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Analytical results for a minimalist thermal diode
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We consider a system consisting of two interacting classical particles, each one subject to an on-site potential
and to a Langevin thermal bath. We analytically calculate the heat current that can be established through the
system when the bath temperatures are different, for weak nonlinear forces. We explore the conditions under
which the diode effect emerges when inverting the temperature difference. Despite the simplicity of this two-
particle diode, an intricate dependence on the system parameters is put in evidence. Moreover, behaviors reported
for long chains of particles can be extracted, for instance, the dependence of the flux with the interfacial stiffness
and type of forces present, as well as the dependencies on the temperature required for rectification. These
analytical results can be a tool to foresee the distinct role that diverse types of nonlinearity and asymmetry play
in thermal conduction and rectification.
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I. INTRODUCTION

Simplified microscopic models, such as classical particle
chains in contact with heat baths, have proven useful to grasp
the physics of thermal transport in low dimensions [1–4]. The
interest in one-dimensional models goes beyond the theoret-
ical challenge to derive the laws of heat conduction from
the microscopic dynamics, insofar as they can be useful for
understanding the anomalies observed in real systems, such
as carbon nanotubes [5], nanowires [6], and molecular chains
[7,8]. Moreover, these experiments and theories can lead to
the development of new technologies for heat flow manipula-
tion [9]. An interesting example is the thermal diode, whose
thermal conductivity along a given axis changes depending on
the direction of the heat flux, yielding rectification in a pref-
erential direction. This proposal, initially conceived through
simplified theoretical modeling [10], soon found materializa-
tion in solid-state experiments [11].

Subsequently, several variants of microscopic models were
proposed to determine the conditions to achieve efficient rec-
tification, by analyzing for instance, the effects of the range
of the interactions or graded masses [12,13] and the role of
the interface [14–18], among others. In the meantime, several
efforts have been directed towards an analytical understanding
of the diode effect, putting into evidence the requirements
of asymmetry and nonlinearity for rectification, for instance,
by linearizing the equations of motion but, as counterpart,
making the parameters along a mass graded chain temperature
dependent [19]. Closely related, in a very recent work, the
diode effect was shown in the so-called temperature-gradient
harmonic oscillator chains [20]. In the same spirit, a mini-
malistic model of two harmonic oscillators with temperature
dependency has been recently studied [21]. The two-segment
chain of classical spins in contact with multiple heat baths
has also been studied [22], as well as quantum systems, to

show rectification of the heat flow between two thermal baths
through a pair of interacting qubits [23] or even quantum spin
chains [24].

Here we investigate a minimalist model of only two in-
teracting classical particles connected to heat baths, in order
to understand the diode effect directly from the equations
of motion. We solve these equations in the limit of small
nonlinearity, from a perturbative approach. Then we obtain
expressions for the heat flow and rectification factor allowing
us to directly grasp the impact of asymmetries and nonlin-
earities, as well as qualitative features of heat conduction
and rectification, explicitly expressed in terms of the model
parameters.

The paper is organized as follows. The system is defined in
Sec. II. The perturbative solution and associated heat flow are
described in Secs. III and IV, respectively, while the mathe-
matical derivations can be found in the Appendix. The diode
effect is discussed in Sec. V with final remarks in Sec. VI.

II. THE SYSTEM

We consider a one-dimensional system composed of two
particles, with masses mj (with j = A, B), coordinates x and
y, subject to on-site potentials Vj and interacting through a
potential VI such that the complete Hamiltonian is

H = p2
A

2mA
+ VA(x) + p2

B

2mB
+ VB(y) + VI (x − y). (1)

Moreover, each particle j is put in contact with a Langevin
thermal bath at temperature Tj . A pictorial representation of
this kind of system is provided in Fig. 1. Let us remark
that this system is very similar two the couple of harmonic
oscillators recently investigated [21], but in our case we in-
troduce nonlinear forces. Namely, we treat the case where
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FIG. 1. Schematic representation of a minimalist thermal diode.

the interaction potential is harmonic with stiffness kI , while
the on-site potential of particle j is Vj (z) = k jz2/2 + εV nl

j (z),
where k j is the harmonic stiffness and f j (z) = −dV nl

j (z)/dz
is an arbitrary nonlinear force, whose intensity is controlled
by the unitless constant ε. Explicitly, the equations of motion
are

mAẍ + γAẋ + kAx + kI (x − y) = ε fA(x) + ηA(t ), (2)

mBÿ + γBẏ + kBy + kI (y − x) = ε fB(y) + ηB(t ), (3)

where ε is a dimensionless parameter that controls the strength
of the nonlinear forces, γ j is the damping coefficient, and
η j is the fluctuating force of the Langevin thermostat j ( j =
A, B), where ηA and ηB are independent zero-mean Gaussian-
distributed white noises with

〈ηA(t )ηA(t ′)〉 = 2γATAδ(t − t ′),

〈ηB(t )ηB(t ′)〉 = 2γBTBδ(t − t ′),

where the temperature is in units of the Boltzmann constant.
Although we might suppress some parameters by fixing space
and timescales, we will keep them explicit to preserve the AB
symmetry of the equations.

III. PERTURBATIVE SOLUTION

Equations (2) and (3) cannot be solved exactly, however,
if ε is small enough to ensure that the energy stored in the
nonlinear mode is much smaller than in the harmonic one, we
can expand the coordinates as

x(t ) = x0(t ) + ε x1(t ) + O(ε2), (4)

y(t ) = y0(t ) + ε y1(t ) + O(ε2), (5)

where the zeroth-order terms follow the equations

mAẍ0 + γAẋ0 + kAx0 + kI (x0 − y0) = ηA(t ), (6)

mBÿ0 + γBẏ0 + kBy0 + kI (y0 − x0) = ηB(t ), (7)

which are linear and uncoupled equations, and the first-order
corrections x1 and y1 follow

mAẍ1 + γAẋ1 + kAx1 + kI (x1 − y1) = fA(x0), (8)

mBÿ1 + γBẏ1 + kBy1 + kI (y1 − x1) = fB(y0). (9)

Since we are interested in the long-time behavior, the initial
conditions are not relevant; therefore we will use the Fourier
transform, defined as z̃(ω) = ∫ ∞

−∞ dt z(t ) e−iωt , to solve the
above stochastic differential equations. We start by expressing
Eqs. (6) and (7) in Fourier space:

(kA + kI − mAω2 + iγAω)︸ ︷︷ ︸
a(ω)

x̃0 − kI ỹ0 = η̃A(ω), (10)

(kB + kI − mBω2 + iγBω)︸ ︷︷ ︸
b(ω)

ỹ0 − kI x̃0 = η̃B(ω), (11)

whose solution in matrix form is(
x̃0(ω)
ỹ0(ω)

)
=

(b(ω) kI

kI a(ω)

)(
η̃A(ω)
η̃B (ω)

)
a(ω)b(ω) − k2

I

. (12)

Similarly, solving Eqs. (8) and (9) in Fourier space, we obtain
(for more details see Ref. [1])(

x̃1(ω)
ỹ1(ω)

)
=

(b(ω) kI

kI a(ω)

)(F{ fA(x0 )}(ω)
F{ fB (y0 )}(ω)

)
a(ω)b(ω) − k2

I

. (13)

IV. HEAT FLOW

The heat flow J along the system can be defined in several
forms that are equivalent when the system reaches a station-
ary state (see, for instance, Ref. [3]). The potential VI (x − y)
represents the energy stored in the interaction between neigh-
boring particles, and the energetic flow can be written as

d

dt
〈VI (x − y)〉 = 〈V ′

I (x − y)ẋ〉 − 〈V ′
I (x − y)ẏ〉,

and, under stationarity, 〈V ′
I (x − y)ẋ〉 = 〈V ′

I (x − y)ẏ〉. From
this identity, we have equivalent definitions that in our case,
where V ′

I (x − y) = kI (x − y), read

J = 〈kI (x − y)ẋ〉 = 〈kI (x − y)ẏ〉, (14)

or still J = 〈kI (x − y)(ẋ + ẏ)/2〉. The heat flow J can also be
expanded in a series of ε, as

J = J0 + εJ1 + O(ε2). (15)

In the linear regime, Eq. (14) yields (see Appendix A 2)

J0 = kI〈x0ẋ0〉 − kI〈y0ẋ0〉 (16)

= −kI

∫
dω dω′

(2π )2
eit (ω+ω′ )〈ỹ0(ω) iω′ x̃0(ω′)〉. (17)

Then, we obtain

J0 = κ0[TA − TB], (18)
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TABLE I. Nonlinear force f j and associated function gj (derived
in Appendix A 2).

f j (z) = ∑
n�0 c j,nzn g j (z) = ∑

n�1 c j,n n!! z(n−1)/2

−z2n−1, n ∈ N −(2n − 1)!! zn−1

− sin(Kz) −Ke−K2z/2

− sinh(Kz) −KeK2z/2

where the zeroth-order thermal conductivity is

κ0 =
∫

dω

2π

2γ 2k2
I ω

2∣∣a(ω)b(ω) − k2
I

∣∣2 . (19)

Note that this expression shows that, regardless of the
asymmetries that may be present, the linear system cannot
be converted to a thermal diode since κ0 does not depend on
the temperatures and it is invariant under particle exchange;
hence, the magnitude of the flow is the same in both direc-
tions.

With regard to the dependence of κ0 on the coupling
strength kI , Eq. (19) gives κ0 ∼ k2

I + O(k3
I ), for small kI . It

is interesting to note that this is the scaling observed for two-
segment chains with nonlinear forces of Frenkel-Kontorova
(FK) type [10].

Now we proceed to calculate the first-order correction of
the current J , containing the information on the nonlinearities.
From Eq. (14), we have

J = −kI〈y(t )ẋ(t )〉
= −kI〈y0ẋ0〉︸ ︷︷ ︸

J0

+ε (−kI )[〈y1ẋ0〉 + 〈y0ẋ1〉]︸ ︷︷ ︸
J1

, (20)

where the correlations in J1 are calculated in Appendix A 2,
yielding J1 = κ1(TA, TB) 	T , with

κ1(TA, TB) = κ0

∑
j=A,B

β j g j (σm jTm + σ jTj ), (21)

where Tm = (TA + TB)/2 is the mean temperature, β j , σm j and
σ j ( j = A, B) are coefficients that do not depend on the tem-
perature (derived in Appendix A 2, where explicit expressions
are also given), and gj is derived from the Fourier transform
of the force f j (for examples see Table I).

In Fig. 2 an illustrative example shows the good agreement
between the first-order theoretical prediction, Eq. (20), and the
numerical evaluation of Eq. (14), performed over trajectories
obtained from the numerical integration of the equations of
motion, using an eighth-order Runge-Kutta algorithm [25].

For weak coupling, the scaling

κ ∼ k2
I + O

(
k3

I , εk2
I

)
, (22)

obtained in the linear case, still holds, while κ tends to a con-
stant value for large kI . Of course, if the interfacial interaction,
which connects the two units of the system, vanishes, hence,
κ vanishes too, as expected due to disruption of the channel
for energy flux.

As a check of consistency, we verified that, if f j (z) were
linear, then g j (z) would be a constant ḡ j < 0 (n = 0 in
Table I), in which case Eq. (21) becomes κ1 = (βAḡA +
βBḡB) κ0 in accord with the zeroth-order expression for

FIG. 2. Heat current difference J − J0 vs 	T . Solid lines corre-
spond to the theoretical prediction given by Eq. (20) and symbols
to the computation from numerical integration of the equations of
motion, averaged over 105 realizations. V nl

A (z) = z4/4, V nl
B (z) = 0,

Different values of ε indicated on the figure were considered, kI =
0.5, and all other parameters are equal to 1. The inset shows the
current |J| as a function of ε for 	T = ±1 (i.e., A � B).

κ0, Eq. (19), after substituting kA → kA − εḡA and kB →
kB − εḡB.

Since the linear conductivity κ0 does not depend on the
bath temperatures, the heat flux will have the same mag-
nitude in both directions. Therefore, for rectification, it is
crucial that at least one of the two forces f j (z) be nonlin-
ear. This nonlinearity would act by introducing a dependence
of the conductivity on the temperatures, through the ar-
gument of g j (z) in Eq. (21), which originates from the
correlations of the zeroth-order coordinates. A temperature
dependence that is asymmetric under particle exchange is
then responsible for thermal rectification, as discussed in the
next section. Moreover, this is the basis of the diode effect
on harmonic systems with imposed or natural temperature
dependencies [19–21].

V. DIODE EFFECT

First, recall that β j , σm j , and σ j , which define J1, are
quantities that do not depend on the end temperatures. While
σm j (as well as κ0) is always positive, β j and σ j do not have a
definite sign in general; however, σm jTm + σ jTj must be pos-
itive. Moreover, in contrast to κ0 and σm j , whose expressions
are invariant by AB exchange, the coefficients β j or σ j may be
nonsymmetric in general, which would ensure that even if gA

= gB, the conductivity can become dependent on the direction
of the flux.

Let us define the fluxes JAB and JBA for the positive
temperature gradient (TA = Th > Tc = TB) and the reversed
one, as schematized in Fig. 1. From the expression of J ,
we have

JAB ≡ JA→B = [κ0 + ε κ1(Th, Tc)︸ ︷︷ ︸
κAB

1

](Th − Tc),

JBA ≡ JB→A = [κ0 + ε κ1(Tc, Th)︸ ︷︷ ︸
κBA

1

](Tc − Th). (23)
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Rectification emerges when κAB
1 
= κBA

1 , molded by the func-
tions g j (z), associated to nonlinear forces f j (z), which
introduce the dependence of the conductivity on the bath
temperatures.

In what follows, to quantify the diode effect, we use the
ratio

χ ≡ ||JAB| − |JBA||
[|JAB| + |JBA|]/2

= ε

∣∣κAB
1 − κBA

1

∣∣
κ0

+ O(ε2). (24)

This quantity coincides with the rectification factor [10] at first
order in ε, and it is twice the diodicity [26]. Notice that the
departure from the linear regime, signaled by ε 
= 0, together
with asymmetry, is required to allow the diode effect (χ 
= 0)
at first order in ε. However, the rectification χ is small, of
order ε.

In the following sections, we will discuss the behavior of
χ in some particular cases, in order to reduce the number of
parameters.

A. Symmetric chain

Let us address the case where kA = kB, mA = mB and
γA = γB, hence, the asymmetry required for rectification must
reside in the nonlinear on-site forces. In this simple case, the
coefficients obtained in Appendix A 2 reduce to

σm = [(k + kI )m̄ + 1]k2
I

k(k + 2kI )
(
k + kI + m̄k2

I

) , (25)

σA = σB = σ = 1

k + kI + m̄k2
I

, (26)

βA = βB = σ/2. (27)

Then

χ = ε
|gA(T+) − gA(T−) + gB(T−) − gB(T+)|

2
(
k + kI + m̄k2

I

) , (28)

where T± = σmTm + σTh
c
= (σm + σ )Tm ± σ (Th − Tc)/2.

First, we notice that χ is finite in the limit kI → 0, and
it tends to zero in the opposite limit kI → ∞. Examples are
given in Fig. 3 for two different potentials.

Rectification enhancement can be achieved by augmenting
the temperature difference, fixing the average, since 	gj ≡
g j (T +) − g j (T −) ≈ g′

j ((σm + σ )Tm) 	T + O((	T )3). This
effect is illustrated in Fig. 4. As a matter of fact, the increase
of the rectification factor with the temperature difference has
been observed in diverse models [13,16,27].

The mass and inverse square damping contribute trough
m̄ = m/γ 2 to spoil rectification if kI > 0. This suggests that
the overdamped regime would perform rectification better.

We can also understand how the preferential direction in
which the conductivity is larger, for given bath temperatures,
depends on the type of nonlinear forces. For instance, let us
consider gB(z) = 0. If gA(z) is monotonically decreasing, like
in the power-law case of Table I, then 	gA < 0, for TA > TB,
indicating that the preferential direction is from B to A (in
general from smaller to larger nonlinear force). However, if
the potential is sinusoidal, gA(z) is an increasing function
(Table I), then the preferential direction is inverted with re-
spect to the previous case (i.e., it is from A to B), as observed
for asymmetric FK chains [10]).

FIG. 3. Scaled rectification factor as a function of the interfacial
stiffness kI , for the nonlinear on-site potential V nl

A (z) = z4/4, (power
law, dashed lines), and V nl

A (z) = − cos(z), (sinusoidal, solid lines),
for k = 0.1 (dark green) and 1 (light green), as indicated in the
legend. In all cases V nl

B ≡ 0, m̄ = 1, Tm = 1, 	T = 0.4.

Let us take a closer look to the conductivity in the limit
kI → 0, for some concrete potentials V nl

A , while V nl
B = 0. Re-

call that the conductivity scales with k2
I , then the fluxes vanish

in the limit kI → 0; however, χ can be large for finite but very
small kI . In that limit, we have σm = 0, σ = 1/k, hence the
scaled mass m̄ does not play a role in the rectification.

For the power-law on-site potential V nl
A (z) = z2n/(2n),

gA(z) = −(2n − 1)!!zn−1, with n > 1, in the limit kI → 0,
Eq. (28) becomes

χ = ε
(2n − 1)!!

2k

[(
Th

k

)n−1

−
(

Tc

k

)n−1]
. (29)

Equation (29) predicts, for instance, that the ratio χ grows
with the temperature difference 	T = Th − Tc, with positive

FIG. 4. Scaled rectification factor as a function of the relative
temperature difference 	T/Tm, for the nonlinear on-site potential
V nl

A (z) = − cos(z), V nl
B ≡ 0, k = kI = 0.1, for different values of Tm,

indicated in the legend. The inset displays the scaled rectification vs
Tm for different values of 	T indicated in the legend, showing that
there is an optimal Tm, due to the loss of nonlinearity in the extremes
of low and high temperatures for the chosen potential.
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concavity for n > 2, nearly linear for small 	T . These effects
persist for finite kI as shown in Fig. 4.

For the sinusoidal on-site potential V nl
A (z) = − cos(Kz)/K

(as in the FK model), gA(z) = −Ke−K2z/2 (see Table I). In this
case the dependence χ versus kI can be nonmonotonic, with
a finite optimal value, as shown in Fig. 3. In the limit kI → 0
we obtain

χ = ε
K

2k

(
e−K2Tc/(2k) − e−K2Th/(2k)

)
. (30)

The dependence on 	T (for fixed mean temperature Tm) is
also an increasing convex function. This behavior, which also
holds for finite kI , as exemplified in Fig. 4, is qualitatively
similar to that reported from simulations of diode models
[13,16,27]. For the power-law potential the nonlinear correc-
tion is weak but in the same direction.

B. Small kI limit

In the previous section, we have seen that the limit of
small kI is relevant, while it allows to simplify the analytical
expressions significantly. Then, in this limit, we will analyze
the effect of introducing the asymmetry alternatively in the
stiffness (kA 
= kB), mass (mA 
= mB), or damping coefficient
(γA 
= γB). As shown in Appendix A 3, in this limit,

κ1 � κ0[βA gA(σATA) + βB gB(σBTB)], (31)

where the explicit expressions for the coefficients are given
in the Appendix A 3 for each asymmetry. The results for the
rectification factor χ are illustrated in Fig. 5.

Note that we observe that any of these asymmetries can
produce rectification. In particular, notice that, even when
the chain is homogeneous, distinct thermostats (characterized
by different friction coefficients) can also produce a diode
effect.

VI. FINAL REMARKS

We have presented analytical results starting from the
microscopic classical dynamics of a two-particle system with
nonlinear forces. Due to the nonlinearity of the equations, we
tackled the solution from a perturbative approach valid for
small nonlinear intensity ε. It is noticeable that despite the
simplicity of the system, the conductivity κ = κ0 + εκ1 has
an intricate dependence on the system parameters. Therefore,
it might be hard to make a portrait of this complexity only
through molecular dynamics simulations, making valuable
the present effort of obtaining analytical results from first
principles.

Some previously known results can be revisited from this
perspective. Particularly, one can see how the temperature
dependence of the conductivity emerges from the nonlinearity
of the forces, through the functions gj (z). The requirements
of broken symmetry and of nonlinearity explicitly appear.
The results also allow shedding light on effects observed in
chains, e.g., the scaling of the conductivity with the interfacial
stiffness kI , the dependence of the rectification factor on kI and
on the temperature difference. How nonlinearities determine
the preferential direction has also been foreseen. The role of

FIG. 5. Scaled rectification factor vs the relative temperature dif-
ference 	T/Tm, with Tm = 1, for nonlinear on-site potential V nl

A (z) =
V nl

B (z) = (a) − cos(z) and (b) z4/4 for mA = 5, kA = kB = mB =
γA = γB = 1 (green), γA = 5, γB = kA = kB = mA = mB = 1 (blue)
kA = 5, kB = mA = mB = γA = γB = 1 (red). The insets show the
dependence on the asymmetry factor λ that for each parameter p
gives pA = λpB = λ.

different asymmetries (in the mass, stiffness, on-site potential
and even damping coefficient) was also shown.

It is interesting to note that, from Appendix A 2, it is
possible to obtain that the nonlinearity yields a temperature-
dependent power spectrum (anharmonic phonons), which can
be seen as the correction to the harmonic theory responsible
for phonon scattering [28]. The relationship between tem-
perature and the overlapping phonon bands has already been
analytically studied for FK asymmetric chains [10] and chains
with dissimilar anharmonic segments (FK and Fermi-Pasta-
Ulan-Tsingou) [10,17].

Our results are valid when the effect of the nonlinear forces
can be treated as a perturbation to the predominantly linear
solutions. Consequently, the predicted diode effect is very
small. However, the results allow for a clear glance regarding
the mechanisms behind rectification and the role of diverse
asymmetries and nonlinearities.

Possible extensions include baths of different nature
(correlated or non-Gaussian) and nonlinear interfacial
interactions.
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APPENDIX

1. Perturbative solution

a. Zeroth order

Equations (10) and (11) in matrix form are(
a(ω) −kI

−kI b(ω)

)(
x̃0(ω)
ỹ0(ω)

)
=

(
η̃A(ω)
η̃B(ω)

)
, (A1)

whose solution, by matrix inversion, is(
x̃0(ω)
ỹ0(ω)

)
= 1

a(ω)b(ω) − k2
I

(
b(ω) kI

kI a(ω)

)(
η̃A(ω)
η̃B(ω)

)
=

(
M11(ω) M12(ω)
M21(ω) M22(ω)

)(
η̃A(ω)
η̃B(ω)

)
, (A2)

corresponding to Eq. (12). The Fourier transforms η̃A(ω) and η̃B(ω) are also Gaussian distributed with

〈η̃A(ω)〉 = 〈η̃B(ω)〉 = 0, (A3)

〈η̃A(ω)η̃A(ω′) = 2γ TA[2πδ(ω + ω′)], (A4)

〈η̃B(ω)η̃B(ω′) = 2γ TB[2πδ(ω + ω′)]. (A5)

Using the solutions and the correlations of the noises, we can calculate the coordinate correlations in Fourier space:

〈x̃0(ω)x̃0(ω′)〉 = 2γ [M11(ω)M11(ω′)TA + M12(ω)M12(ω′)TB]2πδ(ω + ω′), (A6)

〈ỹ0(ω)ỹ0(ω′)〉 = 2γ [M21(ω)M21(ω′)TA + M22(ω)M22(ω′)TB]2πδ(ω + ω′), (A7)

〈x̃0(ω)ỹ0(ω′)〉 = 2γ [M11(ω)M21(ω′)TA + M12(ω)M22(ω′)TB]2πδ(ω + ω′). (A8)

b. First order

The Fourier-transformed Eqs. (8) and (9) in matrix form are(
a(ω) −kI

−kI b(ω)

)(
x̃1(ω)
ỹ1(ω)

)
=

(
F ( fA(x0))(ω)
F ( fB(y0))(ω)

)
, (A9)

and their respective solutions are (
x̃1(ω)
ỹ1(ω)

)
=

(
M11(ω) M12(ω)
M21(ω) M22(ω)

)(
F{ fA(x0)}(ω)
F{ fB(y0)}(ω)

)
, (A10)

giving Eq. (13). Recalling that fi(z) = ∑
n ci,nzn, for i = A, B, then

F{ fi(z)} =
∑

n

ci,nF{zn}(ω), (A11)

leading to

x̃1(ω) = M11(ω)F{ fA(x0)}(ω) + M12(ω)F{ fB(y0)}(ω)

= M11(ω)
∑

n

cA,nF
{
xn

0

}
(ω) + M12(ω)

∑
n

cB,nF
{
yn

0

}
(ω), (A12)

ỹ1(ω) = M21(ω)F{ fA(x0)}(ω) + M22(ω)F{ fB(y0)}(ω)

= M21(ω)
∑

n

cA,nF
{
x j

0

}
(ω) + M22(ω)

∑
n

cB,nF
{
y j

0

}
(ω). (A13)
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Moreover, we will use below that the Fourier transform of an integer power of a function z(t ) is

F{zn}(ω) =
∫ n∏

j=1

dω j

2π
δ

(
ω −

n∑
j=1

ω j

)
n∏

j=1

z̃(ω j ). (A14)

2. Heat flow

a. Zeroth order

From Eq. (14), using the first definition and writing the average in Fourier space

Jx = kI〈(x0 − y0)ẋ0〉 = kI

∫
dω dω′

(2π )2
eit (ω+ω′ )〈[x̃0(ω) − ỹ0(ω)][iω′x̃0(ω′)]〉, (A15)

the first term is null since 〈x̃0(ω)x̃0(−ω)〉 is an even function, when we multiply times iω from the time derivative, the function
becomes odd, and as we integrate for all ω, the value becomes null. Then, using Eq. (A8),

J0 = Jx = −kI

∫
dω

2π
eit (ω+ω′ )(iω′)〈ỹ0(ω)x̃0(ω′)〉

= kI

∫
dω

2π
2γ (iω)

{
kI b(−ω)TA + kI a(ω)TB[

a(ω)b(ω) − k2
I

][
a(−ω)b(−ω) − k2

I

]
}

, (A16)

which, if we perform a change of variables (ω → −ω) in the second term gives

J0 = kI

∫
dω

2π
2γ (iω)

{
kI b(−ω)TA − kI a(−ω)TB[

a(ω)b(ω) − k2
I

][
a(−ω)b(−ω) − k2

I

]
}

, (A17)

where only the odd parcel of the numerator (since the denominator is always even) will yield a non-null result after the
integration. We expand the expression to

J0 =
∫

dω

2π

{
2γ 2k2

I ω
2[

a(ω)b(ω) − k2
I

][
a(−ω)b(−ω) − k2

I

]
}

(TA − TB) ≡ κ0 (TA − TB), (A18)

corresponding to Eqs. (16) and (19).

b. First order

The correlations required to compute J1 are

〈y1ẋ0〉 =
∫

dω dω′

(2π )2
eit (ω+ω′ )(iω′)〈ỹ1(ω)x̃0(ω′)〉

=
∫

dω dω′

(2π )2
eit (ω+ω′ )(iω′)

∑
n

[
cA,nM21(ω)

〈
F

{
xn

0

}
(ω)x̃0(ω′)

〉 + cB,nM22(ω)
〈
F

{
yn

0

}
(ω)x̃0(ω′)

〉]
, (A19)

and

〈y0ẋ1〉 =
∫

dω dω′

(2π )2
eit (ω+ω′ )(iω′)〈ỹ0(ω)x̃1(ω′)〉

=
∫

dω dω′

(2π )2
eit (ω+ω′ )(iω′)

∑
n

[
cA,nM11(ω′)

〈
F

{
xn

0

}
(ω′)ỹ0(ω)

〉 + cB,nM12(ω′)
〈
F

{
yn

0

}
(ω′)ỹ0(ω)

〉]
. (A20)

First, we evaluate the following correlations between the zeroth-order terms,∫
dω1 dω2

(2π )2
〈x̃0(ω1)x̃0(ω2)〉 = 2γ

∫
dω

2π
[M11(ω)M11(−ω)TA + M12(ω)M12(−ω)TB]

= σmATm + σATA, (A21)∫
dω1 dω2

(2π )2
〈ỹ0(ω1)ỹ0(ω2)〉 = 2γ

∫
dω

2π
[M21(ω)M21(−ω)TA + M22(ω)M22(−ω)TB]

= σmBTm + σBTB. (A22)
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These correlations, together with Eq. (A14), will be used to evaluate the correlations required to compute J1:

〈
F

(
xn

0

)
(ω)x̃0(ω′)

〉 =
∫ (

n∏
j=1

dω j

2π

)
δ

(
ω −

n∑
j=1

ω j

)〈(
n∏

j=1

x̃0(ω j )

)
x̃0(ω′)

〉

= n!!
∫ (

n∏
j=1

dω j

2π

)
δ

(
ω −

n∑
j=1

ω j

)
〈x̃0(ω j )x̃0(ω′)〉

n−1∏
j odd

〈x̃0(ω j )x̃0(ω j+1)〉

= n!! 2πδ(ω + ω′)
∫

dωn

2π
〈x̃0(ωn)x̃0(ω′)〉

n−1∏
j odd

∫
dω jdω j+1

(2π )2
〈x̃0(ω j )x̃0(ω j+1)〉

= n!! 2πδ(ω + ω′)
∫

dωn

2π
〈x̃0(ωn)x̃0(ω′)〉(σmATm + σATA)

n−1
2 , (A23)

〈
F

(
xn

0

)
(ω)ỹ0(ω′)

〉 =
∫ (

n∏
j=1

dω j

2π

)
δ

(
ω −

n∑
j=1

ω j

)〈[
n∏

j=1

x̃0(ω j )

]
ỹ0(ω′)

〉

= n!!
∫ (

n∏
j=1

dω j

2π

)
δ

(
ω −

n∑
j=1

ω j

)
〈x̃0(ωn)ỹ0(ω′)〉

n−1∏
j odd

〈x̃0(ω j )x̃0(ω j+1)〉

= n!! 2πδ(ω + ω′)
∫

dωn

2π
〈x̃0(ωn)ỹ0(ω′)〉

n−1∏
j odd

∫
dω j dω j+1

(2π )2
〈x̃0(ω j )x̃0(ω j+1)〉

= n!! 2πδ(ω + ω′)
∫

dωn

2π
〈x̃0(ωn)ỹ0(ω′)〉(σmATm + σATA)

n−1
2 , (A24)

〈
F

(
yn

0

)
(ω)x̃0(ω′)

〉 =
∫ (

n∏
j=1

dω j

2π

)
δ

(
ω −

n∑
j=1

ω j

)〈[
n∏

j=1

ỹ0(ω j )

]
x̃0(ω′)

〉

= n!!
∫ (

n∏
j=1

dω j

2π

)
δ

(
ω −

n∑
j=1

ω j

)
〈ỹ0(ωn)x̃0(ω′)〉

n−1∏
j odd

〈ỹ0(ω j )ỹ0(ω j+1)〉

= n!! 2πδ(ω + ω′)
∫

dωn

2π
〈ỹ0(ωn)x̃0(ω′)〉

n−1∏
j odd

∫
dω j dω j+1

(2π )2
〈ỹ0(ω j )ỹ0(ω j+1)〉

= n!! 2πδ(ω + ω′)
∫

dωn

2π
〈ỹ0(ωn)x̃0(ω′)〉(σmBTm + σBTB)

n−1
2 , (A25)

〈
F

(
yn

0

)
(ω)ỹ0(ω′)

〉 =
∫ (

n∏
j=1

dω j

2π

)
δ

(
ω −

n∑
j=1

ω j

)〈[
n∏

j=1

ỹ0(ω j )

]
ỹ0(ω′)

〉

= n!!
∫ (

n∏
j=1

dω j

2π

)
δ

(
ω −

n∑
j=1

ω j

)
〈ỹ0(ωn)ỹ0(ω′)〉

n−1∏
j odd

〈ỹ0(ω j )ỹ0(ω j+1)〉

= n!! 2πδ(ω + ω′)
∫

dωn

2π
〈ỹ0(ωn)ỹ0(ω′)〉

n−1∏
j odd

∫
dω j dω j+1

(2π )2
〈ỹ0(ω j )ỹ0(ω j+1)〉

= n!! 2πδ(ω + ω′)
∫

dωn

2π
〈ỹ0(ωn)ỹ0(ω′)〉(σmBTm + σBTB)

n−1
2 . (A26)

Now we write Eq. (20) as

−kI [〈y1ẋ0〉 + 〈y0ẋ1〉] = −kI

∫
dω dω′

(2π )2
eit (ω+ω′ )(iω′)

∑
n

{
cA,n

[
M21(ω)

〈
F

{
xn

0

}
(ω)x̃0(ω′)

〉 + M11(ω′)
〈
F

{
xn

0

}
(ω′)ỹ0(ω)

〉]
+ cB,n

[
M22(ω)

〈
F

{
yn

0

}
(ω)x̃0(ω′)

〉 + M12(ω′)
〈
F

{
yn

0

}
(ω′)ỹ0(ω)

〉]}
, (A27)
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grouping all terms proportional to cA,n,

−kI

∫
dω dω′

2π2
eit (ω+ω′ )(iω′)

[
M21(ω)

〈
F

{
xn

0

}
(ω)x̃0(ω′)

〉 + M11(ω′)
〈
F

{
xn

0

}
(ω′)ỹ0(ω)

〉]
= −kI n!!(σmATm + σATA)

n−1
2

∫
dω dω′ dωn

(2π )2
eit (ω+ω′ )(iω′)δ(ω + ω′)[M21(ω)〈x̃0(ωn)x̃0(ω′)〉 + M11(ω′)〈x̃0(ωn)ỹ0(ω)〉]

= −kI n!!(σmATm + σATA)
n−1

2

∫
dω′ dωn

(2π )2
(iω′)[M21(−ω′)〈x̃0(ωn)x̃0(ω′)〉 + M11(ω′)〈x̃0(ωn)ỹ0(−ω′)〉]

= n!! κ0 βA(σmATm + σATA)
n−1

2 (TA − TB), (A28)

and to cB,n,

−kI

∫
dω dω′

2π2
eit (ω+ω′ )(iω′)

[
M22(ω)

〈
F

{
yn

0

}
(ω)x̃0(ω′)

〉 + M12(ω′)
〈
F

{
yn

0

}
(ω′)ỹ0(ω)

〉]
= −kI n!!(σmBTm + σBTB)

n−1
2

∫
dω dω′dωn

(2π )2
eit (ω+ω′ )(iω′)δ(ω + ω′)[M22(ω)〈ỹ0(ωn)x̃0(ω′)〉 + M12(ω′)〈ỹ0(ωn)ỹ0(ω)〉]

= −kI n!!(TmσmB + σBTB)
n−1

2

∫
dω′ dωn

(2π )2
(iω′)[M22(−ω′)〈ỹ0(ωn)x̃0(ω′)〉 + M12(ω′)〈ỹ0(ωn)ỹ0(−ω′)〉]

= n!! κ0 βB(σmBTm + σBTB)
n−1

2 (TA − TB), (A29)

finally yielding the first-order correction

J1 = κ0 βA

∑
n

[
cA

n n!!(σmATm + σATA)
n−1

2
]
(TA − TB) + κ0 βB

∑
n

[
cB

n n!!(σmBTm + σBTB)
n−1

2
]
(TA − TB)

≡ κ0 [βA gA(σmATm + σATA) + βB gB(σmBTm + σBTB)](TA − TB), (A30)

where we have defined

g j (z) =
∑

n

c j,n n!! z
n−1

2 , (A31)

for j = A, B. Examples of the correspondence between gj and the force f j are given in Table I.
Moreover, recall that κ0 was defined in Eq. (18), and the remaining coefficients in Eq. (A30) were defined in Eqs. (A21), (A22),

(A28), and (A29). Their, explicit values for the particular case mA = mB = m, γA = γB = γ , additionally defining m̄ = m/γ 2,
are given below:

κ0 = 2k2
I /γ[

4k2
I + (kA − kB)2

]
m̄ + 2(kA + kB + 2kI )

, (A32)

σmA = σmB = σm = 2k2
I [(2kI + kA + kB)m̄ + 2]

[kAkB + kI (kA + kB)]
{[

4k2
I + (kA − kB)2

]
m̄ + 2[2kI + kA + kB]

} , (A33)

σA = (kA − kB)
[
(kA − kB)(kB + kI ) − 2k2

I

]
m̄ + 2[kB(kA + kB) + kI (kA + 3kB)]

[kAkB + kI (kA + kB)]
{[

4k2
I + (kA − kB)2

]
m̄ + 2[2kI + kA + kB]

} , (A34)

σB = (kB − kA)
[
(kB − kA)(kA + kI ) − 2k2

I

]
m̄ + 2[kA(kA + kB) + kI (kB + 3kA)]

[kAkB + kI (kA + kB)]
{[

4k2
I + (kA − kB)2

]
m̄ + 2[2kI + kA + kB]

} , (A35)

βA = 2[1 + m̄(kA − kB)][
4k2

I + (kA − kB)2
]
m̄ + 2(2kI + kA + kB)

, (A36)

βB = 2[1 − m̄(kB − kA)][
4k2

I + (kA − kB)2
]
m̄ + 2(2kI + kA + kB)

. (A37)

3. Heat flow in the small-kI regime

Since we are interested in the regime of very small kI , we can suppress the contributions of σmA ∼ O(k2
I ) and σmB ∼ O(k2

I ),
since σA ∼ O(k0

I ) and σB ∼ O(k0
I ), leading to

J1 � κ0[βA gA(σATA) + βB gB(σBTB)](TA − TB). (A38)

Below, we write the explicit expressions of all the coefficients for three especial cases, where the asymmetry relies either on
the spring constant, the mass or damping parameter.
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a. Different stiffness

Assuming mA = mB = m and γA = γB = γ :

κ0 = 2γ k2
I

(kA − kB)2m + 2(kA + kB)γ 2
, (A39)

σA = 1

kA
, (A40)

σB = 1

kB
, (A41)

βA = 2[(kA − kB)m + γ 2]

(kA − kB)2m + 2(kA + kB)γ 2
, (A42)

βB = 2[(kB − kA)m + γ 2]

(kA − kB)2m + 2(kA + kB)γ 2
. (A43)

b. Different damping

Assuming mA = mB = m and kA = kB = k:

κ0 = k2
I

k(γA + γB)
, (A44)

σA = σB = 1

k
, (A45)

βA = γB

k(γA + γB)
, (A46)

βB = γA

k(γA + γB)
. (A47)

c. Different mass

Assuming γA = γB = γ and kA = kB = k:

κ0 = γ (mA + mB)k2
I

k[k(mA − mB)2 + 2(mA + mB)γ 2]
, (A48)

σA = σB = 1

k
, (A49)

βA = 2k(mB − mA)mB + (mA + mB)γ 2

k[k(mA − mB)2 + 2(mA + mB)γ 2]
, (A50)

βB = 2k(mA − mB)mA + (mA + mB)γ 2

k[k(mA − mB)2 + 2(mA + mB)γ 2]
. (A51)
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