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Jamming densities of random sequential adsorption on d-dimensional cubic lattices
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The rate of convergence of the jamming densities to their asymptotic high-dimensional tree approximation is
studied, for two types of random sequential adsorption (RSA) processes on a d-dimensional cubic lattice. The
first RSA process has an exclusion shell around a particle of nearest neighbors in all d dimensions (N1 model).
In the second process the exclusion shell consists of a d-dimensional hypercube with length k = 2 around a
particle (N2 model). For the N1 model the deviation of the jamming density ρr (d ) from its asymptotic high
d value ρasy(d ) = ln(1+2d )

2d vanishes as [ ln(1+2d )
2d ]3.41. In addition, it has been shown that the coefficients an(d )

of the short-time expansion of the occupation density of this model (at least up to n = 6) are given for all
d by a finite correction sum of order (n − 2) in 1/d to their asymptotic high d limit. The convergence rate
of the jamming densities of the N2 model to their high d limits ρasy(d ) = d ln 3

3d is slow. For 2 � d � 4 the
generalized Palasti approximation provides by far a better approximation. For higher d values the jamming
densities converge monotonically to the above asymptotic limits, and their decay with d is clearly faster than the
decay as (0.432 332 . . .)d predicted by the generalized Palasti approximation.

DOI: 10.1103/PhysRevE.104.014104

I. INTRODUCTION

Random sequential adsorption (RSA) is an irreversible
random filling process [1,2]. In this process nonoverlap-
ping particles are randomly adsorbed sequentially into a
d-dimensional space. The filling process is subject to con-
straints imposed by interactions with previously deposited
particles. For particles interacting via short-range hard-core
repulsion, an exclusion shell, that depends on the geometry of
the interaction, is formed around each adsorbed particle. The
adsorbed particles and their exclusion shells are immobile,
thus their positions are fixed for the entire RSA process. At
each step in the deposition process a new particle is either
rejected without affecting the population of the already oc-
cupied sites, or the new particle is added at random at an
accessible site in the volume. As a result, the density of ad-
sorbed particles increases monotonically with time. Since the
particles and their exclusion shells are formed randomly, and
their positions are fixed for the entire process, noncompact
configurations are formed. Therefore the process ceases in
a nonequilibrium jammed state, whose average occupation
density ρ(t = ∞) = ρr—jamming density—is smaller than
the corresponding density of closest packing.

In 1939 Flory [3] considered the dynamics of a cycliza-
tion reaction among neighboring side groups along a polymer
chain. He found that the kinetic of this chemical process is
mathematically equivalent to a RSA filling of dimers on a one-
dimensional (1D) lattice, and obtained an analytic expression
for the entire process including its jamming density. Renyi
solved the continuum analog, i.e., the random deposition of
unit line segments on a one-dimensional continuum, known
as the car parking model [4]. RSA models are realized by
many physical, chemical, biological compaction, and eco-

logical processes in various spatial dimensionalities [1,2,5–
8]. All these processes are characterized by a slow diffusion
rate compared to the timescale of the deposition, resulting
in a nonequilibrium state. Since the RSA phase is a disor-
dered state for all values of the occupation density ρ(t ), it
has been suggested as a phenomenological model for glasses
and supercooled liquids [9–12]. The RSA process is investi-
gated on continuous, discrete, and fractal lattices [13,14]. A
high-dimensional packing density has been shown to relate
to digital communication protocols [15] and to the phase
behavior of glassy states of matter [16,17].

Exact solutions for RSA models are available for
only a few limiting cases: lattice and continuum 1D
systems [3,4,18,19], a quasi-1D two-row model (ladder
model) [20–22], and the infinite dimensionality limit [23,24].
In addition, the asymptotic approach of the density to its
jamming limit is known to be given by an algebraic time
dependence for continuum systems [25,26] and by an expo-
nential time dependence for lattice models [2,27].

The information for the RSA dynamics of general sys-
tems stems from numerical Monte Carlo (MC) computa-
tions [28–33], and from formal short-time series expan-
sions [23,27,34–37]. The series expansion method is similar
in principle to the Mayer cluster expansion for equilibrium
systems. Indeed, the first two coefficients of the RSA density
series in terms of time t are identical to the two first coef-
ficients of the cluster expansion [34]. A deviation of RSA
systems from the equilibrium value starts at the third term
of their expansion. For lattice models the computation of the
coefficients is equivalent to a counting problem that can be
automated [27,36], and the available coefficients usually suf-
fice to provide quite accurate approximations for the jamming
densities.
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FIG. 1. The interacting sites in the two models for d = 2, 3. The
adsorbed particle is marked by the large red sphere, and the sites it
interacts with are marked by black small spheres.

In this paper we study the convergence of the jamming
densities to their asymptotic high d values as a function of
the spatial dimensionality d . We study the RSA on the d
hypercubic lattice for two types of exclusion interactions: (1)
nearest-neighbor exclusion (N1 model), and (2) exclusion of
d-dimensional cubes with length k = 2 around the particle
(N2 model).

In the N1 model a particle interacts with nearest-neighbor
deposition sites along one of the d axes. There are two neigh-
bors on each direction, one from each side of the particle, and
thus each particle interacts with q = 2d sites. In the N2 model
the repulsion interaction is extended to the d-dimensional
hypercube with an edge length of 2 around the particle. This
hypercube includes all of the grid points whose coordinates
differ in not more than 1 from the particle coordinates, i.e.,
diagonal neighbors are also considered in the exclusion shell.
Since any of the d coordinates may be equal to the respective
coordinate of the particle, larger in 1 or smaller in 1, there
are in total q = 3d − 1 interacting sites around the particle
(Fig. 1).

II. GENERAL THEORY

The occupation density of the adsorbed particles in the
RSA process is given by a diagrammatic expansion in the
short-time variable 1 − u, where u = e−t [23],

ρ(t ) =
∞∑

n=1

(−1)n−1 an(1 − u)n

n!
. (1)

The coefficient an is a positive integer, that equals the number
of connected lattice animals that may be formed at the nth
time step. Each of these lattice animals contains n points, and
the connectivity range among the points is determined by the

range of the interparticle interaction. In the N1 model points
can be connected if there is a difference of 1 in one (and
only one) of their coordinates. In the N2 model any number
of coordinates may differ by 1 to allow connectivity. For all
models, a1 = 1.

At the second step the number of the lattice points con-
nected to the starting point, a2, depends on the interparticle
interaction and the type of the lattice. For the N1 model a2 =
q = 2d the number of nearest neighbors of the starting point.
For the N2 model a2 = 3d − 1 the number of lattice points
(excluding the starting point) contained in a d-dimensional
hypercube.

At the third step a three-point connected lattice animal is
formed by adding a point to one of the empty neighbors of
each of the two point animals. The number of empty neighbors
is called the perimeter of an animal. The growth rate of the
coefficients an+1/an is determined by the average perimeter
of the nth lattice animal. The computation of the an coeffi-
cients reduces to an enumeration problem on a lattice, and
algorithms for the computation are presented in Refs. [27,36].

It is worthwhile to mention that an equivalent expansion
for ρ(t ) in terms of powers of t is given by

ρ(t ) =
∞∑

n=1

(−1)n−1 bn tn

n!
. (2)

The relation between the two sets of coefficients is given by

bn =
n∑

m=1

Sn,m am, (3)

where Sn,m is a Stirling number of the second kind [38]. It is
easy to see that bn is a positive integer substantially larger than
an.

Baram and Kutasov [23] observed that for large spatial
dimensionality d most of the points of a lattice animal have
(q − 1) empty neighbors. The probability to curl and form a
compact animal is negligible. Thus most of the animals are
acyclic graphs (trees). Since q ≈ (q − 1), the coefficients are
related by the recursion relation,

an = (n − 1)q an−1 (4)

or

an = (n − 1)! an−1
2 (5)

By substituting Eq. (5) into Eq. (1), one obtains for the
asymptotic (large d) density

ρasy(t ) = ln [1 + (1 − u) a2]

a2
. (6)

For this approximation, the limit value at t −→ ∞ (i.e., u −→
0) for the density is

ρasy = ln [1 + a2]

a2
. (7)

Fan and Percus [24], using similar arguments for N1-type
models, found the following asymptotic expression,

ρFP = 1

2
[1 − (q − 1)−2/(q−2)]

= ln(q − 1)

q − 2
−

[
ln(q − 1)

q − 2

]2

+ O(1/q3). (8)
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TABLE I. MC estimations for the jamming densities as a func-
tion of dimensionality d . L is the length of the lattice, and Nsim

number of simulations for this combination of d and L.

d L Ld Nsim ρ std

2 100 10000 2000 0.364 122 2.4 × 10−3

2 400 160 000 1000 0.364 124 6.0 × 10−4

3 50 125 000 100 0.305 473 8.8 × 10−4

3 100 1000 000 100 0.305 402 2.8 × 10−4

4 50 6250 000 290 0.263 875 1.2 × 10−4

5 12 248 832 2000 0.233 192 6.2 × 10−4

5 24 7962 624 90 0.233 180 1.0 × 10−5

6 10 1000 000 877 0.209 579 3.0 × 10−4

6 12 2985 984 50 0.209 600 1.5 × 10−4

7 8 2097 152 600 0.190 787 1.9 × 10−4

8 8 16 77 7216 40 0.175 424 6.5 × 10−5

Given that a2 = q, at the high d limit both Eqs. (7) and (8)
converge to the same value, which is given by the leading term
of Eq. (8) and decays as 1/q.

III. RSA JAMMING DENSITIES OF THE N1 MODEL ON
HYPERCUBIC LATTICES

The coordination number of a particle interacting via a
hard-core interaction with its nearest neighbors (N1 model)
on the d-dimensional hypercubic lattice is 2d . Thus the tree
approximation [23] predicts that the asymptotic jamming den-
sity is given by

ρasy(d ) = ln(1 + 2d )/2d. (9)

In order to determine the rate of convergence to the asymp-
totic limit as a function of d , we compute by both MC
simulations and by summations of the short-time expansions
[Eq. (1)] accurate estimations for the jamming densities ρr (d ),
for 2 � d � 8. The MC simulations are performed on a d-
dimensional hypercubic lattice with Ld sites with periodic
boundary conditions in all directions. The RSA filling process
starts with an empty lattice. At each step one vacant site is
randomly selected. This site and its exclusion shell neighbors
are marked as occupied. The process ceases when there are
no available vacant sites. The jamming density is the ratio

between the number of particles required for filling the lattice
(i.e., number of steps in the simulation) and total number
of sites. Due to computation limitations, the lattice size and
number Nsim of simulations decrease with the number of sites,
as indicated by Table I.

It should be noted that despite the size limitation, there are
no finite-size effects in our results. In Fig. 2 we present the
results of the MC simulations for several lattice sizes. It is
shown that L = 6 is sufficient to provide a good estimation of
the jamming density, and considering a larger lattice does not
considerably change this estimation.

The perimeter of a two-point lattice animal equals 2(2d −
1). As a result, the third coefficient a3(d ) is given by

a3(d ) = 2 × (2d )2[1 − 1/2d]. (10)

The coefficient deviates from its large-d asymptotic value
[Eq. (5)] by a factor of (1 − 1/2d ). For higher n = 4–7
we enumerated the connected lattice animals for all d < 9,
and obtained all the coefficients an(d ). Note that for d = 1,
an(1) = 2n−1 for all n. For d = 2 the coefficients an(2) are
already known up to n = 18 [27]. The available an(d )’s are
consistent with the following correction finite series to their
asymptotic high d expression,

an(d ) = (n − 1)!(2d )n−1

[
1 −

n−2∑
j=1

(−1) j−1 fn, j/d j

]
, (11)

where fn, j are positive rational numbers for all n and j.
In particular,

a4(d ) = 6 × (2d )3[1 − 4/(3d ) + 1/(2d2)], (12)

a5(d ) = 24 × (2d )4[1 − 19/(8d ) + 49/(24d2) − 5/(8d3)],

(13)

a6(d ) = 120 × (2d )5[1 − 427/(120d ) + 151/(30d2)

− 793/(240d3) + 67/(80d4)]. (14)

Consistency with the 1D coefficients requires that

1 −
n−2∑
j=1

(−1) j−1 fn, j = 1/(n − 1)!

for all n.

FIG. 2. Lattice size dependence of the jamming density for (a) N1 model and (b) N2 model. Note that for better presentation the y axis of
(a) is in linear scale whereas (b) is presented in logarithmic scale.
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TABLE II. Estimations for the jamming densities vs dimensionality d . Top to bottom: Asymptotic values [computed using the asymptotic
expression presented at Eq. (9)], MC estimations, Levin summation of six coefficients, and Fan and Percus high d approximation [Eq. (8)].

d 2 3 4 5 6 7 8

ρasy 0.402 36 0.324 32 0.274 65 0.239 79 0.213 74 0.193 43 0.177 07
MC 0.364 12 0.3054 0.263 87 0.2332 0.209 58 0.190 79 0.175 42
Levin 0.364 06 0.3056 0.264 12 0.2333 0.209 70 0.190 88 0.175 52
FP 0.333 33 0.2764 0.236 82 0.2113 0.190 48 0.173 93 0.160 41

We summed up the short-time expansions [Eq. (1)] using
the Levin series acceleration method [39,40]. Smith and Ford
showed that the Levin method is very efficient in estimating
sums of alternating sign power series, such as Eq. (1). In our
case, the difference between the sixth and seventh Levin ap-
proximants is negligible and within the MC calculation error
bars.

In Table II values of the ρr (d ) jamming densities are pre-
sented as a function of the dimensionality d . These values
are computed using asymptotic expression [Eq. (7)], the MC
values, the Levin summations using six coefficients, and the
Fan-Percus (FP) [Eq. (8)] asymptotic expressions.

It is worth mentioning that for d = 2 the jamming
density is known to a very high accuracy ρr (d = 2) =
0.364 133 0(1) [27,36]. The asymptotic limit is an upper
bound for all d . The convergence to its value is very fast. For
d = 4, for instance, the asymptotic value is only higher by
4% than the MC result, and by less than 1% for d = 8. On the
other hand, the FP high d approximation bounds the jamming
densities from below, and it deviates from the MC value by
10% for d = 4, and by 9% for d = 8.

A numerical correction of the asymptotic limit ρasy

[Eq. (9)] to fit the MC values for 2 � d � 8, results in the
expression

ρr (d ) = ρasy(d ) − 0.86ρasy(d )3.41

= ln(1 + 2d )

2d

[
1 − 0.86

(
ln(1 + 2d )

2d

)2.41]
. (15)

The uncertainties (standard deviation errors) in the fitting
parameters are 0.07 for the exponent and 0.06 for the coeffi-
cient. The deviation of the fit values from the MC calculated
densities is at most 0.2%. In Fig. 3 the ρasy(d ), MC values,
and the fitted value are presented versus d .

IV. RSA JAMMING DENSITIES OF d-DIMENSIONAL
HYPERCUBES ON LATTICES (N2 MODEL)

In this section we study the convergence rate of the jam-
ming densities of the N2 model to their asymptotic high d
limit. In addition, we study the validity of the generalized
Palasti approximation.

In 1960 Palasti [41] conjectured that the RSA jamming
density of a system of parallel hard squares (also known
as aligned squares) adsorbing on a continuum 2D surface,
exactly equals the square of ρr,seg—the jamming density of
segments on a 1D line (car parking model),

ρr,squares = ρ2
r,seg = (0.747 597 9 . . .)2 = 0.558 902 6 . . . .

(16)

It has been shown by precise MC simulations [28] that
the jamming density of the 2D parallel squares equals
0.562 009(4), 0.5% bigger than the Palasti value. Bon-
nier [42], using heuristic arguments, argued that although the
conjecture is wrong, it is a good approximation for parallel
hard hypercubes for all dimensions, i.e.,

ρr (d ) ≈ ρr (d = 1)d . (17)

The generalized Palasti approximation is an accurate ap-
proximation for the lattice analogues of the continuum models
for d = 2, 3. For d = 2 the jamming density is bigger by
0.04% than the square of the 1D jamming density [27,43].
For d = 3 the jamming density is smaller by 0.2% from the
Palasti value [33]. According to the generalized Palasti ap-
proximation, the jamming density decreases as a function of
d as

ρr (d ) ≈ ρPal =
[

1 − e−2

2

]d

= (0.432 332 . . .)d . (18)

Note that here the density is defined as the ratio between
the number of occupied sites (particles) to the total number
Ld of lattice sites. In some other works (e.g., Refs. [33,43])
the density is defined as the ratio between the area (volume) of
the adsorbed square (cubic) shells to the total area (volume).
The latter density values are bigger by a factor of 2d from the
values here. In present units, the MC jamming density [43] of
squares is ρr (d = 2) = 0.186 985(1), and the MC jamming

FIG. 3. ρasy(d ), MC values, and the fitted value [Eq. (15)] for a
range of dimensions. Error bars are smaller than the symbols.
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TABLE III. Deviation of Eqs. (19) and (18) from the MC results.

d 2 3 4 5 6 7 8 9 10

ρr 0.186 97 0.080 67 0.0346 0.014 70 0.006 167 0.002 55 0.001 035 0.000 412 0.000 16
MC/ρasy 0.6807 0.6364 0.629 87 0.6476 0.681 18 0.7249 0.7729 0.8215 0.8739
MC/ρPal 1.0003 0.9983 0.9904 0.9733 0.9444 0.9033 0.8603 0.7808 0.7101

density of cubes is ρr (d = 3) = 0.0806(1), where the number
in parentheses is the uncertainty in the last digit.

The coordination number of a d-dimensional particle in the
N2 model is q = 3d − 1. As a result, the asymptotic high d
jamming density is

ρasy(d ) = d ln(3)

3d − 1
, (19)

substantially smaller than Eq. (18).
Since the interaction range of a N2 particle is greater than

the unit length of the lattice, the probability to curl and form a
compact lattice animal is not negligible, at least for d = 2–4.
The resulting trees are expected to dominate for higher spatial
dimensionalities. Therefore we extended the MC computa-
tions of the N2 model up to d = 10. The RSA filling algorithm
is the same as for the N1 model. In Table III are presented
the MC results, the ratio of the MC results to the asymptotic
limit [Eq. (19)], and the ratio of the MC results to the Palasti
approximations [Eq. (18)], as a function of d .

The jamming densities ρr (d ) converge very slowly to their
asymptotic high d limit. The ratio increases monotonically
only for d > 4. On the other hand, the Palasti approximation is
an excellent approximation for d = 2–5, but it is an overshoot
for higher values of d .

The coefficients an(d ) of the N2 model are extremely large
numbers for d > 3, and their enumeration requires a lot of
computation resources. Therefore we did not use them in the
ρr (d ) estimation. In this case, in contrast to the N1 model, we
did not find any formal correction relation between the an(d )’s
and their high d limit.

FIG. 4. d dependence of the ratio between MC results and the
other estimations.

In Fig. 4 the ratios ρr (MC)/ρr (asy) and ρr (MC)/
ρr (Palasti) are presented versus d .

V. SUMMARY

The high d approximation (tree graph approximation) to
the dynamics of the RSA process depends only on the coor-
dination number q of the repulsive interaction. For a given
spatial dimensionality d , the accuracy of the high d approxi-
mation inversely depends on the range of the interaction.

For the N1 RSA process on the d-dimensional cubic lat-
tice with a nearest-neighbor exclusion, the interaction range
equals the lattice spacing and q = 2d . In this case, the high d
approximation provides a very accurate approximation for the
limiting jamming densities even for relatively low d values.
For d = 4, for instance, the asymptotic result differs only by
4% from the “exact” MC result. For all 2 � d � 8 the high d
approximation appears to be an upper bound to the jamming
densities ρr (d ). This observation requires more examination
which is beyond the scope of the present work. The conver-
gence rate of the approximation to the exact jamming densities
as a function of d , vanishes as [ ln(1+2d )

2d ]3.41.
For all d and n � 6 the coefficients an(d ) of the short-

time expansion [Eq. (1)] are given in terms of a correction
finite sum of order (n − 2) in 1/d to their asymptotic val-
ues [Eq. (5)]. It seems that this behavior is valid for all n,
indicating that a closed-form expression may exist for all the
coefficients (number of connected lattice animals) of the N1
model on the d-dimensional cubic lattice.

The high d tree approximation is less efficient for the
N2 RSA process of d-dimensional hypercubes of length k =
2 on the hypercubic lattice. For 2 � d � 4 the generalized
Palasti approximation provides an excellent approximation
to the jamming densities. For higher d values the decay of
the jamming densities is substantially faster than the Palasti
approximation [Eq. (18)], and it converges to the limit d ln(3)

3d

predicted by the high d approximation.
The interaction range of the N1 model equals the lattice

spacing of the hypercubic lattice. Most of the empty neighbors
of an occupied site extend out of the existing shell. As a
result, the probability to curl inside and form a compact lattice
animal is small even for relatively small d . On the other hand,
the interaction range of a N2 particle is greater than the unit
length of the lattice, and as a result an occupied site may have
many nonvacant neighbors in the existing shell. Therefore, the
probability to form a compact lattice animal is not negligible
for d = 2–4. Trees start to dominate for higher values of d .
As a result, the convergence of the jamming densities of the
N2 model to their asymptotic high d values is slower than the
convergence rate of the N1 jamming densities.
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