particle with mass
m in a potential U (x) is described by the following GLE [31]:

mv̇(t ) = −m
∫ t

0
�(t − t1)v(t1)dt1 − U ′(x) + F (t ), (1)

where �(t ) is the memory function and F (t ) is the ran-
dom force of zero mean; their relationship underscores
the fluctuation-dissipation theorem: CF (t ) ≡ 〈F (t )F (0)〉 =
mkBT �(t ). Here, kB denotes the Boltzmann constant, T the
temperature, and 〈. . .〉 the ensemble average. In the GLE
formalism, the NSD associated with the Debye model has the
following form:

ρ(ω) =
{ 3γ 2

ω3
s
, ω � ωs;

0, otherwise,
(2)

where γ denotes a constant which determines the strength of
the friction [32,33]. Consequently, the memory function �(t )
appearing in the GLE is given by �(t ) = 3γ 2ω−3

s sin(ωst )t−1.
The DBO is associated with a particle moving in a

harmonic potential U (x) = 1
2 m�2x2. The formal solution

of the GLE reads v(t ) = h(t )v(0) − �2H (t )x(0) +
1
m

∫ t
0 h(t − t ′)F (t ′)dt ′ and x(t ) = G(t )x(0) + H (t )v(0) +

1
m

∫ t
0 H (t − t ′)F (t ′)dt ′, where G(t ) = 1 − �2

∫ t
0 H (t ′)dt ′

and H (t ) = ∫ t
0 h(t ′)dt ′, in which H (t ) and h(t ) are

two response functions [34]. Assuming 〈F (t )O(0)〉 = 0
(O = x, v), and 〈x(t )v(0)〉 = 〈v(t )x(0)〉 = 0, we have
h(t ) = 〈v(t )v(0)〉/〈v2(0)〉 = Cv (t ) as well as G(t ) =
〈x(t )x(0)〉/〈x2(0)〉 = Cx(t ).

No closed form has been found for the time domain func-
tion in Eq. (1) with Eq. (2). They can, however, be evaluated
accurately using numerical methods. For a linear GLE, we use
the initial velocity v(0) to multiply Eq. (1) and perform the
ensemble average. The integral-differential equation for the
velocity autocorrelation function is given by

m
dCv (t )

dt
= −m

∫ t

0
[�(t1) + �2]Cv (t − t1)dt1. (3)

Because the velocity autocorrelation function must be an even
function of time [35], we expand Cv (t ) as a series that includes
only the even powers of t , i.e.,

Cv (t ) =
∞∑

n=0

ant2n. (4)

The same treatment for the memory function �(t ) also ap-
plies:

�(t ) =
∞∑

l=0

blt
2l . (5)

For the left-hand side of Eq. (3), we have

dCv (t )

dt
=

∞∑
n=0

2nant2n−1, (6)

and the memory friction yields

− m
∫ t

0
�(t1)Cv (t − t1)dt1

= −
∫ t

0

∞∑
l=0

blt
2l
1

∞∑
n=0

an(t − t1)2ndt1. (7)

Simplifying and completing the above integral yields

− m
∫ t

0
�(t1)Cv (t − t1)dt1

= −
∞∑

n=0

∞∑
l=0

2n! 2l!

(2n + 2l + 1)!
anblt

2(n+l ).

(8)

Substituting Eqs. (6) and (8) into Eq. (3) produces a recur-
rence relation for an:

an =
n−1∑
l=0

[2(n − l − 1)]! 2l!

(2n)!
an−l−1bl . (9)

The memory function �(t ) can be expanded as a series,

�(t ) = 3γ 2

ω3
s

∑∞
l=0

(−1)l ω2l+1
s

(2l+1)! t2l . Accordingly, in Eq. (7),

bl = 3γ 2(−1)lω2(l−1)
s

(2l + 1)!
. (10)

In the absence of a potential, we obtain expressions for the
coefficients of the series solution for Cv (t ):

an = 3γ 2
n−1∑
l=0

(−1)l+1(ωs)2(l−1) [2(n − l − 1)]!

(2l + 1)(2n)!
an−l−1. (11)

Taking into account the harmonic potential in Eq. (3), each
coefficient an is determined as

an = 3γ 2
n−1∑
l=0

(−1)l+1(ωs)2(l−1) [2(n − l − 1)]!

(2l + 1)(2n)!
an−l−1

− �2

2n(2n + 1)
an−1. (12)

As long as Cv (t ) is known, and using the relation between h(t )
and G(t ), the final series solution of Cx(t ) becomes

Cx(t ) = 1 − �2
∞∑

n=0

an

(2n + 1)(2n + 2)
t2n+2. (13)

Furthermore, with Cx(t ) and Cv (t ), the first and second mo-
ments of the position and velocity of the DBO may be
established.
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FIG. 1. Time-dependent position autocorrelation function of the
DBO for (a) small Debye frequency (ωs = 1.0) and (b) large Debye
frequency (ωs = 3.0). The curves in (a) are the series solution. Blue
circles in (a) are obtained from Monte Carlo simulations for Eq. (1),
and pink diamonds mark results obtained from numerical integral
calculations of Eq. (3). The curves in (b) are also obtained from
numerical integral calculations of Eq. (3). The parameters used are
γ = 0.5, kBT = 1, and m = 1.

In Fig. 1, we plot the series solution obtained and compare
the results of Monte Carlo simulations; here the algorithm
used was developed by one of us in Ref. [36]. Details of
the simulations are given in Appendix B. Clearly, the results
obtained from the series solution and the Monte Carlo calcu-
lations agree well.

III. ABNORMAL NONERGODIC BEHAVIOR

The analysis concerning whether the DBO is ergodic is
straightforward. For the motion of a particle in a bounded
potential, the ensemble average of the position in an equilib-
rium state is determined from 〈x〉eq = ∫ ∞

−∞ xPeq(x)dx, where
Peq(x) = Z−1 exp[−U (x)/kBT ] is the Boltzmann distribution
and Z is the partition function. With a harmonic potential
symmetric about the origin of the coordinate, 〈x〉eq is equal
to zero in theory. However, from the calculation of Cx(t ) and
Cv (t ), we know that the time-dependent 〈x(t )〉 should not
vanish in the long-time limit.

Figure 2 shows more direct evidence with results calcu-
lated from Monte Carlo simulations of 〈x(t )〉. In conclusion,
the DBO cannot reach an equilibrium state when the Debye
frequency ωs has a finite value; this is indeed a kind of

FIG. 2. Time-dependent ensemble average of the position calcu-
lated in Monte Carlo simulations with 105 trajectories. Curve (a):
〈x(t )〉 of DBO with ωs = 0.5 and �2 = 1.0. The initial condition
sets 〈x(0)〉 = 0.1 and 〈v(0)〉 = 0.1. Curve (b): The same as curve
(a), except the initial condition is set to 〈x(0)〉 = 0 and 〈v(0)〉 = 0.
Curve (c): Also the same as curve (a), but with Debye frequency of
ωs = 1.5. Curve (d): 〈x(t )〉 of the particle subjected to Debye-type
noise and quartic potential U (x) = 1

4 x4; the parameters and initial
conditions are the same as for curve (a). All other parameters for the
curves are set identically, i.e., γ = 0.5, kBT = 1, and m = 1.

nonergodicity. Nevertheless, the time average of the DBO’s
position x̄(t ) is not easy to calculate theoretically; we also
used the Monte Carlo method to evaluate this quantity. The
results are plotted in Fig. 3.

Upon inspection, we find a prominent result—x̄(t ) con-
verges to zero in the long-time limit; however, it is clear that
limt→∞〈x(t )〉 �= 0. That is, the DBO is indeed nonergodic.
This kind of nonergodicity is different from other types that
have been widely studied; specifically, the former may not
equal zero but the latter vanishes. From the Khinchin theorem,
we know that a dynamical variable is nonergodic if its auto-

FIG. 3. A trajectory of the DBO with � = 1.0 and its time (red
line) and ensemble (blue line) averages. The parameters used are
ωs = 0.4, γ = 0.5, kBT = 1, and m = 1. The two insets plot the
Debye-type noise spectrum and the harmonic potential.
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FIG. 4. Steady variance of position σ 2
x as functions of �2 and

(inset) ωs. Data are from Monte Carlo simulation with 50 000 trajec-
tories. The parameter settings are m = 1, kBT = 1, and γ = 0.5.

correlation function or response function is not equal to zero
in the long-time limit [25,26]. This theorem requires that the
process studied must be stationary. Ergodic breakdown arises
from the vanishing of the effective Markovian friction. Here
we focus on a physical system with autocorrelation functions
of velocity and position oscillating with time and reveal an
abnormal type of weak ergodicity breaking.

To investigate the influences of both the Debye frequency
ωs and the potential frequency �2 on the nonergodic behavior
of the system, we use variance σ 2

A of dynamical quantity
A to measure the degree of ergodic breaking. Defined as
σ 2

A (t ) ≡ 〈(Ā(t ) − 〈Ā(t )〉)2〉, then dynamical quantity A is er-
godic if σ 2

A (t ) → 0 as t → ∞ [23,24,37]. With A replaced by
the DBO’s coordinate x(t ), we apply the usual theory for a
stochastic process [38] and compute the quantity

σ 2
x (t ) = 1

t2

∫ t

0
dt2

∫ t

0
dt1[〈x(t2)x(t1)〉 − 〈x(t1)〉〈x(t2)〉].

(14)
In Fig. 4, we show the steady variance of the position for

the DBO. The DBO reveals a kind of ergodicity breaking.
With increasing ωs, the value of σ 2

x decreases and approaches
zero. This indicates that the DBO reduces to an ordinary
Brownian oscillator for large ωs. Moreover, the memory func-
tion �(t ) approaches the Dirac δ function and therefore the
associated noise becomes white noise. We also find that the
strong bound of the potential is beneficial for ergodicity;
the larger ωs is, the smaller � can be chosen to ensure σ 2

x
vanishes. To investigate recovery for a Debye-type noise-
driven particle, we now consider a symmetric strong bounded
potential U (x) = 1

4 x4. A common assumption is that ωs is
sufficiently large if ωs 	 U ′′(xmin) [39–41]. For this potential,
U ′′(xmin) = 0. In addition, the linear response no longer holds
when the potential is strongly bound and no analytic expres-
sion for Cx(t ) can be determined. As expected, the particle
arrives at an equilibrium state although the NSD is still cut off
at finite high frequency [Fig. 2, curve (d)], indicating that the
nonergodic behavior is independent of the quadratic nature of
the potential.

IV. ABNORMAL UNDERDAMPING BEHAVIOR

Because nonstationary properties create ergodicity break-
down, damping of the DBO is found to vary. The usual
damping oscillator of Newtonian dynamics has two distinct
regimes: underdamping for which x(t ) oscillates and crosses
the coordinate axis and overdamping for which x(t ) decays
monotonically with time to zero. Similarly, when Cx(t ) starts
from unity and is positive at late times, the system exhibits
overdamped behavior. When Cx(t ) displays a nonmonotonic
variation and crosses the coordinate axis, the system is said to
undergo an underdamped behavior but differs from the usual
Brownian oscillator [42].

For a non-Markovian process described by the GLE, the
effective friction strength is defined as γeff = ∫ ∞

0 �(t )dt . For
the DBO studied, the effective friction strength is given
by γeff = 3πγ 2

2ω3
s

. That is, with increasing ωs, the effective
friction strength decreases, and the attenuation rate of os-
cillation slows. Figure 5(a) reveals clearly this interesting
phenomenon. A transition is observed from overdamped to
underdamped behavior with respect to γeff and � when ωs is
large [Fig. 1(b)]. As for a typical damped system, γeff = 2� is
the critical point. For the usual dynamics, condition γeff > 2�

corresponds to overdamping and γeff < 2� to underdamping.
However, the DBO for small ωs undergoes a transition from
overdamped to underdamped behavior [Fig. 1(a)]. Obviously,
the effective damping of the system is to be monotonic for
small ωs. The position autocorrelation function Cx(t ) is always
a nonmonotonic function of time for large or small �. More
importantly, if the chosen Debye frequency is too small, the
amplitude of Cx(t ) decays rapidly and approaches a constant
[Fig. 5(b)].

The dependence of the result on the potential frequency
� is plotted in Fig. 5(c). As � increases, the amplitude of
Cx(t ) increases in contrast to σx. However, the oscillation of
the DBO decreases with increasing �. In the extreme case,
the impact of driven noise should become minimal; therefore,
the role of the harmonic potential is expected to dominate the
particle dynamics, and then the situation becomes determin-
istic. There is then no difference between 〈x̄〉 and x̄, but the
amplitude of the DBO strengthens with increasing �. Com-
bining the current phenomenon with the previous definition,
we find that the DBO enters an underdamped-like regime
if ωs is small. Specifically, insufficient energy dissipation
between the DBO and the environment leads to the former
becoming stationary, and the presence of the harmonic poten-
tial strengthens the oscillation. Hence, this kind of abnormal
damping originates with the DBO unable to become stationary
because high frequencies are not cut off.

Our results have demonstrated that Debye-type colored
noise does not induce nonergodic behavior in the particle
for a nonlinear bounded potential; however, the transient-to-
equilibrium behavior changes. Here we consider a bistable
potential, U (x) = 1

4 x4 − 1
2 x2. The potential has two local min-

ima and one local maximum. Initially, test particles are set in
one of the wells and then undergo diffusion between the two
wells.

In Fig. 6, we use the ratio NL/N0 to indicate transient be-
havior, where NL is the number of test particles in the left trap
and N0 is the total number of test particles. We note that the
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FIG. 5. Time-dependent position autocorrelation function of a DBO at fixed γ = 0.5. (a) Fixed potential parameter �2 = 1.0 and two
Debye frequencies ωs = 2.0 and 3.0 are used. (b) Small Debye frequency of ωs = 0.4 and �2 = 1.0. The inset is a detail from its large time
behavior. (c) Fixed Debye frequency ωs = 1.0 and harmonic potential frequencies �2 = 0.25, 1.0, and 4.0. The curves are calculated results
obtained using the numerical integral, Eq. (3). (d) Position autocorrelation function of a particle in a quartic potential with Debye-type noise.
The curves were obtained from Monte Carlo simulations. The Debye frequencies chosen are ωs = 0.5, 1.0, and 1.5.

cutoff for the NSD alters the transition behavior in two ways;
specifically, the relaxation time is prolonged or the fluctuation
is enhanced. This again shows that the truncation of the NSD
induces nonstationarity.

FIG. 6. Proportion of test particles in the left trap for simulating
a nonlinear DBO. The data are calculated in Monte Carlo simulations
with 50 000 test particles. The parameter settings are m = 1, kBT =
1, and γ = 0.5; the Debye frequency used appears in the figure.

V. ANOTHER TRUNCATION SCHEME: CUTOFF OF THE
NOISE CORRELATION FUNCTION

Truncating the noise correlation function is an alternative
method used [43,44]. In practice, the correlation time for noise
is always finite, implying that a cutoff may be necessary for
this function. Given the correlation for white noise is a δ

function, we turn our attention to Ornstein-Uhlenbeck (OU)
colored noise; its correlation function is CF (t ) = D

τ0
e− t

τ0 [45].
After a cutoff in CF (t ) at large tc, i.e.,

�(t ) = Ae− t
τ0 �(t − tc), (15)

we find the NSD of such noise from the Fourier transform,

ρ(ω) = D

(ωτ0)2 + 1

[
ωτ0e− tc

τ0 sin(ωtc) − e− tc
τ0 cos(ωtc) + 1

]
,

(16)
where A is a constant and �(t ) denotes the step function.

Correspondingly, we establish a cutoff in the NSD for OU
noise at ωs; that is,

ρ(ω) =
{ D

(ωτ0 )2+1 , ω � ωs;
0, ω > ωs.

(17)

After truncation for these two schemes, we use the resulting
noise to drive a Brownian particle moving in a harmonic
potential.

014114-5



QIAN QIU AND JING-DONG BAO PHYSICAL REVIEW E 104, 014114 (2021)

FIG. 7. Position autocorrelation function Cx (t ). Curves (a) and
(b) are instances with a cutoff for the correlative function and NSD
as in Eq. (16). The data are derived from numerical calculations of
Eq. (3). Curves (c) and (d) are instances with a cutoff for the NSD,
i.e., Eq. (17). The data are developed from Monte Carlo simulations.
Parameter settings related to the truncations are indicated. Other
parameter settings are m = 1, kBT = 1, D = 1, and τ0 = 1. The
insets are plots of the NSD and the correlation function of noise with
frequency cutoffs.

Figure 7 shows the position autocorrelation function Cx(t )
calculated using these two treatments. The difference between
the two types of truncation is significant. With a correlation
function cutoff, the parameter tc only affects the relaxation
time but not the ergodic behavior. However, with an OU noise
cutoff, the NSD is similar to the Debye-type colored noise.
In addition, abnormal nonergodic behavior occurs again when
ωs is small. Although the cutoff for the correlation function
changes the NSD, the NSD is still smooth and the high fre-
quencies are retained. Hence, ergodic behavior holds. This
further proves that the cutoff at high frequencies generates the
instability and ergodic breakdown.

VI. SUMMARY

We have presented a series solution to the DBO described
by the generalized Langevin equation. An algorithm simu-
lating Debye-type colored noise with high finite-frequency
cutoff was also developed. Our results have demonstrated that
the DBO exhibits abnormal nonergodic behavior; specifically,
the time average of observables vanishes in the long-time
limit. However, the corresponding ensemble average contin-
ues to oscillate with time. This prominent result confirms
that the system does arrive at an equilibrium state and un-
dergoes underdamped-like motion for any model parameter
settings. The nonstationary level of the observed quantities
for the DBO is expected to decrease with increasing Debye
frequency. By comparing the DBO with a nonlinear oscil-
lator, we demonstrated that ergodic breakdown of the DBO
arises from nonstationarity brought on by truncation, whereas
the harmonic potential enhances this effect. This behavior is
similar to forced vibration in lattices. That is, we understand
this as a consequence of the discrete breather modes and

FIG. 8. Correlation function of Debye-type colored noise. The
black line signifies Monte Carlo simulation data; the red line signifies
theoretical values. The parameters used are set to ωs = 1.0, γ = 0.5,
and N = 217.

similar to the formation of an additional periodic signal (see
Appendix A).

Furthermore, our results for the cutoff of either the spectral
density or the correlation function for OU noise suggest that
abnormal nonergodic behavior is a general consequence of
NSD truncation and does not depend on its specific form.
Through studying the instability and nonergodic properties of
the DBO, we have given a more comprehensive understand-
ing of the influence of NSD truncation on driven stochastic
processes, whereas previous studies have paid more attention
to the absence of low frequencies [46]. One must be careful in
treating the high frequency modes, ensuring a smooth decay
rather than a hard cutoff. Of course, the Debye cutoff in
frequency is still an effective way of dealing with divergences
in strong nonlinear bounded potentials or when the cutoff
frequency is set very large.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China under Grants No. 11735005 and No.
11790325.

APPENDIX A: ALTERNATIVE UNDERSTANDING FOR
PERSISTENT OSCILLATION

In substituting for the effect of Debye-type colored noise,
we use a periodic signal A cos �0(t ) to drive a Brownian
particle in a harmonic potential. The Langevin equation for
this Brownian oscillator reads

mẍ + γ ẋ + m�2x = A cos(�0t ) + ξ (t ), (A1)

and the position autocorrelation function satisfies

mC̈x(t ) + γ Ċx(t ) + m�2Cx(t ) = A cos(�0t ). (A2)

The characteristic equation corresponding to Eq. (A2) is
ms2 + γ s + m�2 = 0. Its two roots are given by s1,2 =
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− γ

2m ± a, where a =
√

( γ

m )2 − 4�2. We then have

Cx(t ) = 1

2a
e− γ t

2m [a(eat + e−at ) + γ

2m
(e−at − eat )]Cx(0)

+ A

2am
e− γ t

2m

[
s1

s2
1 + �2

0

eat + s2

s2
2 + �2

0

e−at

]

+ A

m

(
�2 − �2

0

)
cos(�0t ) + γ�0

m sin(�0t )(
�2 − �2

0

)2 + γ

m �2 − (
�2 − �2

0

)(
γ

m

)2 .

(A3)

Evidently, the oscillatory behavior is provided by the third
term of Eq. (A3). The amplitude is modulated by the har-
monic potential and the applied periodic signal, whereas the
frequency is only related to the external signal, and hence a
kind of forced oscillation is obtained.

APPENDIX B: MONTE CARLO SIMULATION OF THE
GLE DRIVEN BY DEBYE-TYPE NOISE

The GLE describing a particle of mass m in a potential
reads

mv̇(t ) = −m
∫ t

0
�(t − t1)v(t1)dt1 − U ′(x) + F (t ). (B1)

The key in solving Eq. (B1) with Debye-type noise is through
simulations of Debye-type colored noise. As is well known,
the main characteristic of Debye-type noise is the noise spec-
tral density

ρ(ω) =
{ 3γ 2

ω3
s

ω � ωs,

0 otherwise
(B2)

and the correlation function 〈F (t )F (0)〉 = �(t ) =
3γ 2ω−3

s sin(ωst )t−1. In the calculation, we have for

convenience set m = 1 and kBT = 1. In ω-Fourier space,
the noise correlation function reads

〈F (ω)F (ω′)〉 = 2π�(ω)δ(ω + ω′), (B3)

where F (ω) and �(ω) denote the Fourier transforms of F (t )
and �(t ), respectively. Next, we discretize time into intervals
of size 
t ; the Fourier space may also be discretized, the
discretization of Eq. (B3) yielding

〈F (ωμ)F (ων )〉 = �(ωμ)N
tδμ+ν,0. (B4)

We then obtain, in Fourier space, noise spectrum

F (ωμ) = √
N
t�(ωμ)αμ, μ = 1, . . . , N − 1,

F (ω0) = �(ωN ),
(B5)

where αμ are Gaussian random numbers with zero mean
and correlation 〈αμαν〉 = δμ,−ν . Therefore, αμ can be
expressed as

α0 = a0 αμ = 1√
2

(aμ + ibμ), (B6)

where aμ and bμ denote normal Gaussian random numbers,
and i denotes the imaginary unit. Finally, the discrete noise
sequences F (ωμ) in Fourier space are obtained, and F (t ) can
also be calculated through the inverse Fourier transform.

As noise sequences have been given, the second-order
stochastic Runge-Kutta method [47] is appropriate to solve
the GLE driven by Debye-type noise. For validation, we com-
pared the noise correlation function evaluated numerically
from �(ti ) = 1

Nt

∑Nt
j=0〈F (ti + j
t )F (ti )〉 with its theoretical

value �(t ) (Fig. 8). The two results are in agreement.
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