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Channels, measurements, and postselection in quantum thermodynamics
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We analyze the benefit, in terms of extracting work, of having a single use of a quantum channel or
measurement in quantum thermodynamics. This highlights a connection between unital and catalytic channels,
and some subtleties concerning the conditional work cost of implementing a measurement given that a certain
result was obtained. We also consider postselected measurements and show that any nontrivial postselection
leads to an unbounded work benefit.
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I. INTRODUCTION

Thermodynamics is perhaps the only known theory of
physics that never comes up short. It applies ubiquitously
across many situations well outside of its original realm
of conception—to understand macroscopic thermal machines
such as steam engines—and holds when considering both tiny
objects, such as collections of few atoms [1], and massive
exotic phenomena, such as black holes [2]. Quantum ther-
modynamics has received a renewed interest recently, with
many interesting results already having been obtained. These
include thermodynamics at the nanoscale [3–11], thermal
machines that operate in these regimes [12–17], equilibra-
tion [18–20], results pertaining to the relationship between
thermodynamic resources [21–23], Landauer erasure [24–26],
theoretical results concerning the second law of thermody-
namics [27–31], as well as many interesting information
theoretic results [32–34]. For a topical review, the authors
recommend [35].

One of the first questions that thermodynamics addressed
is the maximal amount of work that can be extracted from
a thermodynamic transformation at a particular temperature.
For classical physics, this is given by the reduction in free
energy of the system under consideration. Given that thermo-
dynamics typically concerns large systems, one might expect
this result to hold only for the collective processing of many
copies of a quantum system. However, an analogous result
can be rederived for individual quantum systems [10], when
work is understood as the average energy change of a quantum
“weight on a string” (a quantum system that can be raised or
lowered continuously to store energy).

The framework introduced in Ref. [10] originally imposed
only average energy conservation on the system, thermal bath,
and weight, but was adapted in Ref. [15] to include strict
energy conservation, which we will use here. These papers
considered protocols in which the system, bath, and weight
undergo unitary transformations. In this paper, we will ex-
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tend these results to include general quantum channels and
measurements. In particular, we consider the work benefit of
having access to a single use of a quantum channel or mea-
surement, as well the thermodynamic power of postselection.

A quantum channel describes a unitary evolution in which
a system interacts with an unobserved ancilla. During quan-
tum computation or communication, we typically seek to
minimize interactions of this type to avoid decoherence. From
a thermodynamic standpoint, however, we show that any
nonunital channel leads to a work benefit. In the context of
the second law of thermodynamics, these work benefits can
be seen as a consequence of a Maxwell-demon-type effect
[36,37] due to discounting the increasing entropy of the de-
vice. We also explore the connection with catalytic channels,
in which the state of the ancilla remains unchanged.

Other recent work in this area has taken a resource-
theoretic approach to the thermodynamics of quantum chan-
nels, studying the asymptotic limit of many uses of the
channels. This has yielded the asymptotically extractable
work for a set of channels [38], as well as a work related
notion of simulability of one channel by another [39]. A key
difference with our approach is that we only consider a single
use of the channel. The work cost of implementing a quantum
channel has also been studied in an alternative framework
[40].

We also quantify the work benefit of a general quantum
measurement and highlight some interesting subtleties con-
cerning the conditional work benefit of measurement given
that a certain result was obtained. Recently, the energy cost
of measurement [41] and the work loss of erasing quantum
coherences via measurement [42] has been considered, as
well as the use of quantum measurements as a cooling engine
[43], the efficiency of Maxwell daemon engines [44,45], the
thermodynamics of repeated interactions between a quantum
system and a steady stream of external units [46,47], and the
role of measurements in stochastic thermodynamics [48].

Finally, we analyze the thermodynamics of postselected
measurements, where we only consider cases in which some
subset of the outcomes occurs. We show that postselection
is extraordinarily powerful in a thermodynamic setting. In
particular, it is possible to use any (nontrivial) postselected
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measurement to extract unbounded amounts of work, even
with a single use of the measurement.

The remainder of the paper is structured as follows. In
Sec. II, we lay out the thermodynamic framework for our
analysis. In Sec. III, we consider the work benefit of quantum
channels, and in Sec. IV, we consider quantum measurements.
Then, in Sec. V, we consider postselection, followed by con-
clusions in Sec. VI.

II. FRAMEWORK

We begin by outlining a simple framework for quantum
thermodynamics, in which internal energy, heat, and work
are understood in terms of average energies [10,15]. This
yields very similar results to the classical case and allows
one to prove the thermodynamic laws. Consider a system S
with Hamiltonian Hs and initial state ρs, interacting with a
thermal bath at temperature T . The internal energy of the
system corresponds to its average energy U = Es = Tr[ρsHs],
and its entropy is given by the von Neumann entropy S(ρs) =
−Tr[ρslnρs]. As we will see, in this scenario, the amount of
useful work which can be extracted is not solely determined
by the system’s internal energy, but rather by its free energy,

Fs = Es − T S(ρs). (1)

To model the thermal bath, we assume that it is sufficiently
large that we can find within it a quantum system B with any
Hamiltonian Hb in a thermal state at temperature T > 0. The
thermal state τb is the state which minimizes the free energy
of the bath, Fb = Eb − T S(τb), where Eb = Tr(Hbτb) is the
average energy of the bath. This yields

τb = e− Hb
T

Tr
(
e− Hb

T

) , (2)

where, for simplicity, we have chosen units in which Boltz-
mann’s constant is unity, kB = 1.

A thermodynamic protocol corresponds to selecting a par-
ticular thermal state from the bath, which we assume to be
initially uncorrelated with the system (i.e., ρ = ρs ⊗ τb), and
then implementing a unitary transformation U on the system
and bath, ρ ′ = UρU †. During any such transformation, the
internal energy of the system changes as

�U = �Es = Tr[Hsρ
′
s − Hsρs]. (3)

Similarly, we define the heat flow as the change in the average
energy of the bath (with the convention that positive heat flows
correspond to energy flowing into the bath),

Q = �Eb = Tr[Hbρ
′
b − Hbτb]. (4)

The work W is then defined implicitly by the first law of
thermodynamics,

�U + Q + W = 0. (5)

This corresponds to the case in which batteries are treated
implicitly. We extend these results to incorporate an explicit
battery, and thereby reinforce their relevance, in the next
section.

To prove the second law, we first consider the entropy
changes which occur during a protocol. Due to our assumption

that the system and bath are initially uncorrelated, we have
S(ρ) = S(ρs ⊗ τb) = S(ρs) + S(τb). Using the fact that the
total entropy is conserved under unitary evolution and that the
entropy is subadditive, we find

S(ρs) + S(τb) = S(ρ) = S(ρ ′) � S(ρ ′
s) + S(ρ ′

b), (6)

where ρ ′
s = Trb(ρ ′) is the final reduced state of the system,

and ρ ′
b = Trs(ρ ′) is the final reduced state of the bath. Hence,

�Ss + �Sb � 0. (7)

Combining this with the first law, we obtain

�Fs + �Fb + W � 0. (8)

As the thermal state is defined to be the state of minimal free
energy, we must have �Fb � 0, and hence

W � −�Fs. (9)

Hence, as in standard classical thermodynamics, if the system
undergoes any cyclic process in which it begins and ends in
the same state, then �Fs = 0 and thus W � 0 (no net work
can be extracted). This is a statement of the second law.
We will be focusing on cyclic protocols in this work due to
their analogues with classical thermodynamics, and will leave
other types of protocols as an interesting avenue for further
research.

Furthermore, for any desired transformation of the system
from ρs to ρ ′

s, there exists a protocol which comes arbitrarily
close to extracting the optimal work given by (9) and produces
a final state arbitrarily close to ρ ′

s
1 [10]. First, consider the

case in which ρs and ρ ′
s are diagonal in the energy basis,

and denote them by ρ0 and ρN+1, respectively. Next, find a
sequence of N thermal subsystems in the bath with states
ρ1 . . . ρN , such that ρk is ε-close to ρk−1 for all k. Then,in the
kth step of the protocol, we swap the current state of the sys-
tem with the state ρk in the bath. After N steps, we will have
achieved the desired final state. As each step in this protocol
is a swap operation which does not introduce correlations,
it satisfies �Ss + �Sb = 0, and hence �Fs + �Fb + W = 0.
Furthermore, as each subsystem in the bath is initially at a
minimum of free energy and is transformed into a new state
which is ε-close to its original state, we find �Fb = O(ε2)
during each step. After N = O( 1

ε
) steps, we therefore find that

W = −�Fs − O(ε), which can be made arbitrarily close to
the bound given in Eq. (9) by choosing ε sufficiently small.
If ρs and ρ ′

s are not diagonal in the energy basis, we can
perform an additional unitary rotation on the system at the
beginning and end of the protocol to transform its eigenbasis.
Such unitary transformations satisfy W = −�Fs and there-
fore do not lead to any loss of work. Note that this protocol
is a simple way to demonstrate that thermodynamic efficiency
is possible, but for the purposes of our further results, any
thermodynamically efficient protocol would be be equally
good (for example, if other protocols were easier to implement
experimentally).

A version of the third law of thermodynamics, that no finite
process can transform a finite temperature state into a zero

1Note that when ρ ′
s is full rank, we can generate it exactly while

extracting work arbitrarily close to optimal.
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temperature state, can also be seen by noting that these states
are operators of different rank, and that a unitary transforma-
tion preserves the rank. For a more detailed analysis of this,
see [49].

The two main assumptions of this framework are that the
initial state is a product state and that the evolution is unitary.
The former is designed to avoid conspiratorial situations in
which the history of the bath and system is complex. Intro-
ducing correlations between initial states of the system and
bath allows one to smuggle in thermodynamic resources from
the outset [50], and can be analyzed within this framework
by considering all of the correlated subsystems as forming a
larger nonthermal system. The assumption of unitarity pre-
vents cheating by using ancillas as additional thermodynamic
resources which are not accounted for. However, an aim of
this paper is to explore in more detail how nonunitary trans-
formations such as quantum channels and measurements fit
into this framework, and to quantify the additional power they
bring.

A natural criticism of the implicit battery framework above
is that it lacks a physical mechanism for work extraction and
does not specify how the work is stored for later use (for
example, by raising a weight on a string). Furthermore, it only
incorporates conservation of average energy [via (5)] rather
than of the total energy distribution. One might wonder if a
more physical model would place additional limitations on the
extractable work. To address these issues, we next introduce
an explicit battery into the framework.

Explicit batteries

For our purposes, a battery is a device to store the work
generated during a process or to provide work to implement
it. Although typical batteries rely on chemical energy, it is
convenient here to consider an idealized mechanical battery
corresponding to a “weight on a string,” which can be raised
or lowered during a process to store or extract energy.

The framework incorporating an explicit battery is largely
the same as above, except that we now introduce a third
system, which we refer to as the weight. We model the weight
as a quantum system with one continuous spatial degree of
freedom x̂ (its “height”), and Hamiltonian Hw = mgx̂. For
simplicity, we choose the mass such that mg = 1 Jm−1, so that
we can use distances and energies interchangeably. Now that
we have included a battery explicitly, we impose strict energy
conservation on the combined system, bath, and weight, such
that the allowed unitary transformations U satisfy

[U, Hs + Hb + Hw] = 0. (10)

This ensures that no additional energy can be used other than
that provided by the battery.2

For the same reason as in the implicit battery case (we
want to avoid smuggling in useful correlations), we assume
that all states describing the system, weight, and bath begin
uncorrelated, ρ = ρs ⊗ τb ⊗ ρw.

2Note that this differs from [10], in which only average energy is
presumed, but follows, instead, the revised framework presented in
Ref. [15].

Given this setup, we now no longer need to define the work
implicitly, instead we define it as the change in average energy
of the weight. All of the three energies appearing in the first
law are then defined similarly,

Q = Tr(Hbρ
′
b − Hbτb), (11)

�U = Tr(Hsρ
′
s − Hsρs), (12)

W = Tr(Hwρ ′
w − Hwρw ), (13)

and the first law �U + Q + W = 0 follows straightforwardly
from (10).

Finally, we require that any allowed unitary U is transla-
tionally invariant on the weight. Translation operators on the
weight are given by

�E = e− i
h̄ E p̂w , (14)

where p̂w is the momentum operator on the weight space, so
we require that

[U, �E ] = 0 ∀ E . (15)

This prevents the weight from being used as a thermodynamic
resource (for example, by treating it as a cold reservoir) and
allows us to prove that (9), and thus the second law, hold in the
explicit battery framework (see Appendix A). Furthermore,
we can again achieve protocols which come arbitrarily close
to saturating this bound if either the initial system state is
diagonal in its energy basis and U is a permutation of energy
levels or if the weight is prepared in a broad coherent state of
energy (sharply peaked around zero in momentum space). For
further details of these proofs, see Appendix A.

Other works have introduced different models of batteries,
including a two-level wit [8], a weight with discrete spacing
[22], or energies bounded from below [51], which lead to
additional constraints on the initial state or different results
in terms of work extraction. Our motivation for considering
the model above is that it leads to a simple model, with the
closest parallels to classical thermodynamics. The model can
also be extended to incorporate an explicit quantum clock,
which can implement a time-dependent protocol via a fixed
time-independent Hamiltonian [15].

The fact that we recover the same results with explicit and
implicit batteries offers an enhanced justification for using the
simple framework of implicit batteries.

III. CHANNELS

In the framework defined above, we have exclusively con-
sidered unitary protocols. Here, we expand this to include
more general transformations (often referred to as quantum
channels). As well as being interesting in its own right, this
is also an important preliminary to considering the thermody-
namics of measurements and postselection in later sections.

In particular, we will consider the thermodynamic advan-
tages that channels yield (if any), above what is possible in
the framework above, and the corresponding thermodynamic
costs.

Consider that you have a single use of a quantum channel
C, which is a completely positive, trace-preserving map from
density operators to density operators, which can be applied
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to a target system T with Hamiltonian Ht . For generality, we
also allow the use of an ancillary system A (with Hamiltonian
Ha) on which the channel does not act.

The system S considered in the thermodynamic framework
in the previous section is then composed of T plus A. It will
be helpful to denote the action of C on the system S by
the channel Cs [this consists of applying the channel C to
the target system and the identity channel to the ancilla, i.e.,
Cs = (I ⊗ C)].

We first consider the implicit battery framework, in which
the channel is treated as a primitive operation. We will then
show that the same results are obtained in an explicit frame-
work in which the channel is implemented via a unitary
on an ancillary system, through strictly energy-conserving
interactions with an explicit battery. We will be assuming,
for simplicity, that any ancillary systems that are used to
implement the channel (which we will later label by Z) are
maximally degenerate in energy, so that their energy changes
are zero. We will also assume that there is no work associated
to the preparation and unitary control of the target system and
ancillas.

A. Work benefit

We will quantify the work benefit of the channel by the
maximum work that can be extracted in a cyclic process in
which the channel is applied to the target system once. In
addition, we allow any operations from the framework defined
above (i.e., unitary operations involving a thermal bath at
temperature T). By a cyclic process, we mean that the initial
and final states of the system must be the same. As mentioned
in Sec. II, without the use of the channel, such a cyclic process
cannot generate net work. Focusing on cyclic processes helps
ensure that any work benefit is coming from the channel,
rather than from the initial state.

There are two natural scenarios that we could consider with
respect to the work cost of implementing the channel. The first
is that the channel is free to perform (i.e., if it requires work
to implement, this is drawn from its own internal battery). A
downside of this is that even unitary operations would give a
thermodynamic advantage, for example, by raising a ground
state of the system to an excited state. We discuss this case
further in Appendix B, explaining how it modifies the results
obtained in the paper.

As we are primarily interested in the thermodynamic ad-
vantage of operations outside the standard framework, we
instead consider a second approach. In particular, we assume
that the channel is “plugged in” to the same battery as other
operations in the framework, so that any work that is required
to perform the channel (or gained by performing it) is ac-
counted for in the same way as for unitary transformations
in the framework. Nevertheless, we find that many nonunitary
channels can be used to generate net work in a cyclic process.

A general protocol P for work extraction involves the fol-
lowing steps:

(1) The system and bath are initialized in an uncorrelated
initial state ρ = ρs ⊗ τb.

(2) The channel is applied to the target system, giving the
state σ = Cs[ρs] ⊗ τb.

(3) A unitary interaction is performed, transforming the
state into σ ′ = UσU †, where σ ′

s = ρs (i.e., the system returns
to its initial state).

An illustration of the above steps is found in Fig. 1. Speci-
fying a protocol P includes choosing the desired ancillary and
bath systems to complement the target system, as well as the
initial state ρs of the system and the unitary U .

The total work extracted by the protocol P is given by the
sum of the work gained in each step,

W total
C,P = W1 + W2 + W3. (16)

In order to calculate this, we must first define the work
gained when applying the channel to the target system in step
(2). As this does not involve an interaction with the thermal
bath (and hence �Q = 0), Definition 1 follows from Eq. (5):

Definition 1. The work gained when applying the channel
C to the target system in a state ρt (part of a larger system in
state ρs) is given by

W apply
C ≡ −�Uρt →C[ρt ] = Tr(Htρt − HtC[ρt ])

= Tr(Hsρs − HsCs[ρs]). (17)

Using this definition and the results of the previous section,
the work gain in each step can be bounded,

W1 = 0, (18)

W2 = W apply
C = E (ρs) − E (σs), (19)

W3 � F (σs) − F (ρs). (20)

Hence, using F (ρ) = E (ρ) − T S(ρ),

W total
C,P � T [S(ρs) − S(σs)]

= T {S(ρs) − S(Cs[ρs])}
� T {S(ρt ) − S(C[ρt ])}, (21)

where the last step follows from the monotonicity of the
mutual information under the action of local channels.3

Note that for any ρt , we can consider a protocol in which
ρs = ρt (i.e., no ancillas are used), and U is a thermody-
namically efficient protocol for transforming C[ρt ] into ρt .
Hence, there exist protocols which come as close as desired
to saturating (21) for any ρt .

Finally, we optimize over protocols to find the work benefit
of the channel C.

Theorem 1. The work benefit of the channel C is given by

W total
C ≡ sup

P
W total

C,P = max
ρt

T {S(ρt ) − S(C[ρt ])}. (22)

Note that W total
C � 0 for all channels, as can be seen by

considering the maximally mixed initial state ρt = I/d . How-
ever, from a thermodynamic perspective, a channel is useful
(i.e., W total

C > 0) if and only if it can reduce the entropy of
some state. Given this result, it is interesting to identify which

3The mutual information is defined as I (A : B) = S(A) + S(B) −
S(A, B). It can be shown [52] that I (A : C[B]) � I (A : B), which
implies S(A, B) − S(A,C[B]) � S(B) − S(C[B]).
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FIG. 1. Illustration of a single cycle of a thermodynamic protocol P, which consists of a channel application and a unitary reset. Work is
extracted and modeled by the raising or lowering of a weight system. The system is composed of an ancilla and target S = A ⊗ T , the bath is
represented by B, and the weight system is represented by W .

channels have this property. We now prove the following
corollary.

Corollary 1. A channel provides no work benefit if and only
if it is unital.

Unital quantum channels are those that preserve the
maximally mixed quantum state, C( I

d ) = I
d . These include

unitary channels or mixtures of unitaries, but also other pos-
sibilities [53]. We first prove that unital channels cannot
decrease the entropy of a state, by considering the relative
entropy

D(ρ||σ ) = Tr[ρln(ρ) − ρln(σ )]. (23)

For any quantum channel, it can be shown that D(ρ||σ ) �
D(C[ρ]||C[σ ]) [52]. For a unital channel C, if we set σ = I/d ,
we obtain D(ρ||I/d ) � D[C(ρ)||I/d]. Writing C[ρ] = ρ ′, we
find

D(ρ||I/d ) � D(ρ ′||I/d )

⇒ Tr[ρln(ρ) − ρln(I/d )] � Tr[ρ ′ln(ρ ′) − ρ ′ln(I/d )]

⇒ Tr[ρln(ρ)] + Tr(ρ) ln d � Tr[ρ ′ln(ρ ′)] + Tr(ρ ′) ln d

⇒ Tr[ρln(ρ)] � Tr[ρ ′ln(ρ ′)]

⇒ S(ρ ′) � S(ρ). (24)

Hence, for unital channels, W total
C = 0. To prove the converse,

note that a nonunital channel must satisfy C[I/d] �= I/d . As
the maximally mixed state I/d is the unique state with max-
imal entropy, it must therefore be the case that S(C[I/d]) <

S(I/d ) and hence W total
C > 0.

B. Thermodynamic costs

Given that many channels provide a work benefit, with
heat transformed into work as the system undergoes a cyclic
process, it is interesting to explore consistency with the second
law of thermodynamics.

To investigate this, we construct an explicit model of the
channel via a unitary interaction between the target sys-
tem and an additional ancilla. We will label this additional
ancilla (which forms part of the device which implements
the channel) by Z to distinguish it from the ancilla A that
forms part of the original system. Indeed, any channel can be
written as

C[ρt ] = Trz(V ρt ⊗ ρzV
†), (25)

where ρz is the initial state of the additional ancilla and V
is unitary. Note that we do not assume that ρz is pure. For
simplicity, as outlined in the introduction to Sec. III, we will
assume that Z is degenerate, with Hz = 0.

In the same way as for (7), due to the subadditivity of the
entropy, we find that

�St + �Sz � 0. (26)

For any given protocol, from (21) we have W total
C,P � −T �St .

If we wanted to reset Z to its initial state at the end of the
protocol, via a procedure involving the thermodynamic bath,
it follows from (9) that we would gain work,

W reset
C,P � −T �Sz, (27)

where �Sz refers to the entropy change of Z when the channel
was originally implemented. Hence, the total work gained by
performing the protocol and then resetting the device satisfies

W total
C,P + W reset

C,P � 0, (28)

in accordance with the second law.
Note that we have not considered the costs associated with

generating the initial state of the system or device (ρs and ρz)
before the protocol begins. In the former case, this is because
the system is returned in the same state at the end. In the
latter case, this is part of the resource that is the device, and
we consider in this section the cost of resetting it. However,
there is an interesting subtlety that arises if either of these
states is not full rank because then it may be impossible to
reconstruct them exactly via the thermodynamic operations
in our framework. For the system, by considering a series
of full-rank initial states that comes arbitrarily close to the
optimal state, we can see that the supremum in Theorem 1
indeed becomes the maximum over all states. We can also
consider a series of devices, for each of which ρz is full rank,
which implements channels as close as desired to any desired
channel.

C. Catalytic channels

A particularly interesting class of channels in this context
is catalytic channels, which are channels that can be imple-
mented in such a way that Z remains unchanged.
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Definition 2. A channel C is catalytic if there exists a
unitary V and state ρz such that

C[ρt ] = Trz(V ρt ⊗ ρzV
†), (29)

ρz = Trt (V ρt ⊗ ρzV
†). (30)

Given that a catalytic implementation of a channel does not
need resetting afterwards, it must satisfy W reset

C,P = 0. Hence,
from (28), catalytic channels cannot provide a work bene-
fit. From Corollary 1, we therefore discover that catalytic
channels must be unital. This raises the question of whether
all unital channels are catalytic. In Appendix C, we show
that this is not the case. There are some channels which
are unital and thus useless for work extraction, but never-
theless lack a catalytic implementation. A particular example
is the Werner-Holevo channel for a three-dimensional target
system,

ρ → CWH(ρ) = 1
2 [Tr(ρ)I − ρT ], (31)

where ρT corresponds to the transpose of ρ in a particular
basis. We have therefore proven the following:

Corollary 2. All catalytic channels are unital. However,
there exist unital channels which are not catalytic.

Interestingly, while we have used thermodynamic argu-
ments to derive this result, it relates two properties of channels
which are not intrinsically thermodynamic.

Overall, we have shown the following triad of implications
between quantum channels that are not useful for generating
work, channels that have a catalytic implementation, and the
set of unital channels:

Catalytic ⇒ No work benefit ⇐⇒ Unital. (32)

In the context of fluctuation theorems, it has been
shown [54] that unital channels (and thus also catalytic
channels) also cannot violate the Jarzysnki equality [55].
However, if one considers channels which are only required
to be catalytic on thermal input states, one can violate the
equality.

D. Channels using explicit batteries

To provide further justification for the implicit battery re-
sults obtained earlier, we now show how they can be extended
to include explicit batteries.

As in Eq. (25), the channel is implemented by acting with
a unitary transformation V on the target system and an an-
cilla initially in state ρz. The ancilla is internal to the device
implementing the channel and, for simplicity, we assume it is
degenerate in energy.

We can expand V in an energy basis as

V =
∑
abcd

αcd
ab |a〉 〈b| ⊗ |c〉 〈d| , (33)

where αcd
ab are complex numbers describing state transition

amplitudes within the Hilbert spaces of the system and
ancilla.

The unitary V may not in general be energy conserving,
and as such the resultant channel may either raise or lower the
internal energy of the target system. To move to the explicit
battery case, we construct an energy-conserving unitary Ṽ ,

which draws any such energy change from the battery. In
particular, whenever the energy of the system changes, we
shift the position weight by the same amount in the opposite
direction; this is more concretely expressed as follows:

Definition 3. The extension of a unitary used to implement
a quantum channel in the implicit battery case [Eq. (33)] is
given by

Ṽ =
∑
abcd

αcd
ab |a〉 〈b| ⊗ |c〉 〈d| ⊗ �Eb−Ea , (34)

where the three subsystems on which the operator acts are t ,
z, and w, respectively, and � is the translation operator for the
weight, defined in Eq. (14).

It is straightforward to check that Ṽ is unitary, commutes
with the total Hamiltonian of the system, ancilla, and weight,
and has the weight translation invariance property that we
assume in the explicit battery framework

As the device interacts with the external weight, its action
on the target system will in general depend on the state of the
weight. In particular, the channel implemented given a weight
state ρw is

Cρw
[ρt ] = Trzw[Ṽ (ρt ⊗ ρz ⊗ ρw )Ṽ †]. (35)

However, as long as the weight is prepared in a state with a
narrow spread in momentum about p = 0, the channel im-
plemented using the explicit battery will be very close to the
desired channel (see Appendix A) and can be made arbitrarily
close by choosing an appropriate initial weight state. Note
that such initial states of the weight are also those required to
perform arbitrary transformations of a system and bath with
optimal thermodynamic efficiency.

As a simple concrete example, consider the initial weight
state

|ψL〉 = 1√
2L

∫ L

−L
dx |x〉 , (36)

with ρw = |ψL〉 〈ψL|. Then it follows from the results of Ap-
pendix A that

lim
L→∞

Cρw
[ρt ] = C[ρt ]. (37)

For a weight state with very large L, the effect of the channel
on the system will be very close to that in the implicit battery
case. This means that its change in average energy will also
be very similar to �Uρt →C[ρt ]. As energy is conserved overall,
the shift in the average energy of the weight will therefore be
very close to that given by Definition 1 as desired.

Note that the remainder of the paper will generally use
the implicit battery model for simplicity, with the exception
of Theorem 3 (and the corresponding proof in Appendix E),
where the form of the weight state plays a more subtle role.

IV. MEASUREMENTS

We now consider the thermodynamic benefit of a general
quantum measurement. This can be described by assign-
ing to each outcome i of the measurement a completely
positive transformation Ci. The probability of obtaining a
particular outcome when the measurement is performed on a
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FIG. 2. Illustration of a single cycle of a thermodynamic protocol P, which consists of a measurement and a unitary reset. Different
unitary resets are applied, dependent upon the measurement outcome obtained in the previous step, to give some feed-forward control over the
extractable work.

state ρ is

pi = Tr(Ci[ρ]), (38)

with the state after measurement being given by

ρi = Ci[ρ]

pi
. (39)

Together, summing over all outcomes of the measurement
must yield a trace-preserving channel,

C[ρ] =
∑

i

Ci[ρ]. (40)

For convenience, we will also define Cs,i, corresponding to
applying Ci to the target system, and the identity channel to
the ancillary system.

As before, we consider that any energy required for the
device to implement the measurement is provided by the
same battery as is used to perform thermodynamic operations
within the framework.

A general protocol P for work extraction in this case is
similar to before, but the resetting operation will in general
depend on the measurement result.

(1) The system and bath are initialized in an uncorrelated
initial state ρ = ρs ⊗ τb.

(2) The measurement is applied to the target system, giv-
ing result i with probability pi and leaving the state as σi =
(Cs,i[ρs] ⊗ τb)/pi.

(3) For each result i, a unitary interaction Ui is performed,
transforming the state into σ ′

i = UiσiU
†
i , where Trb(σ ′

i ) = ρs

(i.e., the system returns to its initial state for each result).
Specifying a protocol P includes choosing the desired an-

cillary and bath systems to complement the target system, as
well as the initial state ρs of the system and the set of unitaries
Ui. An illustration can be found in Fig. 2.

As before, the total work extracted by the protocol P is
given by the sum of the work gained in each step. As there
is no interaction with the bath, the average work gain when
applying the measurement must be equal to the average energy
loss of the system.

Definition 4. The work gained on average when applying
the measurement {Ci} to the target system in a state ρt (part of

a larger system in state ρs) is given by

W apply
{Ci} ≡ −

∑
i

pi �Uρt →ρt,i

=
∑

i

pi Tr

(
Htρt − Ht

Ci[ρt ]

pi

)

= Tr[Htρt − HtC(ρt )]

= W apply
C , (41)

where C[ρ] = ∑
i Ci[ρ].

As before, the total work benefit provided by the measure-
ment is obtained by summing the average work benefit in each
step,

W total
{Ci},P = W1 + W2 + W3. (42)

Using the above definition and earlier results, the work gain
in each step can be bounded as follows:

W1 = 0, (43)

W2 = W apply
{Ci} = E (ρs) −

∑
i

pi E (σi ), (44)

W3 �
∑

i

pi[F (σi ) − F (ρs)]. (45)

Hence, using F (ρ) = E (ρ) − T S(ρ),

W total
{Ci},P � T

∑
i

pi[S(ρs) − S(σs,i )]

� T
∑

i

pi[S(ρt ) − S(σt,i )]

= T

[
S(ρt ) −

∑
i

piS(σt,i )

]
, (46)

where σs,i = Trb(σi ) = Cs,i[ρs]
pi

and σt,i = Tra(σs,i ) = Ci[ρt ]
pi

. As
in the case of channels, the last step follows from the mono-
tonicity of the mutual information under the action of local
channels. However, this case is more complicated and is
shown in Appendix E.

Note that for any ρt , we can consider a protocol in which
ρs = ρt (i.e., no ancillas are used) and each Ui is a thermo-
dynamically efficient protocol for transforming σt,i into ρt .
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Hence, there exist protocols which come as close as desired
to saturating (46) for any ρt .

Finally, we optimize over protocols to find the work benefit
of the measurement {Ci}.

Theorem 2. The work benefit of the measurement {Ci} is
given by

W total
{Ci} ≡ sup

P
W total

{Ci},P = max
ρt

T

[
S(ρt ) −

∑
i

piS(σt,i )

]
. (47)

Note that this means that any complete basis measurement
has a work benefit equal to T ln ds, taking ρt as the maximally
mixed state in the maximization above, and noting that each
postmeasurement state is pure and thus has entropy zero.

Furthermore, we can now make the statement that “mea-
surements are of more thermodynamic use than channels.”
Of course, to make this statement precise, we associate
a channel C to a collection of measurement subchannels,
C[ρ] = ∑

i Ci[ρ]. Then from Theorem 1, Theorem 2, and
the concavity of the entropy, we find that W total

C � W total
{Ci} , so

measurements are capable of providing more work than a
channel on the average. The way to see this is that we may
construct an adaptive resetting protocol for the measurement
case, which allows us an extra level of control over the state
based on informative measurement outcomes.

A. Thermodynamic costs

When considering this work benefit in the context of the
second law of thermodynamics, we again find that the cost of
resetting the measurement device and erasing all information
about the measured outcome would carry a thermodynamic
cost which outweighs the work benefit. This was previously
observed in the solution to Maxwell’s demon [24].

In particular, we can represent the measurement by a uni-
tary interaction V between the target system and an additional
ancilla inside the measurement device denoted by Z , in initial
state ρz. Each measurement result i corresponds to an orthog-
onal projector 
i on Z , such that

pi = Tr[V (ρt ⊗ ρz )V †(I ⊗ 
i )] (48)

and

σt,i = 1

pi
Trz[V (ρt ⊗ ρz )V †(I ⊗ 
i )]. (49)

We can think of the conditional unitary applied in step (3) of
the protocol, which depends on the measurement result, as

U =
∑

i

Ui ⊗ 
i. (50)

If the measurement device Z is reset to its initial state at the
end of the protocol, via a unitary interaction with the bath,
then overall we have constructed a fully unitary protocol on
T , B, and Z which returns both T and Z to their initial states.
We have previously proven that this can only lead to a net
decrease of work. For more on the resource costs of preparing
the initial state of the measuring device and connections with
the third law of thermodynamics, see [56].

Note that if one includes the experimenter as an additional
agent inside the protocol, who reads the measuring device and
implements step (3) and resets the state of the device based on

their knowledge of the measurement result, then this process
may appear to violate the second law. However, in this case,
one should also reset the memory of the experimenter at the
end of the protocol. This would carry an additional thermody-
namic cost which restores compatibility with the second law.

B. Conditional work benefit

For a single channel which transforms ρt into σt , we can
obtain an optimal work benefit arbitrarily close to T [S(ρt ) −
S(σt )]. For a measurement, the corresponding optimal work
benefit is

∑
i piT [S(ρt ) − S(σt,i )]. Given these results, it

would be natural to assume that the optimal conditional work
benefit for a measurement given that result i was obtained is
T [S(ρt ) − S(σt,i )].

However, if we consider how the measurement would be
implemented with an explicit battery, we find that this is not
the case. To illustrate this, let us consider the simple example
of an energy measurement on a qubit. We will also not need to
consider the ancilla system a in this demonstrative example.
Imagine that the target system has Hamiltonian

Ht = E |1〉 〈1| (51)

and is initially in a maximally mixed state,

ρt = 1
2 (|0〉〈0| + |1〉〈1|), (52)

and that the measurement is characterized by

C0[ρ] = |0〉〈0|ρ|0〉〈0|,
C1[ρ] = |1〉〈1|ρ|1〉〈1|. (53)

We can perform the measurement by preparing a “measure-
ment device” qubit (with zero Hamiltonian) in the state ρz =
|0〉〈0| and implementing a “controlled-NOT” unitary transfor-
mation from the target onto the device,

V = |0〉〈0| ⊗ I + |1〉〈1| ⊗ X, (54)

where X = |0〉〈1| + |1〉〈0|. Note that in this case, V com-
mutes with the total Hamiltonian and therefore requires no
interaction with the battery to perform. Hence, W apply

{C0,C1} = 0.
Hence, in terms of the work quantities defined in Eqs. (44)
and (45), we therefore have W1 = 0, W2 = 0 and thus W total

{C0,C1}
is equal to the optimal value of W3.

In the case that the measurement result is 0, we use the
thermodynamic bath to unitarily transform the system’s final
state σt,0 = |0〉〈0| back into its initial state ρt , obtaining an
optimal amount of work given by the reduction in free energy.
In this particular case, F (σt,0) = 0 and F (ρt ) = E/2 − T ln 2,
and hence the optimal conditional work benefit given result 0
is

W total
{C0,C1}|0 = T ln 2 − E/2. (55)

If result 1 is obtained, then σt,1 = |1〉〈1| with F (σt,1) = E .
Hence, the conditional work benefit for this result is

W total
{C0,C1}|1 = T ln 2 + E/2. (56)

As each case occurs with probability 1/2, overall the total
work benefit is

W total
{C0,C1} = T ln 2. (57)
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Note that although this is equal to
∑

i piT [S(ρs) − S(σt,i )],
the conditional work benefit for result i is not equal to S(ρs) −
S(σt,i ) = T ln 2.

The situation becomes considerably more complicated
when the unitary V implementing the measurement does not
commute with the Hamiltonian of the system. In such cases,
in order to account for the energy change of applying the
measurement, we extend the unitary in a similar way to (34)
to incorporate the explicit battery.

The conditional work benefit of applying a measurement
given the broad “top-hat” wave function for the weight con-
sidered in Eq. (36) is given by the following theorem:

Theorem 3. The conditional work benefit W apply
{Ci}|i of ap-

plying a measurement {Ci} and obtaining result i, given that
the initial state of the weight is |ψL〉 = 1√

2L

∫ L
−L dx |x〉 and

omitting terms of O( 1
L ) (i.e., taking the large L limit), is

W apply
{Ci}|i = 1

pi
Tr

(
Ci

[
Htρt + ρt Ht

2

]
− HtCi[ρt ]

)
, (58)

which we prove in Appendix E. Note that if we average over
the conditional work benefit for each measurement outcome,
we recover W apply

{Ci} because

∑
i

piW
apply
{Ci}|i = Tr

(
C

[
Htρt + ρt Ht

2

]
− HtC[ρt ]

)

= Tr(Htρt − HtC[ρt ])

= W apply
{Ci} , (59)

where the second line follows because C is trace preserving.
Including the work benefit of resetting the system to its

initial state, we can then calculate the total conditional work
benefit of the measurement, given that result i was obtained
and the system was prepared in state ρs,

W total
{Ci}|i,ρs

=W apply
{Ci}|i + F (σs,i ) − F (ρs)

= 1

pi
Tr

(
Ci

[
Htρt + ρt Ht

2

])
− Tr(Htσt,i )

+ F (σs,i ) − F (ρs)

= 1

pi
Tr

(
Ci

[
Htρt + ρt Ht

2

])
− Tr(Htρt )

+ Tr(Haσa,i ) − Tr(Haρa)

+ T [S(ρs) − S(σs,i )], (60)

where we define σx,i as the postmeasurement state of subsys-
tem x = a, t, s when result i is obtained. Note that this result
does not include small corrections due to the finite width of
the weight state and small inefficiencies in the thermodynamic
reset operation, both of which can be made as small as desired.

The same results as (58) and (60) can be obtained for other
initial states of the weight, including a Gaussian of standard
deviation L. However, in general, they can depend on the ini-
tial state of the weight. In particular, consider an asymmetric
“triangular” initial state of the weight

|τL〉 =
√

3

L3

∫ L
4

− 3L
4

(
x + 3L

4

)
|x〉 dx, (61)

where the constants are chosen such that this is normalized
and has average energy zero. We show in Appendix F that this
initial state of the weight leads to a different result for W apply

{Ci}|i ,
even in the limit as L → ∞. This is different from our earlier
results, which only required that the initial weight state had an
initial momentum close to zero with high probability.

V. POSTSELECTED MEASUREMENTS

Postselection is the process of discarding statistics in a
data set and has been shown to allude to many interesting
foundational questions [57] and is of practical importance in
weak measurement [58]. In this section, we will consider the
work benefit of making postselected measurements.

Given a measurement represented by a set of completely
positive maps {Ci}, we denote some subset of the mea-
surement outcomes (i ∈ succ) as indicating success in the
postselection, while the others (i ∈ fail) correspond to failure.
When considering the work benefit of the postselected mea-
surement, we only consider cases in which the postselection
succeeds.

It is convenient to define the probability of success in
the postselection as psucc = ∑

i∈succ pi, where pi = Tr(Ci[ρ])
as before. The total work benefit of the postselected mea-
surement can then be calculated using the conditional work
benefits in the previous section. In particular,

W total
{Ci}|succ,ρs

= 1

psucc

∑
i∈succ

piW
total
{Ci}|i,ρs

. (62)

From (60), for a broad top-hat initial state of the weight and
efficient thermodynamic transformations, we obtain

W total
{Ci}|succ,ρs

=
∑

i∈succ

Tr

(
Ci

[
Htρt + ρt Ht

2 psucc

])
− Tr(Htρt )

+
∑

i∈succ

pi

psucc
Tr(Haσa,i ) − Tr(Haρa)

+ T

[
S(ρs) −

∑
i∈succ

pi

psucc
S(σs,i )

]
. (63)

In the simple case in which the measurement has only two
outcomes, i.e., one corresponding to success and the other to
failure, given by completely positive maps {Csucc,Cfail}, we
find

W total
{Csucc,Cfail}|succ,ρs

= Tr

(
Csucc

[
Htρt + ρt Ht

2 psucc

])

− Tr(Htρt )

+ Tr(Haσa,succ) − Tr(Haρa)

+ T [S(ρs) − S(σs,succ)], (64)

where σa,i is the postmeasurement state of the ancilla system,
upon observing a measurement outcome i.

Given any postselected measurement {Ci}, we can always
consider the corresponding binary outcome measurement in
which we only record whether the postselection succeeds or
fails. This would be given by {Csucc,Cfail}, where Csucc =∑

i∈succ Ci and Cfail = ∑
i∈fail Ci. In this case, one can see

014111-9



TOM PURVES AND ANTHONY J. SHORT PHYSICAL REVIEW E 104, 014111 (2021)

by comparing (63) and (64) and using the concavity of the
entropy that W total

{Ci}|succ,ρs
� W total

{Csucc,Cfail}|succ,ρs
, as expected.

Every postselected channel can lead to unbounded
amounts of work

We will now show that any postselected measurement
where the postselection is nontrivial leads to an unbounded
work benefit. Hence, even one copy of a postselected mea-
surement can be used to generate arbitrarily large amounts of
work in our thermodynamic framework. Note that the ancilla
a plays a key role in this result, with the amount of work
obtained connected with the dimension of this subsystem.

Theorem 4. Any nontrivial postselected measurement (i.e.,
where the success probability has some dependence on the
state) can be used to obtain an unbounded work benefit,

W total
{Ci}|succ = sup

ρs

W total
{Ci}|succ,ρs

= ∞. (65)

To prove this, we first note that as the work benefit for
any multi-outcome measurement {Ci} is more than the work
benefit for the corresponding binary outcome measurement
{Csucc,Cfail} in which we only consider success or failure, it
suffices to consider binary measurements.

To illustrate the key ideas of the proof, let us first consider
a simple example in which

Csucc[ρ] = |0〉〈0|ρ|0〉〈0|,
Cfail[ρ] = |1〉〈1|ρ|1〉〈1|, (66)

and the system has zero Hamiltonian, Hs = Ht = Ha = 0. We
then apply this postselected measurement to the state

ρs = 1

2
|0〉〈0|t ⊗ |φ〉 〈φ|a + 1

2
|1〉〈1|t ⊗ 1

da
1a, (67)

where |φ〉 is any pure state of the ancilla and da is the ancilla
dimension. If the postselection is successful, the postmeasure-
ment state is σs,succ = |0〉〈0| ⊗ |φ〉〈φ|. This is a zero entropy
state, which can be expanded using unitary operations on the
system and a bath back to the initial state ρs. This allows us to
extract a total amount of work arbitrarily close to

W = F (σs,succ) − F (ρs)

= T [S(ρs) − S(σs,succ)]

= T
(
ln 2 + 1

2 ln da
)
. (68)

Note that this can be seen as a consequence of (64) with Ht =
Ha = 0. Since there is no restriction on the dimension of the
ancilla da, and this work grows as ln da, we can extract an
unbounded amount of work by considering larger and larger
ancillas.

Now let us generalize this approach to an arbitrary post-
selected measurement {Csucc,Cfail}. Given any completely
positive map Csucc, there exists a positive operator Msucc such
that psucc = Tr(Csucc[ρt ]) = Tr(Msuccρt ).4 Let |u〉 and |v〉 be

4Writing Csucc in Kraus decomposition as Csucc[ρ] = ∑
j KjρK†

j ,

we have Msucc = ∑
j K†

j Kj .

eigenvectors of Msucc with the maximal and minimal eigen-
value, respectively,

Msucc |u〉 = λmax |u〉 , (69)

Msucc |v〉 = λmin |v〉 . (70)

Note that in order for the postselection to be nontrivial, we
require that λmax > λmin. If this is not the case, then Msucc is
proportional to the identity and all states would give the same
probability of success. For any such measurement, Csucc = αC
where α is a constant and C is a trace-preserving channel. This
corresponds to performing C and then failing independently
at random with probability (1 − α), which, for all practical
purposes, is the same as just performing C.

Now consider applying the measurement to the state

ρs = 1

2
|u〉〈u|t ⊗ |φ〉〈φ|a + 1

2
|v〉〈v|t ⊗ 1

da
1a, (71)

where we take the ancilla to have zero Hamiltonian (Ha = 0).
From (64), the total work benefit in this case is given by

W total
{Csucc,Cfail}|succ,ρs

= Tr

[
Lsucc

(
Htρt + ρt Ht

2 psucc

)]
− Tr(Htρt )

+ Tr(Haσa,succ) − Tr(Haρa)

+ T [S(ρs) − S(σs,succ)]. (72)

We can use the cyclic symmetry of the trace and the definition
of |u〉 and |v〉, as well as the fact that psucc = (λmax + λmin)/2,
to simplify the first term on the right-hand side. Also, using
Ha = 0 and S(ρs) = ln 2 + 1

2 ln da gives

W total
{Csucc,Cfail}|succ,ρs

= λmax 〈u| Ht |u〉 + λmin 〈v| Ht |v〉
λmax + λmin

− 〈u| Ht |u〉 + 〈v| Ht |v〉
2

+ T

[
ln 2 + 1

2
ln da − S(σs,succ)

]
. (73)

Note that λmax〈u|Ht |u〉+λmin〈v|Ht |v〉
λmax+λmin

and 〈u|Ht |u〉+〈v|Ht |v〉
2 both rep-

resent convex mixtures of expected energies. They must
therefore lie within the largest and smallest eigenvalues of Ht ,
which we denote, respectively, by Emax and Emin. Hence,

W total
{Csucc,Cfail}|succ,ρs

� Emin − Emax + T
[
ln 2 + 1

2 ln da − S(σs,succ)
]
. (74)

Furthermore, from the subadditivity of the entropy, we
have

S(σs,succ) � S(σt,succ) + S(σa,succ) � ln(dt ) + S(σa,succ).

(75)

Defining

q = λmin

λmax + λmin
, (76)

note that

σa,succ = (1 − q)|φ〉〈φ| + q

(
1

da
1a

)
. (77)
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Using the fact that S(
∑

i piρi ) � H (pi ) + ∑
i piS(ρi ), where

H (pi ) is the Shannon entropy, we have

S(σa,succ) � H (q) + q ln da � ln 2 + q ln da. (78)

Putting everything together, we then have

W total
{Csucc,Cfail}|succ,ρs

� Emin − Emax + T
[(

1
2 − q

)
ln da − ln dt

]
. (79)

As λmax > λmin, we have q < 1
2 . Hence, the work benefit

grows in an unbounded way with ln da.
This result was derived for a top-hat weight state and does

not include O(1/L) corrections due to the finite width of
that state, and O(ε) corrections due to slight inefficiencies
in the thermodynamic protocol for resetting the system state.
However, both of these can be made as small as desired. Using
other weight states (assuming they are sharply peaked around
momentum zero) would also not change the scaling with da.

VI. CONCLUSIONS

We have analyzed the work benefit of a single use of a gen-
eral channel or measurement within a framework for quantum
thermodynamics in which work corresponds to a change in
average energy of an implicit or explicit battery.

For the case of channels, we find that the work benefit de-
pends on the maximum reduction in entropy that the channel
can induce on the target system. Obtaining this maximal work
generally requires a large thermodynamic bath to efficiently
return the system to its initial state, and in the explicit battery
model an initial state of the weight which is narrowly peaked
about zero in momentum space. A consequence of this is that
a channel is useful for work extraction if and only if it is
unital. We also show some interesting relationships between
unit channels, catalytic channels, and work extraction.

We have also considered the case of quantum measure-
ments. It has been shown that a quantum measurement is
a more thermodynamically useful object than the equivalent
measure-and-forget-type channel due to the existence of an
adaptive resetting protocol in the cycle. We obtain a formula
for the conditional work extraction, which is the amount the
battery system changes in average energy, given that we make
a measurement and observe a particular outcome. Surpris-
ingly, the conditional work extraction formula has a stronger
dependence on the initial state of the battery system than
our earlier results, which merits further investigation. This
might also have implications for pointer states in the weak
measurement formalism [45,59].

We then investigated the thermodynamics of postselected
measurements, which have been shown to be extraordinarily
powerful. Given a single use of any measurement with non-
trivial postselection, it is possible to extract an unbounded
amount of work within a single thermodynamic cycle. This
might herald interesting avenues of investigation if one takes
the view that there exists fundamental postselection in nature
[60], such as in black-hole physics [61,62], and analyzes the
thermodynamics of such theories.
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APPENDIX A: THE SECOND LAW FOR
EXPLICIT BATTERIES

In order to prove that the second law of thermodynamics,
and Eq. (9), hold in the case of explicit batteries, we first
note that as allowed unitaries commute with the translation
operator on the weight, they can be written in the form

Ũ =
∫

d p U (p) ⊗ |p〉〈p|w, (A1)

where each U (p) is a unitary on the system and bath. This
means that the system and bath transform via a mixture of
unitaries,

ρ ′
sb = Trw[Ũ (ρsb ⊗ ρw )Ũ †]

=
∫

d p μ(p)U (p)ρsbU (p)†, (A2)

where μ(p) = Tr(ρw|p〉〈p|) is the probability density of the
weight momentum. Due to the concavity of the entropy, a mix-
ture of unitaries can only increase the entropy of the system
and bath, and hence S(ρ ′

sb) � S(ρsb). Combining this with the
subadditivity of the entropy and the fact that the initial state is
a product state, we obtain

S(ρs) + S(τb) = S(ρsb) � S(ρ ′
sb) � S(ρ ′

s) + S(ρ ′
b), (A3)

and the proof of the second law and W � −�Fs follow as
from (6).

To prove that any transformation satisfying this relation can
be approximately implemented in the explicit battery case, we
first identify a unitary U which approximately achieves the
desired transformation in the implicit battery case. U can be
expanded as

U =
∑
i, j

Ui j |i〉〈 j|, (A4)

where |i〉 form an energy eigenbasis for the system and bath
with corresponding energies Ei.

The corresponding transformation in the explicit battery
case is given by the unitary

Ũ =
∑
i, j

Ui j |i〉〈 j| ⊗ �Ej−Ei (A5)

on the system and weight. The identity operation on the bath
system has been suppressed. This will give very similar re-
sults to the implicit battery case whenever the initial state of
the weight has a narrow spread in momentum around zero
momentum,5 or if the system and bath are diagonal in an

5As an example of such a state, consider a broad coherent state

of energy, |ψL〉 =
√

1
2L

∫ L
−L dx |x〉, for large L. Note that such a state

satisfies �E j−Ei |ψL〉 � |ψL〉.

014111-11



TOM PURVES AND ANTHONY J. SHORT PHYSICAL REVIEW E 104, 014111 (2021)

energy basis and the transformation U is a permutation of
those energy states.

To show this in more detail, we first write Ũ in the momen-
tum basis as

Ũ =
∫

d p
∑
i, j

Ui je
−i(Ej−Ei )p|i〉〈 j| ⊗ |p〉〈p|. (A6)

From (A2), the final state of the system and bath after applying
Ũ is given by

ρ ′
sb =

∫
d p μ(p)U (p)ρsbU (p)†, (A7)

where

U (p) =
∑
i, j

Ui je
−i(Ej−Ei )p|i〉〈 j|. (A8)

Note that if the initial state of the system and bath is diagonal
in energy (i.e., ρsb = ∑

n pn|n〉〈n|) and the unitary U is a
permutation of those energy levels (i.e., Ui j = δi,
[ j], where

 is a permutation), then U (p)ρsbU (p) = UρsbU † for all p,
and hence ρ ′

sb = UρsbU † exactly.
Alternatively, suppose that the initial momentum distribu-

tion of the weight μ(p) satisfies∫ ε

−ε

d p μ(p) � 1 − δ (A9)

for small ε and δ.
The final state of the system and bath ρ ′

sb is given by (A7).
The trace distance between this state and the desired final state
UρU † can then be bounded as follows:

D(ρ ′
sb,UρsbU

†)

= 1

2
‖ρ ′

sb − UρsbU
†‖1

� 1

2

∫
d pμ(p)‖U (p)ρsbU (p)† − UρsbU

†‖1

� δ + 1

2

∫ ε

−ε

d pμ(p)‖U (p)ρsbU (p)† − UρsbU
†‖1

� δ + 1

2

∫ ε

−ε

μ(p)[4|p|‖Hsb‖ + O(p2)]

� δ + O(ε), (A10)

where the third step can be seen by expanding (A8) as a power
series in p,

U (p) = U − ip(UHsb − HsbU ) + O(p2) (A11)

and using ‖Hρ‖1 � ‖H‖ where ρ is a density operator.
Hence, by using a weight state with sufficiently small ε and δ,
we can make the final state of the system and bath arbitrarily
close to the desired final state. As the system and bath have
a bounded spectrum, this means their final expected energy
must be arbitrarily close to the desired value. As energy is con-
served overall, this means that the weight must also be raised
by an amount (i.e., work must be done) that is arbitrarily close
to the desired value from the implicit battery case.

As a concrete example, consider a weight in a pure top-hat
wave function of width L,

|ψL〉 = 1√
2L

∫ L

L
dx |x〉 , (A12)

with ρw = |ψL〉 〈ψL|. For this state,

μ(p) = h̄

πL

sin2
( pL

h̄

)
p2

. (A13)

Taking ε = c√
L

, for some constant c, we find that∫ ε

−ε

d pμ(p) � 1 − 2
∫ ∞

ε

d pμ(p)

� 1 − 2h̄

πL

∫ ∞

c√
L

d p
1

p2

� 1 − 2h̄

πc
√

L
, (A14)

and hence we have that both ε → 0 and δ → 0 as L → ∞.

APPENDIX B: AN ALTERNATIVE QUANTIFIER
OF WORK FOR CHANNELS

In the main paper, we require that measurements and chan-
nels must draw any energy they require to operate from an
external battery. This means that they are treated in the same
way as the unitary transformations allowed by the framework.

An alternative possibility is to consider the work benefit
of a device which has its own internal power supply, which
we do not include in our accounting (or a device on which
we simply do not impose energy conservation). In this case,
we take the work benefit of applying the device to be zero in
all cases (W apply = 0). In this Appendix, we explore how our
results change in this case.

In the case of a channel C, all work benefit is then obtained
during the process of resetting the final state σs to its initial
state ρs, and is simply dependent on the free energy change
in this process. Following a similar proof as before with
W apply

C = 0 and noting that E (σa) = E (ρa), we obtain

W total
C,P � F (C[ρt ]) − F (ρt ) (B1)

and

W total
C = max

ρt

{F (C[ρt ]) − F (ρt )}. (B2)

Note that even if the channel is unitary, W total
C will generally

be nonzero because of energy differences that the channel
can induce. When considering consistency with the second
law, we must now consider both entropy changes and energy
changes inside the device.

In the main text, it was shown that channels are useless
for work extraction if and only if they are unital. Can we
formulate a similar result when we do not associate a work
cost for the channel? It turns out that we can, only now the
useless class of channels are the Gibbs preserving maps. A
channel is Gibbs preserving if it preserves the thermal state,
C[τ ] = τ , for τ = e− H

T /Z were Z = Tr(e− H
T ). Let us show

this now.
Consider the relative entropy between states D(ρ||τ ) =

Tr[ρ ln ρ] − Tr[ρ ln τ ]. We have, by the data processing
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inequality, that D(C[ρ]||C[τ ]) � D(ρ||τ ). Let us first assume
that the map C is Gibbs preserving. Direct substitution then
gives us

Tr{C[ρ](ln C[ρ] − ln C[τ ])} � Tr[ρ(ln ρ − ln τ )]

⇒ Tr{C[ρ](ln C[ρ] − ln τ )} � Tr[ρ(ln ρ − ln τ )]

⇒ S(ρ) − S(C[ρ]) � Tr{(C[ρ] − ρ) ln τ }

⇒ S(ρ) − S(C[ρ]) � Tr

{
(C[ρ] − ρ)

(
−H

T
− ln Z

)}

⇒ S(ρ) − S(C[ρ]) � 1

T
{E (ρ) − E (C[ρ])}

⇒ F (C[ρ]) � F (ρ), (B3)

which shows that if C is a Gibbs preserving map, it cannot
increase the free energy and, as such, is useless for work
extraction. Let us show the other direction as well. Suppose a
map is useless for work extraction, i.e., it cannot increase the
free energy. Then we have that F (C[τ ]) � F (τ ). The thermal
Gibbs state is the state which is the unique minimizer for the
free energy. This means that this inequality is an equality,
and it follows that C[τ ] = τ , and hence the map is Gibbs
preserving.

For measurements, taking W apply
{Ci} = 0, we similarly have

W total
{Ci} = max

ρt

T

[∑
i

piF (σt,i ) − F (ρt )

]
. (B4)

In this case, the conditional work benefit when obtaining
result i is simply

W total
{Ci}|i,ρs

= T [F (σs,i ) − F (ρs)]. (B5)

Finally, we still obtain an unbounded work benefit for
any (nontrivial) postselected measurement. Applying the mea-
surement to the same state as in Eq. (71) and following a
similar proof to that in Sec. V, we obtain

W total
{Ci}|succ,ρs

� W total
{Csucc,Cfail}|succ,ρs

� F (σs,succ) − F (ρs)

� Emin − Emax + T [S(ρs) − S(σs,succ)]

� Emin − Emax + T
[(

1
2 − q

)
ln da − ln dt

]
, (B6)

which can be made arbitrarily large by increasing da.

APPENDIX C: A UNITAL NONCATALYTIC CHANNEL

For a two-dimensional target system, it is known that every
unital channel can be expressed as a convex combination of
unitary transformations [53]. These are catalytic, as they could
be implemented via a controlled unitary from a mixed ancilla
onto the system. However, in higher dimensions, this is not
always the case. Consider the Werner-Holevo channel [63] for
d = 3:

ρ → CWH(ρ) = 1
2 [Tr(ρ)I − ρT ], (C1)

where ρT corresponds to the transpose of ρ in a particular
basis. This channel can easily be seen to be unital and nonuni-

tary.6 A key property of this channel is that it is extremal in
the space of channels and therefore cannot be expressed as a
mixture of different channels.

We will now construct a proof by contradiction to show
that CWH is not a catalytic channel. Suppose that there was a
catalytic implementation of CWH,

CWH[ρt ] = Trz(W ρt ⊗ ρzW
†), (C2)

ρz = Trt (W ρt ⊗ ρzW
†). (C3)

As ρz remains unchanged by the evolution, the unitary W
cannot take states within the support of ρz outside of this
support. Hence, without loss of generality, we can restrict Z
to the support of ρz. For any state |φ〉z, there then exists a suf-
ficiently small ε such that ρz = ε|φ〉〈φ| + (1 − ε)σz, where σz

is a valid state.
This implies that

CWH[ρt ] = εCφ[ρt ] + (1 − ε)Cσ [ρt ], (C4)

where

Cφ[ρt ] = Trz(W ρt ⊗ |φ〉〈φ|W †), (C5)

Cσ [ρt ] = Trz(W ρt ⊗ σzW
†) (C6)

are both valid channels. As CWH is extremal, it must be the
case that Cφ[ρt ] = CWH[ρt ] for all |φ〉. It has been shown [64]
that this independence on the state of the ancilla implies that
W is a product unitary, i.e., W = Wt ⊗ Wz. This would imply
that CWH is the unitary channel CWH[ρt ] = WtρtW

†
t . However,

since CWH is nonunitary, we obtain a contradiction. Therefore,
CWH is not a catalytic channel.

APPENDIX D: THE IMPLICATIONS OF HAVING ACCESS
TO LARGER SYSTEM SIZES

Here we show that in the case of measurements, the total
work benefit of the measurement depends only on the target
system to which it is applied, and not any ancilla in the
system. For example, it does not matter if the target system is
maximally mixed, or half of a maximally entangled pure state,
and does not increase when the ancilla is allowed to grow in
size.

Recall that the system S is composed of the target system
T and the ancilla A. Given the results in the main paper, we
wish to show that

S(ρs) −
∑

i

piS(σs,i ) � S(ρt ) −
∑

i

piS(σt,i ), (D1)

where σs,i is the postmeasurement state of the system on
obtaining result i, and σt,i is the postmeasurement state
of the target alone. We can always represent the effect
of the measurement by Kraus operators, such that σs,i =
1
pi

∑
j (I ⊗ Ki j )ρs(I ⊗ K†

i j ) with pi = ∑
j Tr(K†

i jKi jρt ) and
σt,i = Tra(σs,i ).

6To see that it is nonunitary, consider applying it to a projector in
the basis in which the transpose is taken and note that the eigenvalues
are changed.
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To prove the desired relation, we introduce a third quantum
system X , which stores the measurement result (note that
this will typically be a system inside the physical measuring
device, but here we introduce it only as a mathematical con-
struction).

Recall that the mutual information is nonincreasing under
action of a local channel,

I (A : B) � I (A : C[B]), (D2)

which implies that

S(AB) − S(I ⊗ C[AB]) � S(B) − S(C[B]). (D3)

In our particular case, we will take A to be the ancilla and
B to be composed of the target and measurement result, so
HB = HT ⊗ HX . As far as measurements are concerned, we
are interested in channels of the form

C[ρtx] =
∑

i j

(Ki j ⊗ �i )ρtx(K†
i j ⊗ �

†
i ), (D4)

where the �i here are discrete unitary shift operators which
act to increment the measurement result by i, �i |0〉X = |i〉X .
Taking ρsx = ρs ⊗ |0〉〈0| and substituting all into equation
(D3), we find that

S(ρs ⊗ |0〉〈0|) − S

[∑
i j

(I ⊗ Ki j )ρs(I ⊗ K†
i j ) ⊗ |i〉 〈i|

]

� S(ρt ⊗ |0〉〈0|) − S

(∑
i j

Ki jρt K
†
i j ⊗ |i〉 〈i|

)
, (D5)

and hence

S(ρs) − S

(∑
i

piσs,i ⊗ |i〉 〈i|
)

� S(ρt ) − S

(∑
i

piσt,i ⊗ |i〉 〈i|
)

. (D6)

We now use the fact that for a classically correlated state,
S(

∑
i piσi ⊗ |i〉 〈i|) = ∑

i piS(σi ) + H (pi ), where H (pi ) de-
notes the Shannon entropy of the distribution specified by pi.
We therefore find

S(ρs) −
∑

i

piS(σs,i ) + H (pi )

� S(ρt ) −
∑

i

piS(σt,i ) + H (pi ), (D7)

which proves the result (D1).

APPENDIX E: EVALUATING THE CONDITIONAL WORK
BENEFIT OF MEASUREMENT

In this Appendix, we calculate the conditional work benefit
W apply

{Ci}|i of applying a measurement to the target system and
obtaining result i, using explicit batteries.

Recall that the system s is composed of an ancilla a and
the target system t , and there is also an additional ancilla
inside the measuring device z (which stores the measurement
result, but may also have other degrees of freedom), and the
“weight” w which stores and provides any change in work. In
the implicit battery formalism, the measurement is carried out
by implementing a unitary transformation on t and z, and then
performing a projective measurement on z,

Ci[ρt ] = Trz[V ρt ⊗ ρzV
†(I ⊗ 
i )], (E1)

where V is a unitary and 
i is a projector onto the outcome
space corresponding to result i. Expanding V in an energy
basis as

V =
∑
abcd

αcd
ab |a〉 〈b| ⊗ |c〉 〈d| , (E2)

we can then extend this to the explicit battery formalism by
considering

Ṽ =
∑
abcd

αcd
ab |a〉 〈b| ⊗ |c〉 〈d| ⊗ �Eb−Ea , (E3)

where �E is a translation operator for the weight. Including
the weight gives

Ci[ρt ] � Trzw[Ṽ ρt ⊗ ρz ⊗ ρwṼ †(I ⊗ 
i ⊗ I )], (E4)

where ρw is the initial state of the weight. The approximation
here is due to the width of the weight state. Considering a
top-hat wave function for the weight, ρw = |ψL〉〈ψL|, where

|ψL〉 = 1√
2L

∫ L

−L
dx |x〉 , (E5)

we obtain corrections of O( 1
L ) which can be made as small as

desired by taking L sufficiently large.
The conditional work benefit of applying the measurement

is given by the average of x in the final weight state given that
result i was obtained, minus the initial average of x. As the
latter is zero (〈ψL| x̂ |ψL〉 = 0), we have

W apply
{Ci}|i = 1

pi
Tr[(Ṽ ρt ⊗ ρz ⊗ τwṼ †)(I ⊗ 
i ⊗ x̂)]. (E6)

Substituting in, we find that

W apply
{Ci}|i = 1

pi
Tr

[ ∑
abcd

αcd
ab |a〉 〈b| ⊗ |c〉 〈d| ⊗ �Eb−Ea (ρt ⊗ ρz ⊗ ρw )

∑
e f gh

α
gh∗
e f | f 〉 〈e| ⊗ |h〉 〈g| ⊗ �

†
Ee−E f

(I ⊗ 
i ⊗ x̂)

]

= 1

pi

∑
abcde f gh

αcd
abα

gh∗
e f Tr(|a〉 〈b| ρt | f 〉 〈e| ⊗ |c〉 〈d| ρz |h〉 〈g| 
i ⊗ �Eb−Eaρw�

†
Ee−E f

x̂). (E7)
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Next, we will demonstrate how to evaluate the trace over the weight system. Consider the general case Tr[�Aρw�
†
Bx̂], where A

and B are constants. Using the cyclic symmetry of the trace, we have

Tr[�Aρw�
†
Bx̂] =

∫ ∞

−∞
dx x 〈x| �Aρw�

†
B |x〉 =

∫ ∞

−∞
dx x 〈x − A| ρw |x − B〉 =

∫ ∞

−∞
dx x ψL(x − A)ψL(x − B)

= 1

2L

∫ min(A,B)+L

max(A,B)−L
dx x = 1

4L
{[min(A, B) + L]2 − [max(A, B) − L]2} = 1

2
(A + B) − |A2 − B2|

4L
. (E8)

Considering very large L for which we can neglect corrections of O( 1
L ), we get 1

2 (A + B). Setting A = E f − Ee and B = Eb − Ea

and substituting the result into (E7), we find that W apply
{Ci}|i can be given as

W apply
{Ci}|i = 1

pi

∑
abcde f gh

αcd
abα

gh∗
e f

(E f − Ee) + (Eb − Ea)

2
Tr(|a〉 〈b| ρt | f 〉 〈e| ⊗ |c〉 〈d| ρz |h〉 〈g|)

= 1

pi

∑
abcde f gh

αcd
abα

gh∗
e f Tr

[
|a〉 〈b| (Htρt +ρt Ht )

2
| f 〉 〈e| ⊗ |c〉 〈d| ρz |h〉 〈g| − Ht |a〉 〈b| ρt | f 〉 〈e| ⊗ |c〉 〈d| ρz |h〉 〈g|

]

= 1

pi
Tr

[
V

(Htρt + ρt Ht )

2
⊗ ρzV

† − HtV ρt ⊗ ρzV
†

]

= 1

pi
Tr

[
Ci

(
Htρt + ρt Ht

2

)
− HtCi(ρt )

]
, (E9)

from which we recover (58).

APPENDIX F: WEIGHT STATE DEPENDENCE

In order that a device correctly implements a channel or measurement when extended to an explicit weight state, it is only
necessary that the weight state has a momentum distribution sharply peaked about zero [as in Eq. (A9)]. This is also the case for
the total work benefit of channels and measurements. However, when considering conditional or postselected work benefits, we
show here that the result has further dependence on the initial state of the weight.

So far, we have used a broad top-hat function |ψL〉 = 1
2L

∫ L
−L |x〉 dx for the initial state of the weight. Let us now consider how

the calculation in Appendix E changes for different states of the weight.
The dependence on the initial weight state comes when calculating Tr(�Aρw�

†
Bx̂) in Eq. (E8). We first show that any real

symmetric initial wave function for the weight φL(x), which satisfies∫ ∞

−∞
dx φL(x − C)φL(x + C) = 1 + O

(
1

L

)
(F1)

in the large L limit, will give the same results as the top-hat wave function. This is because

Tr(�Aρw�
†
Bx̂) =

∫ ∞

−∞
dx xφL(x − A)φL(x − B) =

∫ ∞

−∞
dx

(
x + A + B

2

)
φL

(
x − A − B

2

)
φL

(
x + A − B

2

)

= A + B

2

∫ ∞

−∞
dx φL

(
x − A − B

2

)
φL

(
x + A − B

2

)
= A + B

2
+ O

(
1

L

)
, (F2)

where, in the third line, we have used the symmetry of φL(x). This means that other common weight states such as Gaussians
will also work.

However, let us now consider an asymmetric “triangular” weight state,

|τw〉 =
√

3

L3

∫ L
4

− 3L
4

(
x + 3L

4

)
|x〉 dx, (F3)

where the constants are chosen so that the state is normalized, and 〈τL| x̂ |τL〉 = 0. Note that this state still has a narrow
momentum distribution about p = 0 in the limit of large L.

Taking ρw = |τL〉〈τL|, we have

Tr(�Aρw�
†
Bx̂) =

∫ ∞

−∞
dx xτL(x − A)τL(x − B) = 3

L3

∫ min(A,B)+ L
4

max(A,B)− 3L
4

dx x

(
x+ 3L

4
−A

)(
x + 3L

4
−B

)

= A + B

8
+ 3 min(A, B)

4
+ O

(
1

L

)
= A + B

2
− 3|A − B|

8
+ O

(
1

L

)
. (F4)
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Note that the first term is the same as we derived for the top-hat weight state. To calculate the effect of the second term, it is
helpful to express the measurement using a Kraus decomposition,

Ci[ρt ] =
∑

j

Ki jρt K
†
i j . (F5)

Extending this to incorporate an explicit weight, we define

K̃i j =
∑
a,b

(Ki j )ab |a〉 〈b| ⊗ �Eb−Ea . (F6)

Then,

W apply
{Ci}|i =

∑
j

1

pi
Tr[(K̃ijρt ⊗ τwK̃†

ij )(I ⊗ x̂)]

= 1

pi

∑
jabcd

(Ki j )ab(K†
i j )cd Tr

(|a〉 〈b| ρt |c〉 〈d| ⊗ �Eb−Eaρw�
†
Ec−Ed

x̂
)

= 1

pi

∑
jabcd

(Ki j )ab(K†
i j )cd Tr

(
|a〉 〈b| Htρt + ρt Ht

2
|c〉 〈d| − Ht |a〉 〈b| ρt |c〉 〈d| − 3

8
|Eb−Ea−Ec+Ed | |a〉 〈b| ρt |c〉 〈d|

)

= Tr
(
Ci

[Htρt + ρt Ht

2

])
− Tr(HtCi[ρt ]) − 3

8pi

∑
jabc

(K†
i j )ca(Ki j )ab|Eb − Ec| 〈b| ρt |c〉

= Tr
(
Ci

[Htρt + ρt Ht

2

])
− Tr(HtCi[ρt ]) − 3

8pi

∑
bc

(Mi )cb|Eb − Ec| 〈b| ρt |c〉 ,

where Mi = ∑
j K†

i jKi j is the positive operator valued measurement (POVM) element corresponding to result i [which satisfies
pi = Tr(Miρt )], which is independent of the choice of Kraus decomposition.

Note that the extra term above compared to our previous result is dependent on the off-diagonal elements of ρ and the
measurement operator M in its energy eigenbasis. This state of the weight produces a different energy shift to the top-hat state
of the weight when the energy and state contain energy coherences, even when L → ∞. This suggests that the conditional work
benefit of applying a measurement is not operationally well defined without specifying the weight state in detail. It is not clear
how large the set of weight states is which lead to an additional work benefit term compared to the top-hat weight state. Perhaps
there are only a few “bad” weight states which lead to this (e.g., those containing both spatial noncontinuity and asymmetry), in
which case the result of Theorem 3 could reasonably be taken as standard. This is an interesting avenue for further investigation.
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