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We introduce a general method for the study of memory in symbolic sequences based on higher-order Markov
analysis. The Markov process that best represents a sequence is expressed as a mixture of matrices of minimal
orders, enabling the definition of the so-called memory profile, which unambiguously reflects the true order
of correlations. The method is validated by recovering the memory profiles of tunable synthetic sequences.
Finally, we scan real data and showcase with practical examples how our protocol can be used to extract relevant
stochastic properties of symbolic sequences.
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I. INTRODUCTION

Symbolic sequences are ubiquitous in many domains of
science. For instance, we use sequences of symbols to en-
code the sounds that constitute our different languages, to
disentangle the complexity of DNA molecules responsible for
our genetic information, and also to characterize temporal
evolution of physical systems. In this context, memory can
provide key information about a sequence and the process
generating it, as it represents the distance between causally
related elements in the sequence. The Markov chain formal-
ism [1–4], allows for an approximation of the generating
process by means of a maximum likelihood estimator of a
given memory or order. The problem of extracting the order of
a generating process has been addressed by means of different
information criteria [5–16] (belonging to the more general
field of model selection [17,18]), which provide estimates of
the maximal order as a function of the likelihood and the
number of parameters involved in the model.

Various higher-order models have been proposed as a for-
mal way to analyze memory in a complex system [19–25].
These models allow one to go from a time-aggregated per-
spective to a dynamics that respects the time ordering of
interactions. Recently, there is a growing interest for combin-
ing the statistics of different orders into a single model; see
[26,27] for multiorder models, and see [28] for a decomposi-
tion of transition probabilities in terms of generalized memory
functions. However, a general and analytic framework for
understanding the nested nature of memory is still missing.

In this article we address this gap by introducing the con-
cept of memory profile of a stochastic process, and designing
an algorithm that captures the length specific correlations
present in the temporal evolution of a system. Our method
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decomposes a Markov process into a convex sum of stochastic
matrices, where the memory profile arises naturally as the
set of coefficients of the subprocesses. The algorithm detects
which of the correlations at a given length are spurious, by
explaining them as a combination of subprocesses of lower
orders. We finally validate the method on synthetic sequences
and we illustrate how it works in practice to extract the mem-
ory profiles of real data coming, respectively, from literary
texts, biology, and deterministic chaotic systems.

Let us start with an empirically observed sequence S =
(s1, s2, . . . , sL ) of length L, where the generic symbol si,
with i = 1, 2, . . . , L, is selected from an alphabet A =
{a1, a2, . . . , aA} of A characters. We assume S has been cre-
ated from an unknown Markov process Q that we call source,
which can be expressed as a stochastic matrix Q. In order to
study the statistical properties of Q through S, let us define
as xm = (x1, . . . , xm) an ordered string of m elements of A.
Let us also denote as sm

i the string of length m terminating
at position i in S. For simplicity we will refer to strings of
length 1, single elements, with a reduced notation, using si

instead of s1
i . Each of the sm

i corresponds to a unique string
xm, while the probability of finding a particular xm in S is
given by p(xm) = f (xm )

L−m+1 , where f (xm) denotes the number of
appearances of xm in S. Assuming that sequence S is generated
by Q of order m, or Qm, the transition probabilities can be
estimated as

π (xm|x1, . . . , xm−1) = f (xm)

f −(xm−1)
, (1)

where the reduced frequencies f −(xm), are equal to f (xm), if
xm �= sm

L , or to f (xm) − 1 if xm = sm
L .

The transition probabilities can now be organized in an
A × Am−1 transition matrix, T m, which, for a given order m,
contains the probabilities π (xm|x1, . . . , xm−1) in Eq. (1) to
get any of the A symbols after each of the possible ordered
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combinations of Am−1 symbols. See the Appendix A 1 for an
example of the matrix notation.

A measure of how good a model T m of order m > 0 is for
the observed sequence S can be obtained by the likelihood
function

�(T m, S) = p(s1)
m−1∏
i=2

π
(
si

∣∣si−1
i−1

) L∏
i=m

π
(
si

∣∣sm−1
i−1

)
, (2)

where the transition probabilities are computed with the xm

associated to each sm
i . The likelihood is a nondecreasing func-

tion of m, and estimating the maximal order MQ of Q as the
value of m at which � is maximal will lead to overfitting. To
cope with that we extract MQ via the Akaike information cri-
terion (AIC), which formalizes the intuitive idea of a trade-off
between the number of parameters and the performance of a
model [5].

II. MEMORY ORDER DECOMPOSITION

A. Nested models

If a sequence is perfectly described by a model of order
m, the transition probabilities at m + 1 should return the same
description. Let us address this problem by defining T m[+]1,
a prediction of how T m+1 should be, assuming T m = Q. In
practice, a transition matrix T m from an alphabet A is ex-
tended by taking the tensor product T m[+] j = 1 ⊗ T m with
a row vector 1 of length Aj with all the components equal
to 1. We can now compute the distance d between T m+1

and T m[+]1 to test the robustness of the T m = Q hypothesis.
We will be using d = 1 − σ , where σ measures the overlap
between two discrete probability vectors u and v of dimension
D, and it is expressed as σ (u, v) = ∑D

i min(ui, vi ). By con-
struction σ (u, v) is bounded to the [0,1] interval, with σ = 1
if u = v. This definition of d is equivalent to a normalized
vector distance, as we show in the Appendix A 2. In our case
we deal with matrices, so we will be calculating the statistical
distance for each of the columns, and afterwards weighting
the contribution of columns α, with α = 0, . . . , Am−1 − 1, by
the probability p(xm−1

α ) of finding the string corresponding to
column α in S. The final expression is

σ (T m+1, T m[+]1) =
Am−1∑
α=0

p
(
xm
α

) A−1∑
β=0

min
(
T m+1

βα , T m[+]1
βα

)
. (3)

B. Decomposition

Building on the same idea, it is possible that a matrix T m

has a nonzero overlap with its predecessors T m−1, . . . , T 0,
implying that in the procedure of generating S not all of the
new elements depend on the previous MQ elements; some of
them could have required much shorter strings, i.e., a shorter
memory. In this case, the very same idea of the true order of
Q would be misleading. We will now show that it is possi-
ble to extract the memory profile, i.e., the relevance of each
order m � MT in T MT , by adopting a matrix decomposition
procedure as follows. In general, any column-stochastic ma-
trix, such as the transition matrix T MT , can be decomposed
as a linear combination of deterministic processes of differ-
ent orders, i.e., column-stochastic Boolean matrices Cm

i of

dimension A × Am−1 as

T M = c0
0C0[+]MT −1

0 +
MT∑

m=1

Cm∑
i=1

cm
i Cm[+](MT −m)

i , (4)

where Cm stands for the number of deterministic processes
at each order, the coefficients cm

i are real numbers weighting
the different contributions, and the m = 0 process corresponds
to a uniform model. The latter assigns an equal probability
of 1/A to all the symbols in A, and is considered separately
from the other processes since C0

0 is not Boolean. In order to
visualize the total contribution of each order, we define the
memory profile of the transition matrix T MT as the vector t
whose components tm, with m = 0, . . . , MT , are given by tm =∑Cm

i cm
i . Conversely, we say that qm represents the memory

profile of the original process Q. The particular form of the de-
terministic matrices Cm

i allows a one-to-one correspondence
with natural numbers. In fact each of the columns of any of our
Cm

i contains a single nonzero element which is equal to 1. The
position of this element can be associated to a term in a power
expansion base A, where the row accounts for the coefficient
and the column for the power. If Cm

i has elements eαβ , the

associated number nm
i is nm

i = ∑A−1
α=0

∑Am−1−1
β=0 eαβαAβ , while

n0
0 = 0 for the uniform model. Index m in nm

i is necessary to
avoid redundancies between processes at different orders with
the same associated number (see the Appendix A 3).

Our goal for the mixture in Eq. (4) is to have cm
i = 0 for all

the matrices that are the extension of a lower-order matrix, i.e.,
reducible matrices. The standard procedure for identifying
these matrices is to test whether they correspond to the tensor
product of a lower-order matrix. Alternatively the mapping
to natural numbers introduced above allows one to simplify
the problem, as the natural number nm

i associated to a process
inherits its order properties. It is then enough to check whether
nm

i is divisible by a given number to prove that Cm
i has true

order m. Let nm
i be the number associated to a given process

Cm
i and let Cm[+]1

i and nm[+]1
i be its extension to the next order,

and the number associated with it. We have

nm[+]1
i = nm

i

A−1∑
α=0

AαAm−1 = nm
i

AAm − 1

AAm−1 − 1
. (5)

This formula provides a simple reduction mechanism: a given

number nm
i has a true order m if it is not divisible by AAm−1 −1

AAm−2 −1
,

otherwise it can be reduced. This check is then repeated until
the number is found to be not divisible. The order in which the
reduction process terminates is the true order of the process
associated with this number (see the Appendix A 4).

C. Algorithm

The decomposition algorithm we propose here consists of
an iterative procedure that, at each step, identifies the process
with the maximal coefficient and removes it from the matrix
to be decomposed. The transition to a higher order is produced
after ensuring that no more processes can be added to the
decomposition. See the Appendix A 5 for a fully detailed
example of the algorithm.

The procedure is equivalent for each step, so let us suppose
the matrix we want to decompose is T MT which can represent
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the original transition matrix or any of its intermediate steps
of decomposition. Let us also suppose that we are currently
exploring the matrices at a generic order m. The first step is
to create a reduced matrix from T MT , with the dimensions of
the matrices at order m, A × Am−1. When T MT is reduced to
order m, each of the elements of the reduced matrix Rm is
fed with the elements of T MT that correspond to its extension.
The specific Rm we are looking for, is the one where each
matrix element is the minimal of all the elements in T MT that
correspond to the tensor product extension.

Rm
i j =

{
minαβ T MT

αβ if m = 0

minβ

{
T MT

iβ

∣∣β ≡ j mod Am−1
}

if m �= 0.
(6)

The second step is to select the matrix to be incorporated
into the decomposition. This is done by finding the maximum
in each of the columns of Rm. The matrix will be the one
whose nonzero elements are located in the position of the
maximum values. If there is more than one maximum, there
is not a unique possible matrix, and we say that the process is
degenerate.

The third step is to detect the coefficient, cm
i , of the process

we have just found, Cm
i . The idea is that the enlarged form

of the matrix, weighted with its corresponding coefficient,
cm

i Cm[+](MT −m)
i , is subtracted from T MT . Therefore, in order

to have the maximum of the non-negative outcomes, the coef-
ficient has to be the minimum of the set of maximum column
values in Rm.

cm
i = min

β
max

α
Rm

αβ. (7)

As anticipated, the fourth step is to remove cm
i Cm[+]MT −m

i
from T MT . The result of this process is a new T MT , which is
the output of the current cycle and the input of the following
one. The next cycle should repeat the search in m, unless the
just found coefficient is cm

i = 0. This would mean that no
more processes are compatible with T MT at m. If the previous
condition is true, the value of m has to be updated to m + 1.

D. Validation

We carry out a systematic validation procedure on ensem-
bles of synthetic sequences with different alphabets, maximal
orders, and lengths. We have used two indicators (v1, v2), each
of them a real number in [0,1], to evaluate the performance
of our method: v1 accounts for the success of the AIC in
retrieving the maximal order of MQ, and v2 measures the
overlap σ (qm, tm) between tm and qm. Here, a sequence is gen-
erated by randomly constructing a column-stochastic matrix
QMQ for each (L, MQ, A) triplet. The output indicators vi are
averaged over 100 realizations of different experiments with
the same (L, MQ, A) values. Therefore, v1 is the fraction of
times MT = MQ and v2 is the average σ (q, t), where q is the
real memory profile.

The results are shown in Fig. 1. The rows refer, respec-
tively, to v1, v2. The color of each cell denotes the average
values of vi as a function of MQ and A, and the columns
account for four different sequence lengths. Notice from the
figure that the reliability of the order detection is affected by
the length of the sequence and that of the alphabet, in the
sense that we impose an upper bound in m that guarantees a

FIG. 1. Validation of the algorithm on synthetic sequences with
different values of length L, maximal order MQ, and number of
symbols A. The rows report, respectively, the computed values of v1

and v2 with a color code, while different columns refer to sequences
with different values of L. Results are obtained as averages over 100
different realizations.

minimal frequency for the strings of T m+1. See the Appendix
A 6 for the specific details of our treatment of low-frequency
strings. Below such threshold the behavior of the algorithm
is satisfactory even for small values of L. It is noteworthy to
mention that the errors in small MQ at v1 are compensated in
v2. In other words, even in the cases in which the AIC fails
the complete algorithm succeeds in extracting the memory
profile.

III. APPLICATION TO REAL SEQUENCES

We have extracted the memory profile of sequences from
biology, literary texts, and chaotic systems. We have selected
these datasets because they correspond to alphabets that we
have tested with synthetic sequences, and because each of
these examples showcases a new feature of sequence analysis
enabled by our protocol: the true memory allocation across
different orders, the nontrivial ranking of subprocesses, and
the finiteness of the number of subprocesses involved in a
higher-order Markov chain decomposition. In this sense, our
goal here is not to address domain-specific questions. Again,
we impose an upper bound to the highest memory order m to
ensure that the correlations that we find are not an effect of the
finiteness of the data (see Appendix A 6).

A. DNA

We have studied the second chromosome of the fruit fly
Drosophila melanogaster (DM) by selecting a DNA sequence
of length 1.7 × 107 from an alphabet A = {A,C, T, G} of
four letters. The first column of Fig. 2 shows that even if
the estimated order is MT = 9, an important fraction of the
information of the higher-order Markov chain is contained in
subprocesses of lower orders. Therefore, roughly half of the
correlations that one would associate to statistics at m = 9
are spurious and can be reduced. DNA is known to exhibit
long-range correlations [29–33]; however, these appear for
orders much higher than the maximal order studied here,
and therefore testing whether they can be reduced would
require a reformulation of the algorithm as described in the
Appendix A 6.
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FIG. 2. Memory profile tm (top panels) and matrix decomposi-
tion (bottom panels) of real sequences (genetic material, text from
literature classics, and the Dragon sequence). In the bottom panels
we plot the weights cm

i of the decomposition in Eq. (4), sorted in
decreasing order for each value of m.

B. Language

We have translated three prominent literature classics (Don
Quijote de la Mancha, Miguel de Cervantes (MC); La Div-
ina Commedia, Dante Alighieri (DA); and Hamlet, William
Shakespeare (WS)) into Morse Code using the alphabet A =
{“.”,“-”,“ ”} of only three symbols obtaining, respectively, se-
quences of lengths 8.7 × 106, 2.4 × 106, and 7.4 × 105. In all
three cases the maximal order MT coincides with the security
cut-off and the process is fully dominated by subprocesses of
maximal order m = MT , suggesting that the real order could
be larger. Moreover, we have found that the coefficients of
the subprocesses follow an exponential probability function,
which uncovers a ranked organization of the building blocks
of language when expressed in Morse code that goes beyond
the Zipf’s distribution for the frequencies of words [34].

C. Deterministic chaos

As a last example we considered the dragon curve (DS),
a deterministic process with fractal properties [35]. We have
generated sequences of length L = 5.2 × 105 (18 iterations)
with an alphabet A = {L, R} of two letters representing the
directions in the rotation of the dragon, either left or right.
The decomposition shows that from all the possible processes
at MT = 9, only four are present, of which two dominate
the transition matrix. This shows how despite the complexity
and the number of parameters of higher-order Markov chains,
some processes may be decomposed with a small number of
subprocesses. This implies that the model has a very low en-
tropy, as it can be compressed in just two numbers, and is able
to capture the deterministic nature of the original sequence.

IV. CONCLUSION

In conclusion, we have proposed a method to represent the
mechanism generating a sequence of symbols as a mixture of
processes of well-defined orders. This enables one to deter-
mine the memory profile of the underlying Markov process,
which is an efficient way of characterizing the causal relations
hidden in the sequence. We hope our method will become a
standard tool in the analysis of high-order Markov chains.
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APPENDIX

1. Matrix notation

As a simple case to illustrate our notation, let us consider a
sequence S of symbols from an alphabet with A = 2 and with
symbols {0, 1}. We first need to construct matrices T m with
m = 0, 1, . . . from the transition probabilities in Eq. (1) in the
main text. Suppose the matrix for m = 3 reads

T 3 =
(

0.1 0.8 0.3 0.6
0.9 0.2 0.7 0.4

)
. (A1)

This means that π (0|00) = 0.1, π (1|00) = 0.9, π (0|01) =
0.8, π (1|01) = 0.2, π (0|10) = 0.3, π (1|10) = 0.7,
π (0|11) = 0.6, and π (1|11) = 0.4.

2. Statistical distance

Let us see how σ is equivalent to the normalized norm of
the difference vector.

d = 1

2

D∑
|xi − yi| = 1

2

D∑
max(xi, yi ) − min(xi, yi )

= 1

2

D∑
xi + yi − 2 min(xi, yi )

= 1

2

(
D∑

xi +
D∑

yi − 2
D∑

min(xi, yi )

)

= 1

2

(
1 + 1 − 2

D∑
min(xi, yi )

)
= 1 −

D∑
min(xi, yi )

= 1 − σ. (A2)

Up to this point, it seems unnecessary to make use of an
alternative definition, if this is equivalent to the standard one.
The reason supporting our decision is clarified when working
with more than two distributions. If we add a new one, z, the
overlap or intersection is calculated as

σ (x, y, z) =
D∑
i

min(xi, yi, zi ). (A3)

The same can be done employing the normalized vector dis-
tance, but not in such a simple manner.

3. Natural label

Let us see how the mapping works in an example with A =
2, m = 3, and n = 9. The idea is to retrieve n from the matrix
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expression.

C3
9 =

(
0 1 1 0
1 0 0 1

)
. (A4)

As introduced in the main text, the natural label formula is
given by

nm
i =

A−1∑
α=0

Am−1−1∑
β=0

eαβαAβ, (A5)

where eαβ are the elements of Cm
i . Since Cm

i are stochastic
Boolean, there is a single nonzero element per column, and
therefore, the first summation can be reduced to the rows α,
such that eαβ = 1. Following this expression we have

n3 = 1 × 20 + 0 × 21 + 0 × 22 + 1 × 23 = 9. (A6)

4. Number reduction and extension mechanism

Let us first consider the extension of the matrix of the
previous section in Eq. (A4):

C3[+]1
9 =

(
0 1 1 0 0 1 1 0
1 0 0 1 1 0 0 1

)
. (A7)

The associated number n3[+]1
9 = 153, is computed by either

using Eq. (A5) from the Appendix or Eq. (5) from the main
text. Since the first option has already been explained in the
previous section we go for the second one.

n3[+]1
9 = n3

9
223 − 1

223−1 − 1
= n3

9 × 17 = 153. (A8)

Now that we have explored the number extension, we
try the opposite, the number reduction mechanism. We are
interested in knowing if C4

153 has m = 4 as its true order. In
order to test that, we have to try the divisibility of 153 with 17

since 224−1 −1
224−2 −1

= 17. We get the expected result, 153 = 17 × 9.
Our matrix does not belong to order m = 4, and the label of
our matrix in order m = 3 is n3

9 = 9, as we obviously knew
because that has been our starting point.

We try once more and see if the same process can be
expressed in order m = 2. In order to do so we have to test the

divisibility of 9 with 5, since 223−1 −1
223−2 −1

= 5. The division does
not retrieve a natural number, so the true order of the process
is m = 3.

5. Decomposition algorithm

Let us now show how to decompose matrix T 3 given in
Eq. (A1) as in Eq. (4) of the main text. We begin from the
term corresponding to m = 0, using the equal probabilities
1/A of the uniform model and the reduced matrix in Eq. (6)
of the main text. We first get R0 = min T 2

αβ = 0.1 and c0
0 =

A × R0 = 0.2, with C0
0 = 0.5 corresponding to the uniform

model. Since the extension of C0
0 is

C0[+]2
0 =

(
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

)
, (A9)

we can then subtract the first term of the decomposition:

T 3 − c0
0C0[+]2

0

=
(

0.1 0.8 0.3 0.6
0.9 0.2 0.7 0.4

)
−

(
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1

)

=
(

0 0.7 0.2 0.5
0.8 0.1 0.6 0.3

)
. (A10)

Since C0
0 is the only matrix at m = 0, there is no need to search

for more compatible ones. In any case, the new reduced matrix
is R0 = 0, so we jump to the next level. We can move on to
construct the contribution due to m = 1. In the first cycle of
m = 1, R1 is

R1 =
(

0
0.1

)
. (A11)

Therefore, we obtain c1
1 = max{0, 0.1} = 0.1, and C1

1 = (0
1).

Since the extension of C1
1 is

C1[+]2
1 =

(
0 0 0 0
1 1 1 1

)
, (A12)

we can get the resultant matrix when we have removed

T 3 − c0
0C0[+]2

0 − c1
1C1[+]2

1

=
(

0 0.7 0.2 0.5
0.8 0.1 0.6 0.3

)
−

(
0 0 0 0

0.1 0.1 0.1 0.1

)

=
(

0 0.7 0.2 0.5
0.7 0 0.5 0.2

)
. (A13)

If we compute R1 we will see that is null, so we can jump to
the next level. We have

R2 =
(

0 0.5
0.5 0

)
, (A14)

which means that c2
1 = min{0.5, 0.5} = 0.5. The matrix C2

1

and its extension C2[+]1
1 read

C2
1 =

(
0 1
1 0

)
, C2[+]1

1 =
(

0 1 0 1
1 0 1 0

)
. (A15)

In terms of these, we calculate the resultant total matrix.

T 3 − c0
0C0[+]2

0 − c1
1C1[+]2

1 − c2
1C2[+]1

1

=
(

0 0.7 0.2 0.5
0.7 0 0.5 0.2

)
−

(
0 0.5 0 0.5

0.5 0 0.5 0

)

=
(

0 0.2 0.2 0
0.2 0 0 0.2

)
. (A16)

Again we have a null column in R2, so we can jump to the
next and last level. In this case no calculations are needed,
since the remaining matrix can be expressed as a Boolean
matrix, namely, C3

9 , multiplied by a constant, c3
9 = 0.2. No ex-

tension is needed in this time since the order of C3
9 , m = 3, is

already MT .

C3
9 =

(
0 1 1 0
1 0 0 1

)
. (A17)
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After the complete process we have

T 3 = 0.2C0[+]2
0 + 0.1C1[+]2

1 + 0.5C2[+]1
1 + 0.2C3

9 (A18)

and more explicitly(
0.1 0.8 0.3 0.6
0.9 0.2 0.7 0.4

)

=
(

0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1

)
+

(
0 0 0 0

0.1 0.1 0.1 0.1

)

+
(

0 0.5 0 0.5
0.5 0 0.5 0

)

+
(

0 0.2 0.2 0
0.2 0 0 0.2

)
. (A19)

6. Low-frequency strings

We introduce an upper bound in m to make sure that the
frequencies of the strings involved in the calculation of the

transition probabilities are high enough. We impose a first
cut-off at m + 2 � logA L even before reading the values of
S. This cut-off implies that the average string frequency is
f (xm+2) = 1 in a uniform model. A second threshold is in-
troduced after reading the string frequencies in S: when a
string of length m + 1 is unique, f (xm+1) = 1, we impose
an upper bound at m + 2. In practice this means that one
cannot extract higher-order correlations from sequences in
which they are potentially present. In order to dodge this
drawback, one can extract the transition probabilities from
ensembles of sequences, always under the assumption that all
the samples have been produced by the same Markov process.
These restrictions are not needed for running the decomposi-
tion algorithm; however, we still need to provide the transition
probabilities for strings that are not found in S. In order to do
so, we employ a simple smoothing technique for strings of
null frequency: we compute their transition probabilities π by
copying the ones of the previous order, which is equivalent to
extending the transition matrix for the columns corresponding
to those null frequency strings.
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