
PHYSICAL REVIEW E 104, 014110 (2021)

Lindbladian approximation beyond ultraweak coupling

Tobias Becker,* Ling-Na Wu ,† and André Eckardt‡

Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany

(Received 28 December 2020; revised 7 June 2021; accepted 8 June 2021; published 12 July 2021)

Away from equilibrium, the properties of open quantum systems depend on the details of their environment.
A microscopic derivation of a master equation (ME) is therefore crucial. Of particular interest are Lindblad-type
equations, not only because they provide the most general class of Markovian MEs, but also since they are the
starting point for efficient quantum trajectory simulations. Lindblad-type MEs are commonly derived from the
Born-Markov-Redfield equation via a rotating-wave approximation (RWA). However the RWA is valid only for
ultraweak system-bath coupling and often fails to accurately describe nonequilibrium processes. Here we derive
an alternative Lindbladian approximation to the Redfield equation, which does not rely on ultraweak system-bath
coupling. Applying it to an extended Hubbard model coupled to Ohmic baths, we show that, especially away
from equilibrium, it provides a good approximation in large parameter regimes where the RWA fails.
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I. INTRODUCTION

Quantum systems are inevitably interacting with their sur-
rounding environment and very often this effect needs to
be taken into account for an accurate description of their
properties. In equilibrium the weak coupling to a thermal envi-
ronment can be described by statistical mechanics, i.e., Gibbs
ensembles, without considering the details of the environ-
ment beyond a few thermodynamic variables like temperature
and chemical potential. However, very often we are inter-
ested in quantum systems far from thermal equilibrium, for
instance, in the context of quantum information processing
[1,2], when considering quantum heat engines [3,4], or when
controlling quantum matter via strong driving [5,6]. In gen-
eral this is a nontrivial regime in which the properties of a
quantum system depend on the details of the environment.
Since a full description of a large environment is typically
neither of interest nor feasible, the system is usually de-
scribed within the theory of open quantum systems [7] by
(microscopically) deriving a master equation (ME). In the
Markovian case, where memory effects are negligible, the
Lindblad ME is the most general quantum ME [8,9]. It is
also the the basis for the efficient stochastic simulation of
larger systems by means of quantum trajectories [10–14].
The standard approach for microscopically deriving a ME is
the Born-Markov approximation leading to the Redfield ME
[15,16]. See for example the recent developments in quantum
chemistry [17–19], atomic physics [20], and quantum optics
[21–23]. From this a Lindblad ME follows, when further
employing the rotating-wave approximation (RWA) [7,24–
26]. However, this additional step requires ultraweak coupling
(which is small compared to the energy level splitting of the
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system) and the RWA only predicts the correct steady state in
the zeroth order of the coupling [17]. Problems of the RWA
also become significant in the transient dynamics [20,27,28]
as well as for transport properties [29]. In recent years there
has been ongoing development for Lindblad approximations
that bypass the RWA [30–36]. In this paper we provide a
general approach for deriving an alternative Lindbladian ap-
proximation to the Redfield equation that is valid also in
regimes of finite coupling, where the RWA fails. It is based
on an optimized diagonalization of the Redfield dissipator. We
test the resulting ME for an extended Hubbard chain coupled
to Ohmic baths and show that in a large parameter regime
where the RWA fails, it provides an accurate description of the
Redfield dynamics. Combining our approach with quantum
trajectory simulations, we are able to simulate system sizes
that we cannot treat by integrating the Redfield equation.

II. REDFIELD EQUATION

The starting point for our approach is the Redfield
formalism. The total Hamiltonian for the system-bath com-
pound reads Ĥtot = ĤS + ĤSB + ĤB, with the system and bath
Hamiltonian ĤS and ĤB, respectively. The interaction be-
tween system and bath is described by ĤSB = Ŝ ⊗ B̂, where
B̂ shall carry the dimension of energy and Ŝ is a dimen-
sionless hermitian operator acting on the system. The case
of several independent baths and non-hermitian coupling is
outlined in Appendix F. The time evolution of the reduced
density matrix for the system ρ̂ = trB(ρ̂tot ) shall be described
in Born-Markov approximation [7,37]. First, the Born approx-
imation provides a factorization of system and bath states, i.e.,
ρ̂tot = ρ̂ ⊗ ρ̂B, where the bath stays in thermal equilibrium
ρ̂B = exp[−βĤB]/trB exp[−βĤB] at an inverse temperature
β = 1/T . Additionally, in the Markov approximation bath
correlations are assumed to decay fast compared to the
timescales of the system dynamics, resulting in the time-local
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time-dependent Redfield ME [15,16]

˙̂ρ = − i

h̄
[ĤS, ρ̂] + Ŝρ̂Ŝ†

t + Ŝt ρ̂Ŝ − ŜŜt ρ̂ − ρ̂Ŝ†
t Ŝ,

Ŝt =
∫ t

0
Cτ Ŝ−τ dτ,

(1)

with bath correlation Cτ = trB(B̂τ B̂ρ̂B)/h̄2 and Heisenberg
operators Ŝτ = exp[iĤSτ/h̄]Ŝ exp[−iĤSτ/h̄] and B̂τ =
exp[iĤBτ/h̄]B̂ exp[−iĤBτ/h̄]. Often a further approximation
is made by setting Ŝt ≈ Ŝ∞, which is sufficient for the
late-time or steady-state behavior [28]. In contrast, we will
keep the time dependence. The last two terms of the Redfield
equation (1) are not purely dissipative but also contribute to
the coherent dynamics. We split the Redfield equation (1) into
coherent and dissipative parts as ˙̂ρ = (−i/h̄)[ĤS + ĤLS

t , ρ̂] +
DRed

t [ρ̂], with Lamb-shift Hamiltonian and Redfield
dissipator

ĤLS
t = h̄

ŜŜt − Ŝ†
t Ŝ

2i
, (2)

DRed
t [ρ̂] = Ŝρ̂Ŝ†

t + Ŝt ρ̂Ŝ − 1

2
{ŜŜt + Ŝ†

t Ŝ, ρ̂}, (3)

respectively, where {., .} denotes the anticommutator. The
Redfield dissipator (3) is not of Lindblad form [7,9,29] as will
be seen also explicitly from Eq. (6) below.

III. ROTATING-WAVE APPROXIMATION

The standard way to derive a Lindblad ME is closely re-
lated to the representation of the Redfield dissipator in the
eigenbasis of ĤS, Sqk = 〈q|Ŝ|k〉, and ĤS |q〉 = εq |q〉. For later
convenience let the coupling matrix fulfill the normalization
condition

∑
qk |Sqk|2 = 1, i.e., the coupling strength is ab-

sorbed in the bath operator B̂. In the eigenbasis the Heisenberg
operator takes the form Ŝ−τ = ∑

qk Sqk exp[−i�qkτ/h̄]L̂qk ,
with jump operators L̂qk = |q〉〈k| and level splitting �qk =
εq − εk . The Redfield equation (1) is quadratic in Ŝ and,
thus, runs over four indices q, k and q′, k′ for the two
pairs of level splittings �qk and �q′k′ . For very weak
coupling the oscillations of the nonsecular terms with
�qk �= �q′k′ are much faster than the slow variation of the
state induced by the coupling and, thus, average out. Ne-
glecting all but the terms with �qk = �q′k′ leads to the
RWA [7,25,26]

ĤLS,RWA
t =

∑
qk

h̄ ht (�qk )|Sqk|2L̂†
qkL̂qk, (4)

DRWA
t [ρ̂] =

∑
qk

2 gt (�qk )|Sqk|2
[

L̂qk ρ̂L̂†
qk − 1

2
{L̂†

qkL̂qk, ρ̂}
]
,

(5)

where gt and ht denote the real and imaginary part of the
bath correlation function Gt (�) = ∫ t

0 exp[−i�τ/h̄]Cτ dτ .
The Lamb-shift Hamiltonian ĤLS,RWA

t is diagonal in the en-
ergy basis (L̂†

qkL̂qk = |k〉〈k|) and thus modifies the coherent
dynamics only by shifting the eigenenergies. In turn, the
dissipator is of Lindblad form and describes quantum jumps
between individual energy eigenstates. One also obtains de-
coupled equations of motion for the diagonal and off-diagonal

entries of the density matrix. The off diagonals decay expo-
nentially, leading to a diagonal steady state. For a thermal
bath at inverse temperature β this is of canonical Gibbs form,
i.e., ρ̂RWA

ss = exp[−βĤS]/trS exp[−βĤS]. This is independent
of the coupling ĤSB and therefore it only captures the zero
coupling limit [17,24].

IV. OPTIMIZED TRUNCATION APPROACH

For weak but finite coupling, where the RWA fails, we now
derive an alternative approximation to the Redfield equation,
which also leads to a Lindblad ME. For this purpose, we first
bring the Redfield dissipator (3) into the diagonal form

DRed
t [ρ̂] =

∑
σ=+,−

σ

[
Âσ

t ρ̂Âσ†
t − 1

2

{
Âσ†

t Âσ
t , ρ̂

}]
, (6)

by introducing the new jump operators

Â±
t = 1√

2 cos ϕt

[
λ±

t Ŝ ± 1

λ±
t
Ŝt

]
, (7)

with λ±
t = λt exp (∓i ϕt

2 ) and arbitrary real, time-dependent
parameters λt and ϕt , and where λ−2

t carries the dimension
of time. By plugging Eq. (7) into Eq. (6) in Appendix B it is
verified that these equations provide an exact representation
of the Redfield dissipator (3). The freedom of choosing λt

and ϕt will be crucial in the following. Since the prefactor
of the second term in Eq. (6) is negative, we refer to it as the
pseudo-Lindblad dissipator. A similar decomposition of the
Redfield equation has been used recently in Ref. [38] however
for a specific choice of λ±

t which does not correspond to the
optimal value that we derive below. Dissipators of the type of
Eq. (6) are also used for time-convolutionless description of
non-Markovian processes [1,39,40]. In contrast to the RWA,
Eqs. (6) and (7) are obtained without diagonalizing the sys-
tem’s Hamiltonian. Also, whereas in the RWA the number
of jump operators grows quadratically with the Hilbert space
dimension the pseudo-Lindblad dissipator Eq. (6) only has
two jump operators. Finally Eq. (6) is reduced to Lindblad
form by neglecting the negative contribution:

DRed
t [ρ̂] � Dtrunc

t [ρ̂] = Â+
t ρ̂Â+†

t − 1
2 {Â+†

t Â+
t , ρ̂}. (8)

This truncation can be expected to be justified as long as
the weight of the negative contribution ‖Â−

t ‖2 is small com-
pared to the weight of the positive contribution ‖Â+

t ‖2. In the
following, we will compute the weight using the Frobenius
norm ‖Â±

t ‖2 = trS(Â±
t Â±†

t ). Due to the special form of the
jump operators Â±

t , the optimal values for λt and ϕt mini-
mize the weight of the negative contribution both absolutely
and relative to the positive contribution. The optimization is
carried out in Appendix C and one finds the optimal values
λ4

t = g2
t + h2

t and sin ϕt = ht/(g2
t + h2

t )1/2, where the overline
denotes an average defined by x = ∑

qk x(�qk )|Sqk|2. Here
|Sqk|2, with

∑
qk |Sqk|2 = 1, plays the role of a probability dis-

tribution. We could interpret these results, e.g., by identifying
λ−2

t with the typical timescale that is related to the amplitude
of the bath correlation function. The optimization is crucial for
the validity of the truncated ME, which is further illustrated in
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Appendix E. The optimized weights read

‖Â±
t ‖2 = ±gt +

√
gt

2 + V [gt ] + V [ht ], (9)

with “variance” V [x] = x2 − x2. Thus, the truncation is ex-
pected to provide a good approximation, as long as the
variances of the real and imaginary parts of the bath cor-
relation function are small. The truncated ME (8) becomes
exact in the limit of a constant bath correlation function,
i.e., energy independent, for which the variances vanish.
This is also known as the singular coupling limit in which
the bath correlation is time local Cτ = αδ(τ ) and the con-
volution operator Ŝt = αŜ is proportional to the coupling
operator with some real constant α [9,41]. In this limit
the Lamb shift vanishes, the optimal parameters reduce to
λt = |α|1/2 and ϕt = 0, and only the positive jump oper-
ator Â+

t = (|α|/2)1/2Ŝ contributes to the Redfield equation
[42]. In order to estimate the quality of the approximation,
let us have a look at the relative weight of the negative
contribution. For this purpose, we will focus on Ohmic
baths at inverse temperature β. Results for other bath mod-
els are presented in Appendix D. The bath is characterized
by the spectral density J (�) from which the bath correla-
tion is obtained, Cτ = ∫ ∞

−∞ exp[−i�τ/h̄]J (�)/(exp[β�] −
1) d�/π h̄2. We consider J (�) = γ�/(1 + �2/E2

c ), with
Drude cutoff at energy Ec, where the dimensionless factor γ

comprises the coupling strength relative to the energy scales
of the system encoded in the level splittings � taking values
�kq. For this model the bath correlation Cτ is found to decay
exponentially with time, τB = max{h̄/Ec, h̄β/2π} (Appendix
A). Thus, assuming a large cutoff energy, the Markov approx-
imation to the Redfield equation is valid if the coupling is
small compared to the bath temperature. For computing the
long-time dynamics or the steady state, one can replace Â±

t by
Â±

∞ and obtains

‖Â−
∞‖2

‖Â+∞‖2
=

[
1

16
+ χ2

2

]
β2 V [�] + O

(
β4�4,�2/E2

c

)
, (10)

where χ = cot(ξ/2)/2 + ξ 2/π
∑∞

l=1
1

l (ξ 2−(2π l )2 ) with ξ =
βEc. Note that Eq. (10) is found also for Ohmic baths with
different cutoff (see Appendix D). According to Eq. (10) the
truncated negative term in the pseudo-Lindblad dissipator is
small for a temperature that is large compared to the variance
of the level splitting. Consequently for sufficiently small β

the truncated ME (8) should be applicable beyond the zero
coupling limit.

V. RELATION TO BROWNIAN MOTION

One of the few exactly solvable open quantum systems is
the paradigmatic example of the damped harmonic oscillator
[43–46]. In the high-temperature regime it is described by the
equation of Brownian motion, which is a Lindblad master
equation [7]. However, there is no corresponding equation
of motion for general systems. We now demonstrate that the
truncated ME reproduces the equation of Brownian motion in
the high-temperature limit and, thus, might be seen as a gen-
eralization for it for general systems. The damped harmonic
oscillator describes a particle with mass M in a quadratic

potential with oscillator frequency �, the position of which is
coupled to a continuum of oscillator modes. The total system-
bath Hamiltonian is given by

Ĥtot = P̂2

2M
+ M�2

2
Q̂2

+
∞∑
k

[
p̂2

k

2mk
+ mkω

2
k

2

(
q̂k − ck

mkω
2
k

Q̂

)2]
, (11)

with position Q̂ and momentum P̂ of the central oscil-
lator. The coupling between system and bath is of the
form ĤSB = Q̂ ⊗ B̂ with bath operator B̂ = ∑∞

k −ckq̂k where
the coefficients ck determine the coupling strength between
the individual bath modes and the system. The model
also takes into account the potential renormalization HRN =∑∞

k c2
k/(mkω

2
k )Q̂2 = 2Mh∞(0)Q̂2, which cancels the damp-

ing kernel h∞(0) in the imaginary part of the bath correlation
function. The Redfield equation takes the form of Eqs. (2)
and (3) for which one identifies the dimensionless coupling
operator Ŝ = 1/

√
2(â + â†) and explicitly obtains the convo-

lution Ŝ∞ = 1/
√

2 (G∞(−�) â + G∞(�) â†), where â† (â)
is the creation (annihilation) operator for eigenmodes of the
central oscillator that is related to the position and momentum
via â = (M�/2h̄)1/2(Q̂ + (i/M�)P̂). The detailed form of
the bath correlation function depends on the particular bath
model. However, in the high-temperature limit and by assum-
ing a large cutoff energy for the spectral density one obtains
the universal result

G∞(�) � γ

[
1

h̄β
− i χ�

]
, (12)

where χ is a real number that depends on how the cutoff is
introduced. Generically the real part of the bath correlation
function is given by the thermal time γ /(h̄β ). For the imag-
inary part note that the potential renormalization cancels the
damping kernel and in the limit of large cutoff energies the
vacuum fluctuations decay such that only the antisymmetric
thermal noise contributes. In order to construct the truncated
ME we calculate the parameters λ2

∞ and ϕ∞ by following
the optimization procedure. For the damped harmonic oscil-
lator one finds explicitly λ2

∞ = 1/
√

2
√

|G(�)|2 + |G(−�)|2,
sin ϕ∞ = ‖Ŝ‖/(2 ‖Ŝ∞‖)Im[G(�) + G(−�)]. In the high-
temperature limit this reduces to λ∞ � √

γ /(h̄β ) and ϕ∞ �
0. Finally we have everything at hand to write down the jump
operator of the truncated ME:

Â+
∞ =

√
γ

2

[√
1

h̄β
Ŝ +

√
h̄βŜt

]

=
√

γ�

2

[√
4M

h̄2β
Q̂ + 1√

(1/χ2)M(1/β )
P̂

]
.

(13)

This is exactly the same jump operator as for the equation of
Brownian motion [7].

014110-3



BECKER, WU, AND ECKARDT PHYSICAL REVIEW E 104, 014110 (2021)

VI. CONCRETE EXAMPLE

We further test our method for the extended Hubbard chain
with N spinless fermions and l sites, described by

ĤS = −J
l−1∑
i=1

(â†
i âi+1 + â†

i+1âi ) + V
l−1∑
i=1

n̂in̂i+1, (14)

with annihilation and number operators âi and n̂i = â†
i âi at

site i. The tunneling parameter J quantifies the kinetic energy
of the particles and V is the interaction energy of particles
occupying adjacent sites. The system is driven by a local heat
bath at temperature T that couples to the density n̂1. For a bath
that couples globally to all sites similar results are found as
outlined in the section below. In order to quantify the deviation
of the RWA and truncation approach from the Redfield result,
we introduce the error measure [47,48]:

dRWA/trunc = 1
2 tr

√
(ρ̂RWA/trunc − ρ̂Red)2 ∈ [0, 1]. (15)

A. Steady state

In equilibrium the total system-bath compound ther-
malizes at the given temperature and by tracing over
the bath degrees of freedom the reduced density ma-
trix of the system has the generalized Gibbs form, ρth =
trB exp[−βĤtot]/trStrB exp[−βĤtot] [49]. However, there is
yet no ME that gives this steady-state solution in all orders of
the coupling strength γ . The RWA only captures the zeroth or-
der contribution, whereas the Redfield equation also correctly
reproduces the coherences in first order [7,17,50,51]. We
will now compare the steady-state errors defined by Eq. (15)
for the truncation method with those of the RWA. Both are
plotted versus temperature T/J and coupling strength γ in
Figs. 1(a) and 1(d). For fixed temperature T/J = 5.43 in the
weak coupling regime the error of the RWA scales linearly
with γ [Fig. 1(c) dashed dark], whereas the error of the trun-
cation is smaller and of higher order [Fig. 1(f) solid dark].
Also the result of the truncated ME shows good agreement
for large temperatures. For fixed coupling strength γ = 0.19
in Fig. 1(g) we can see that dtrunc (solid red line) decays
rapidly with temperature, like ‖Â−

∞‖/2‖Â+
∞‖2 (black solid

line), whereas dRWA decays much slower. From dRWA − dtrunc

in Fig. 1(i), it is evident that the steady-state solution of
the truncated ME is in better agreement with the Redfield
result than the RWA for all parameters except for very weak
coupling and low temperatures. Note that this is also the
regime in which the Redfield steady state acquires unphysical
negative probabilities as marked by the bright cyan line in
Figs. 1(a), 1(d), and 1(i). This is a known problem of the
Redfield formalism [50–53]. Namely, for low temperatures
the bath correlation time becomes large compared to the cou-
pling strength for which the Born-Markov approximation no
longer holds [54]. This is in accordance with our analysis that
for low temperatures the weight of the negative contribution
in the pseudo-Lindblad dissipator grows significantly, causing
the Redfield steady state to have negative populations. Just
recently it has been argued that this loss of positivity indicates
the failure of the weak coupling assumption [22].

FIG. 1. Error dX of the RWA [(a) and (b), dashed lines] and of
the truncated ME [(d) and (e), solid lines] as a function of the bath
temperature T/J and coupling strength γ for the steady state (left
panels) and for the transient with averaging time τR = 2h̄/γ J (right
panels). The smaller panels show cuts for fixed γ = 0.19 [(g) and
(h), along the vertical blue lines in (a), (b), (d), and (e)] and fixed
T/J = 5.43 [(c) and (f), along the horizontal red lines in (a), (b),
(d), and (e)]. To the left of the wiggly cyan line in (a), (d), and (i) the
Redfield steady state acquires negative populations. The lower panels
show dRWA − d trunc for the steady and the transient state in (i) and (j),
respectively. The parameters are l = 8, N = 4, V = 2 J , Ec = 17 J .

B. Transient dynamics

Let us now study the relaxation dynamics starting from the
system’s ground state. We evaluate the error for the transient
dynamics by introducing the time averaged distance measure
dRWA/trunc

τR
= (1/τR)

∫ τR

0 dRWA/trunc(t ) dt , where we obtain the
solutions ρ̂X (t ) by direct integration of the particular ME. We
aim at choosing τR big enough to cover the transient regime
but small enough not to capture the steady-state properties.
For the parameters discussed here τR = 2h̄/γ J turns out to be
a reasonable choice. The RWA provides a poor prediction of
the transient dynamics [Fig. 1(b)]. A large error of 0.5 (the
maximum value plotted) is reached already for very small
coupling γ � 0.3 [Fig. 1(c) cyan dashed line]. For short times
the neglect of nonresonant terms with �qk �= �q′k′ in the RWA
overestimates the relaxation [27]. Here the truncation method
[Fig. 1(e)] clearly outperforms the RWA. For all parameters
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except a small regime for T/J � 1 and γ � 0.07 the time
averaged error for the truncated ME is not only smaller than
the one in the RWA [Fig. 1(j)] but also very close to zero
[Fig. 1(f) solid bright, Fig. 1(h) solid red].

C. Globally coupled bath

The coupling operator Ŝ of the system-bath interaction
ĤSB defines in which way the bath is coupled to the system.
Local coupling operators are most relevant for transport
properties, where the baths couple to the edges of a system.
In this section we briefly discuss the case when a bath
couples globally to the system. For models where the
coupling operator itself is a global quantity, e.g., for the
damped harmonic oscillator, all the previous expressions
hold. However, in particular for the extended Hubbard model
the coupling operator Ŝ = ∑l

i=1 n̂i = N is not a reasonable
choice, since it simply corresponds to the total particle
number which is conserved. Instead one has to consider a
system-bath interaction Hamiltonian that consists of several
coupling terms. We choose Ŝα = n̂α where the index α labels
independent baths of the same temperature. In Fig. 2 we
repeat the analysis of Fig. 1 but for a bath that couples
globally to the system rather than to a single site only. Here
the trace distance to the full Redfield result in Eq. (15) again
serves as an error measure for the RWA and the truncated ME,
respectively. As compared to a bath that only couples locally,
here the damping dominates the coherent dynamics. The
relaxation time becomes shorter and therefore we compute
the time averaged distance measure in Figs. 2(b), 2(e), 2(h),
and 2(j) for τR = 1h̄/γ J (as compared to τR = 2h̄/γ J , which
was used for the local bath). The initial state is a coherent
superposition of the ground state and first excited state. By
looking at the relative error dRWA − d trunc for the steady state
in Fig. 2(i) and for the dynamics in Fig. 2(j), it is evident that
for weak coupling and low temperature the RWA performs
better, whereas for finite coupling and higher bath temperature
the truncated ME is favorable. All in all the case of a global
bath is qualitatively similar to the case of a local bath.

VII. NONEQUILIBRIUM STEADY STATE

Finally, we examine properties of the nonequilibrium
steady state of the driven-dissipative system, focusing on
parameters, where the RWA is known to be an inadequate
description [29]. The system is driven by two local baths at
different temperature TL < TR that couple to the occupations
n̂1 and n̂l of the outermost sites of the chain, respectively. In
Fig. 3 the particle imbalance �N = NL − NR in the nonequi-
librium steady state is shown, where NL = ∑

i<l/2〈n̂i〉 and
NR = ∑

i>l/2〈n̂i〉 count the particles on the left and right half
of the chain, respectively. According to the thermoelectric
effect [55] a greater particle mobility near to the hotter, right
reservoir is expected such that the particle density tends to
the left side of the chain, i.e., �N > 0. However, this is not
captured by the RWA. Just as in equilibrium the off-diagonal
elements of the density matrix decay and the steady state is di-
agonal in the eigenbasis of ĤS. Since the eigenstates reflect the
symmetry of the system that has no preferred orientation the
nonequilibrium steady state in RWA localizes evenly among
the left and right half of the chain [Fig. 3(a) solid red]. For

FIG. 2. For a bath that couples globally to the system, error dX of
the RWA [(a) and (b), dashed lines] and of the truncated ME [(d) and
(e), solid lines] as a function of the bath temperature T/J and system-
bath coupling strength γ for the steady state (left panels) and for the
transient with averaging time τR = 1h̄/γ J (right panels). The smaller
panels show cuts for fixed γ = 0.19 [(g) and (h), along the vertical
blue lines in (a), (b), (d), and (e)] and fixed T/J = 5.43 [(c) and (f),
along the horizontal red lines in (a), (b), (d), and (e)]. To the left
of the wiggly cyan line in (a), (d), and (i) the Redfield steady state
acquires negative populations. The lower panels show dRWA − d trunc

for the steady and the transient state in (i) and (j), respectively. The
parameters are l = 8, N = 4, V = 2 J , Ec = 40 J .

finite coupling parity is broken and finite off-diagonal matrix
elements of the nonequilibrium steady state give a nonzero
contribution to particle imbalance. This is well captured by
the truncated ME [Fig. 3(a)]. Furthermore its Lindblad form
allows the use of quantum trajectory simulations [10]. This
is beneficial especially for many body systems for which the
Hilbert space dimension grows exponentially with the sys-
tem size. Thus, the truncated ME allows one to study larger
systems that are hardly accessible by direct integration of the
Redfield equation [Fig. 3 solid black].

VIII. CONCLUSION

We have derived an alternative Lindbladian approximation
to the Redfield ME. It provides an accurate description in
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FIG. 3. Particle imbalance in nonequilibrium steady state for
N = �l/2� U = 2J , Ec = 17J , TL = 7J , TR = 13J . The figure is
plotted (a) for l = 8 vs γ and (b) for γ = 0.2 vs l and the Hilbert
space dimension dimHS. For system sizes l � 8 it is calculated via
sparse LU decomposition (Redfield in dashed gray, truncated ME
in solid black, RWA in solid red). For l � 8 the truncated ME is
solved by quantum trajectory simulations. The inset in (b) shows the
statistical error as a function of the number of trajectories for l = 11
and 15. We average over 5 × 104, 104, 6 × 103, and 103 trajectories
for, respectively, l = 8, 9, 10, 11; 12,13; 14; and 15. Lines are guides
to the eye.

large parameter regimes, where the RWA fails, in particu-
lar for nonequilibrium scenarios like transient dynamics and
nonequilibrium steady states which are nontrivial also in the
high-temperature regime. It, thus, allows for efficient quantum
trajectory simulations also beyond ultraweak coupling.
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APPENDIX A: BATH CORRELATION FUNCTION

Generally for open quantum systems the bath model is
defined by the bath Hamiltonian ĤB and the system-bath
coupling Hamiltonian ĤSB = Ŝ ⊗ B̂. In the Redfield master

equation (1) in the main text the details of the bath are in-
corporated via the bath correlation Cτ = trB(B̂τ B̂ρ̂B)/h̄2, with
B̂τ = exp[iĤBτ/h̄]B̂ exp[−iĤBτ/h̄]. We consider a thermal
bath ρ̂B = exp[−βĤB]/ZB at inverse temperature β. The bath
correlation then assumes the form [17]

Cτ =
∫ ∞

−∞
ei�τ/h̄ J (�)/h̄

eβ� − 1

d�

π h̄
, (A1)

where the bath model is specified by means of the anti-
symmetric spectral density J (�) = −J (−�). We consider an
Ohmic bath with Drude cutoff at energy Ec:

J (�) = γ�

1 + (�/Ec)2
. (A2)

In the upper complex plane the integrand decays exponen-
tially such that the integral can be solved by the residue
theorem. The Drude spectral density becomes singular at
the complex cutoff energy iEc for which the residue is
Res(J (�),� = iEc) = γ E2

c /2. The Bose function has poles
at the complex Matsubara energies νl = 2π l/β, which is
seen by noting that [exp(β�) − 1]−1 = (1/2)[coth(β�/2) −
1] and by making use of the series expansion, coth(β�/2) =
2/(β�)

∑∞
l=−∞ 1/(1 + ν2

l /�2). The residues are given by
Res([exp(β�) − 1]−1,� = iνl ) = 1/β. Altogether the bath
correlation reads

Cτ =γ E2
c

2h̄2 [cot(βEc/2) − i] e−Ecτ/h̄

− 2γ

h̄2β

∞∑
l=1

νl e−νl τ/h̄

1 − (νl/Ec)2
. (A3)

We also introduce the bath correlation function,

Gt (�) = gt (�) + iht (�) =
∫ t

0
e−i�τ/h̄ Cτ dτ, (A4)

with real valued gt , ht which is advantageous for the energy-
basis representation of the RWA and which is used to
determine the optimal values for λt and ϕt in the pseudo-
Lindblad dissipator. Since the time dependence only arises in
the exponentials this integral can be carried out straightfor-
wardly. In the long-time limit the real part simplifies to

g∞(�) = J (�)/h̄

eβ� − 1
, (A5)

which implies detailed balance within the RWA [7,57]. The
imaginary part consists of three parts:

h∞(�) = −γ Ec

2h̄︸ ︷︷ ︸
h∞(0)

+ γ�2Ec

2h̄
(
E2

c + �2
)︸ ︷︷ ︸

hvac∞ (�)

+ (�/h̄)γ

[
−E2

c

2
(
E2

c + �2
) cot(βEc/2) + + 2

β

∞∑
l=1

νl(
�2 + ν2

l

)(
1 − ν2

l /E2
c

)
]

︸ ︷︷ ︸
hth∞(�)

, (A6)

the damping kernel h∞(0); the temperature-independent and
symmetric part hvac

∞ (�), which describes vacuum fluctuations;
and the antisymmetric part hth

∞(�), which describes thermal
noise.

APPENDIX B: PSEUDO-LINDBLAD EQUATION

The dynamics of the reduced density matrix ρ̂ = trB(ρ̂tot )
is described by the Redfield equation ˙̂ρ = (−i/h̄)[ĤS +
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ĤLS
t , ρ̂] + DRed

t [ρ̂] with ĤLS
t and DRed

t given in Eqs. (2) and
(3) with the system operator Ŝ and the convolution with
the bath correlation Ŝt = ∫ t

0 Cτ Ŝ−τ dτ . Here we derive the
pseudo-Lindblad representation of the Redfield dissipator in
Eq. (6), where we have introduced the new jump operators

Â±
t in Eq. (7), with λ±

t = λt e∓i ϕt
2 and arbitrary real, time-

dependent parameters λt and ϕt . Essentially the symmetrized
and antisymmetrized combination ensures that only the off-
diagonal terms ŜŜ†

t and Ŝt Ŝ survive and the diagonals Ŝt Ŝ
†
t

and ŜŜ cancel. For the first two terms in the dissipator we have

Â+
t ρ̂Â+†

t − Â−
t ρ̂Â−†

t = 1

2 cos ϕt

[(
λ+

t Ŝ + 1

λ+
t
Ŝt

)
ρ̂

(
λ+∗

t Ŝ + 1

λ+∗
t

Ŝ†
t

)
−

(
λ−

T Ŝ − 1

λ−
t
Ŝt

)
ρ̂

(
λ−∗

t Ŝ − 1

λ−∗
t

Ŝ†
t

)]

= 1

2 cos ϕt

[
(|λ+

t |2 − |λ−
t |2)Ŝρ̂Ŝ +

(
1

|λ+
t |2 − 1

|λ−
t |2

)
Ŝt ρ̂Ŝ

†
t

]

+ 1

2 cos ϕt

[(
λ+

t

λ+∗
t

+ λ−
t

λ−∗
t

)
Ŝρ̂Ŝ†

t +
(

λ+∗
t

λ+
t

+ λ−∗
t

λ−
t

)
Ŝt ρ̂Ŝ

]
, (B1)

where the diagonal terms in the second line cancel due
to |λ±

t |2 = λ2
t . By noting λ+∗

t

λ+
t

+ λ−∗
t

λ−
t

= e−iϕt + eiϕt = 2 cos ϕt

in the off-diagonal terms in the third line, we see that
both the absolute value λt and the phase ϕt cancel in the
pseudo-Lindblad equation. Finally, one arrives at

Â+
t ρ̂Â+†

t − Â−
t ρ̂Â−†

t = Ŝρ̂Ŝ†
t + Ŝt ρ̂Ŝ, (B2)

which is the first part of the Redfield dissipator Eq. (3) in the
main text. Likewise we can show that the remaining terms
follow analogously, where only the off-diagonal term ŜŜ†

t
and its hermitian conjugate survive and the parameters λt and
ϕt cancel out.

APPENDIX C: OPTIMAL CHOICE FOR λt AND ϕt

Since the pseudo-Lindblad equation is an exact representa-
tion of the Redfield equation, it does not depend on the choice
of λt and ϕt . However, these parameters change the relative
weight of the negative contribution, and thus have an influence
on the truncated master equation. Here we find the optimal
values to minimize the weight of the negative contribution and
thus to truncate it. Thereby we calculate the weight with the
Frobenius norm of the jump operators ‖Â±

t ‖2 = trS(Â±
t Â±†

t ).
By making use of the additivity identity ‖Â + B̂‖2 = ‖Â‖2 +
2RetrS(ÂB̂†) + ‖B̂‖2, which holds for any operators Â and B̂,
the weights read

‖Â±
t ‖2 = 1

2 cos ϕt

[
λ2

t ‖Ŝ‖2 ± 2 cos ϕt RetrS(ŜŜ†
t )

− 2 sin ϕt ImtrS(ŜŜ†
t ) + 1

λ2
t
‖Ŝt‖2

]
. (C1)

In the following the weight of the negative contribution ‖Â−
t ‖2

is minimized by varying λ2
t and ϕt at fixed but arbitrary time

t . To make this clear the index is dropped in the subsequent
discussion. We begin with the variation with respect to λ2.

The necessary condition for a minimum is

0 = ∂

∂λ2
‖Â−‖2

∣∣∣∣
λopt

= 1

2 cos ϕ

[
λ2

opt‖Ŝ‖2 − 1

λ2
opt

‖Ŝ‖2

]
,

(C2)

from which the optimal parameter λ2
opt = ‖Ŝ‖/‖Ŝ‖ is de-

duced. Furthermore the variation with respect to the complex
angle ϕ gives

0 = ∂

∂ϕ
‖Â−‖2

∣∣∣∣ϕopt
λopt

= ‖Ŝ‖‖Ŝ‖ sin ϕopt − ImtrS(ŜŜ†)

(cos ϕopt )2
, (C3)

and leads to the optimal choice of sin ϕopt =
ImtrS(ŜŜ†)/‖Ŝ‖‖Ŝ‖. The same results are obtained by
varying with respect to ϕ first and with respect to λ second.
For the sake of completeness one straightforwardly verifies
the sufficient conditions for local minima ∂2

∂x2 ‖Â−‖2|ϕopt
λopt

> 0

with x = λ2 and ϕ. It turns out that the extremal condition
also holds for the ratios

0 = ∂

∂λ2

‖Â−‖2

‖Â+‖2

∣∣∣∣
λopt

= 4 cos ϕRetrS(ŜŜ†
t )

‖Â+‖4

[
λ4

opt‖Ŝ‖2 − ‖Ŝ†‖2
]
,

0 = ∂

∂ϕ

‖Â−‖2

‖Â+‖2

∣∣∣∣ϕopt
λopt

= 2λ2
optRetrS(ŜŜ†)

‖Â+‖4

[
‖Ŝ‖2 sin ϕopt − ‖Ŝ‖

‖Ŝ‖ ImtrS(ŜŜ†)

]
,

(C4)

such that the optimal parameters minimize the weight of
the negative contribution both absolutely and relatively to
the positive one. By reintroducing the time dependence of
the convolution operator Ŝt for the optimal parameters the
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weights take the values

‖Â±
t ‖2 = ±RetrS(ŜŜ†

t ) +
√

‖Ŝ‖2‖Ŝt‖2 − [ImtrS(ŜŜ†
t )]2.

(C5)

To get an explicit form for a bath model the trace is performed
in the eigenbasis of the system:

trS(ŜŜ†
t ) =

∑
qk

〈q|Ŝ|k〉〈k|Ŝ†
t |q〉 =

∑
qk

|Sqk|2G∗
t (�qk ), (C6)

‖Ŝt‖2 =
∑

qk

〈q|Ŝt |k〉〈k|Ŝ†
t |q〉 =

∑
qk

|Sqk|2|Gt (�qk )|2, (C7)

where Gt (�) = gt (�) + iht (�) is the bath correlation func-
tion, which is connected to Cτ via the integral Gt (�) =∫ t

0 exp[−i�τ/h̄]Cτ dτ . Without loss of generality the cou-
pling matrix Sqk = 〈q|Ŝ|k〉 is assumed to be normed,
i.e.,

∑
q |Sqq|2 = 1. The optimal parameters are given by

λ4
t = g2

t + h2
t and sin ϕt = ht/(g2

t + h2
t )1/2, where the overline

denotes an average defined by x = ∑
qk x(�qk )|Sqk|2. Here

|Sqk|2 plays the role of a probability distribution. Finally the

weights ‖Â±
t ‖2 are further simplified to Eq. (9) in the main

text, where V [x] = x2 − x2 defines the variance.

APPENDIX D: RELATIVE WEIGHT OF THE
NEGATIVE CONTRIBUTION

In the following we compute the weights in the time-
independent pseudo-Lindblad equation and find the temper-
ature scaling for an arbitrary spectral density J (�). The real
part of the bath correlation function is found to be

g∞(�) = J (�)/h̄

eβ� − 1
= J (�)

2h̄
[coth(β�/2) − 1] (D1)

where β is the inverse bath temperature. Note that only aver-
ages that are symmetric in � contribute and that the spectral
density is antisymmetric [58]. As a result the relative weight
of the negative contribution scales only in even powers of the
inverse bath temperature. In the high-temperature regime the
weights reduce to

‖Â±
∞‖2 = 1

h̄β

{
±

[
J (�)

�
+ β2 J (�)�

12

]
+

√
J (�)2

�2
+ β2

5

12
J (�)2 + β2 V [h∞] + O(β4�4)

}
. (D2)

If we assume V [h∞] = O(β2), which will be discussed for
the Drude bath in more detail, the imaginary part of the
bath correlation function only contributes in second or-
der. In zeroth order the relevant expressions are ‖Â±

∞‖2 �
(1/h̄β ){±J (�)/� + J (�)2/�2} and the ratio of the weights
becomes

‖Â−
∞‖2

‖Â+∞‖2
=

1 − (J (�)/�)2

J (�)/�

1 + (J (�)/�)2

J (�)/�

+ O(β2�2). (D3)

Closed expressions for h∞ can only be obtained for certain
bath models. Usually in the context of the RWA the imaginary
part ht of the bath correlation function is neglected completely
as it only modifies the coherent dynamics by shifting the
eigenenergies as seen in Eq. (5) in the main text. However,
the contribution to the steady state beyond the zero coupling
limit depends on h∞ [17] and thus it cannot be neglected.
Let us now focus on the special case of an Ohmic spectral
density Eq. (A2) and take the limit Ec → ∞ wherever it is
possible. In this way we get universal expressions that are
valid independent of how the cutoff is introduced. First of all
the damping kernel h∞(0) in Eq. (A6) contributes neither to
the variance of h∞ nor to the weight of the pseudo-Lindblad
dissipator Eq. (6) in the main text. It only provides a coherent
contribution in the Lamb-shift Hamiltonian,

ĤLS
∞ = h̄ h∞(0)Ŝ2 + . . . , (D4)

as can be seen from the energy-basis representation of Eqs. (2)
and (3) in the main text. Secondly, in the limit Ec → ∞
the vacuum fluctuations hvac

∞ (�) in Eq. (A6) vanish. Thus,
only the contribution due to thermal fluctuations in Eq. (A6),

hth
∞(�), enters the weights. Due to the antisymmetry of hth

∞(�)
its variance reduces to the average over the squares, i.e.,
limEc→∞ V [h∞] = limEc→∞ (hth∞)2. Keeping βEc fixed, while
taking the limit EC → ∞, we find

lim
Ec → ∞
β → 0

hth
∞(�)

βEc=ξ= −γ
�

h̄
χ, (D5)

χ ≡ cot(ξ/2)/2 + ξ 2/π

∞∑
l=1

1

l[ξ 2 − (2π l )2]
. (D6)

Finally for the Ohmic spectral density J (�) = � +
O(�2/E2

c ) the weights reduce to

‖Â±
∞‖2 = γ

h̄β

{
±

[
1 + β2 �2

12

]

+
√

1 + β2
5

12
�2 + β2 χ2�2

+ O(β4�4)

}
+ O(�2/E2

c ), (D7)

and thus the relative weight scales with β in second order,
i.e., ‖Â−

∞‖2/‖Â+
∞‖2 � β2[1/16 + χ2/2]�2. This is why in the

high-temperature limit the negative contribution vanishes and
the truncated master equation becomes an exact representation
of the Redfield dissipator.
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FIG. 4. Relevance of the optimization. Dynamics for the differ-
ent master equations, i.e., populations in (a), coherences in (b), and
trace distance to the Redfield result in (c). The bath couples to the
first site of the chain and the parameters are l = 5, N = 2, V = 2J ,
Ec = 17J , γ = 0.2, and T = 2J .

APPENDIX E: IMPORTANCE OF AN OPTIMIZED
CHOICE OF λt AND ϕt

In the main text we motivated the optimal choice of the
parameters λt and ϕt that minimize the weight of the negative
contribution. In this section we further illustrate the relevance
of the optimization procedure. Here we restrict ourselves to
a purely real λ+

t = λ−
t = λt by setting ϕt = 0. By noting that

sin ϕt ∝ trS(ŜŜ) and using Eq. (C6), the optimization is found
to reproduce this choice for bath models that do not have
a damping kernel or vacuum fluctuations. In particular this
can be achieved by taking into account a bath renormalization
Hamiltonian and considering a large cutoff energy. This is dis-
cussed for the paradigmatic example of the damped harmonic
oscillator in the main text. Let us now discuss the choice of
λt . Note that λ−2

t carries the dimension of time, as can be seen
from the definition of the newly introduced jump operators
Â±

t in Eq. (7). In other words it defines a new timescale and
one might ask whether the system’s timescale is a reasonable
choice. For the extended Hubbard model, which is discussed
in the main text, we might choose λ2

t = J/h̄ where J is the tun-
neling strength between adjacent sites of the chain. In Fig. 4
we depict the dynamics of the truncated master equation with
optimized λ2

t in blue and for λ2
t = J/h̄ in thin gray. The result

of the truncated master equation is in very good agreement
with the Redfield result in red, since the relative weight of
the negative contribution is small. This holds both for the
populations in Fig. 4(a) and for the coherence in Fig. 4(b) and
also the error measure is particularly small [see Fig. 4(c)]. In
contrast the choice of λ2

t = J/h̄ leads to significant deviations
especially for the populations in (a) but also for the coherences
in (b). Remarkably, the error is still of the same order as that
for the RWA [see Fig. 4(c)]. We can explain our observation
further by evaluating the weight of the negative contribution
for the choice of λ2

t = J/h̄, which follows from Eq. (C1).
By using the notation of Eq. (9) of the main text, that is,

RetrS(ŜŜ†
t ) = gt and ‖Ŝt‖2 = g2

t + h2
t , one arrives at

‖Â−
t ‖2 =

[
1

2
− gt

J/h̄
+ 1

2

g2
t + h2

t

(J/h̄)2

]
J

h̄
, (E1)

which for weak coupling reduces to the finite value of
‖Â−

t ‖2 � J/2h̄ independent of the bath parameters. Since J is
the typical energy scale of the system this does not correspond
to a small value. This explains the bad performance of the
new choice. Thus a reasonable choice for the parameter λ2

t
is generally not given by the typical timescale of the system.
The optimal value of λ2

t = ‖Ŝt‖/‖Ŝ‖ = (g2
t + h2

t )1/2 is instead
determined by the timescale that is related to the amplitude of
the bath correlation function.

APPENDIX F: MULTIPLE BATHS AND NON-HERMITIAN
COUPLING

In the main text we emphasize the relevance of the trun-
cated master equation for the nonequilibrium steady state,
when the system is coupled to multiple baths of different
temperature. Let us, therefore, consider the case where the
total Hamiltonian of the system-bath compound reads

Ĥtot = ĤS +
∑

α

(Ŝα ⊗ B̂α + ĤB,α ), (F1)

where α labels different baths. In this section we describe how
the truncated master equation, in particular the decomposition
of Eqs. (6) and (7) of the main text, has to be understood in
this general scenario. It is important to note that bath operators
for different indices α �= αacirc; remain uncorrelated because
the total Hamiltonian does not contain any cross terms. Con-
sequently the Redfield equation has the very same structure
according to Eqs. (2) and (3), except it involves a sum over
the individual coupling operators. For the pseudo-Lindblad
equation the decomposition Eqs. (6) and (7) of the main text
simply has to be done for each term independently:

Â±
α (t ) = 1√

2 cos ϕα (t )

[
λ±

α (t ) Ŝα ± 1

λ±
α (t )

Ŝα (t )

]
, (F2)

where λ2
α (t ) = ‖Ŝα (t )‖/‖Ŝα‖ and sin ϕα (t ) = Im

trS(ŜαŜ†
α (t ))/‖Ŝα‖‖Ŝα (t )‖ are given by the optimization

procedure. Here we changed the notation and wrote the time
dependence as an argument to not confuse it with the index
α that labels the different coupling operators. The optimal
parameters minimize the relative weight of the negative
contribution for each coupling operator individually. Finally,
in the truncated master equation all negative contributions are
neglected. Such a decomposition also holds for non-hermitian
coupling:

ĤSB = (1/2)(Ŝ ⊗ B̂ + Ŝ† ⊗ B̂†). (F3)

Essentially one obtains two channels α = 1, 2 with Ŝ1 = Ŝ†
2 =

Ŝ and the distinct convolution operators

Ŝ1(t ) =
∫ t

0

trB[B̂†(τ )B̂]

2h̄2 Ŝ(−τ ) dτ, (F4)

Ŝ2(t ) =
[ ∫ t

0

trB[B̂B̂†(τ )]

2h̄2 Ŝ(−τ ) dτ

]†

. (F5)
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For consistency in the hermitian case for Ŝ = Ŝ†

and B̂ = B̂† it collapses to one channel with Ŝ1(t ) +
Ŝ2(t ) = ∫ t

0 C(τ ) Ŝ(−τ ) dτ by noting {trB[B̂(τ )B̂] +
trB[B̂B̂(τ )]∗}/2h̄ = C(t ).
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