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Explaining the specific heat of liquids based on instantaneous normal modes
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The successful prediction of the specific heat of solids is a milestone in the kinetic theory of matter due to
Debye. No such success, however, has ever been obtained for the specific heat of liquids, which has remained
a mystery for over a century. A theory of specific heat of liquids is derived here using a recently proposed
analytical form of the vibrational density of states of liquids, which takes into account saddle points in the liquid
energy landscape via the so-called instantaneous normal modes (INMs), corresponding to negative eigenvalues
(imaginary frequencies) of the Hessian matrix. The theory is able to explain the typical monotonic decrease in
specific heat with temperature observed in liquids in terms of the average INM excitation lifetime decreasing
with T (in accordance with the Arrehnius law) and provides an excellent single-parameter fitting to several sets
of experimental data for atomic and molecular liquids. It also correlates the height of the liquid energy barrier
with the slope of the specific heat in the function of temperature in accordance with the available data. These
findings demonstrate that the specific heat of liquids is controlled by the instantaneous normal modes, i.e., by
localized unstable (exponentially decaying) vibrational excitations and provide the missing connection among
anharmonicity, saddle points in the energy landscape, and the thermodynamics of liquids.
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I. INTRODUCTION

Historically, one of the overarching goals of the kinetic
theory has always been the rationalization of the specific heat
of matter based on its underlying atomic and molecular struc-
tures. Classical thermodynamics, revisited in light of modern
molecular physics, explains the specific heat of atomic and
molecular gases in terms of the equipartition theorem for
the various translational and rotational degrees of freedom
of the constituent atoms or molecules: The result is the well
known Dulong-Petit law Cv = 3N/2 (constant with T ) for a
monoatomic gas.

For condensed matter, things become more interesting and
more intertwined with modern physics. The case of solids has
been essentially solved by Debye in 1912 [1]. In his remark-
able paper, Debye correctly counted the contribution of plane
waves (acoustic phonons) in the isotropic three-dimensional
(3D) solid to the internal energy from which he derived the
law C(T ) ∼ T 3 valid for insulators at low temperatures [this
does not account for the electronic contribution in metals
which is given by the Sommerfeld theory of electronic heat
capacity and yields a C(T ) ∼ T contribution] where C is the
temperature dependent specific heat. Furthermore, in the same
paper, Debye presented the famous result for the density of
states of phonons in solids, g(ω) ∼ ω2, obtained from the cor-
rect way of summing plane wave contributions in a spherical
3D space together with the ultraviolet cutoff at the Debye
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wave vector ωD, consistent with atomic-scale granularity of
matter. The correct counting of normal modes in the spherical
shell in k space, that is, g(ω) ∼ ω2 was the key step that al-
lowed Debye to arrive at the correct result for the specific heat
of solids and it strongly relied on the linear dispersion relation
ω = vk for acoustic phonons. Furthermore, the Debye theory
also recovers, correctly once again, the high-temperature limit
which is again the Dulong-Petit law mentioned above.

Therefore, we have satisfactory theories of the specific
heat for both gases and solids in agreement with experimental
observations, which can be found in any textbook of statistical
physics or solid-state theory [2]. In light of these successes
for gases and solids, it is, thus, all the more surprising that
100 yr after Debye, no satisfactory theory of the specific heat
of liquids is available yet. Experimental data show that the
specific heat of liquids decreases monotonically with temper-
ature upon going from the glass transition or melting transition
temperature to higher temperatures [3–5]. This behavior is
puzzling because it is clearly in contrast with what is observed
in solids where the specific heat is an increasing function of T
and then plateaus at the Dulong-Petit value.

One reason for this state of matters is that the dynamics
of atoms and molecules in liquids is strongly anharmonic,
which renders the mathematical problem a strongly nonlinear
one and intractable from first principles. This strong anhar-
monicity also makes concepts, such as normal modes, that
proved decisive in the Debye theory of specific heat of solids,
of less straightforward applicability in the case of liquids.
In other words, the basic assumption of Debye theory, i.e.,
the presence of linearly dispersing propagating (shear) sound
waves at small frequencies, must be abandoned. In this sense,
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a correct description of the specific heat of liquids at small
temperatures is inevitably connected to the identification of
the low-energy excitations therein in analogy with acoustic
phonons in solids.

Recent advances in our understanding of the specific heat
of liquids include the interstitialcy argument by Granato,
which heuristically explains the decaying C(T ) of liquids in
terms of Arrhenius-type relaxation of interstitial defects [3].
Although intuitively appealing and simple, this model is not
supported by the existence of point defects in liquids since
there is no underlying regular lattice in liquids that can pro-
vide a topologically meaningful definition of interstitials. A
different explanation of the decaying specific heat of liquids
with temperature was suggested by Wallace on the basis of
atomic motions through a vast number of random valleys in
the energy landscape [6].

More recently, Bolmatov and co-workers proposed a the-
ory of specific heat in liquids based on standard acoustic
phonons [7] and the k-gap theory [8]. The theory explains
the decaying C(T ) in liquids as due to the gradual depletion
of transverse acoustic phonons (and their shift to higher and
higher frequencies or momenta) as the temperature is raised.
This approach relies on acoustic phonons, whereas at lower
momenta or energies one has to deal with overdamped modes
(ω = −i/τ ), whose importance for liquids has been estab-
lished and demonstrated in a broad literature [9]. The role
of these modes is, nevertheless, not considered in any of the
previous approaches.

Modern theories of the liquid state have attempted to ex-
tend the concept of normal modes from solids to liquids,
following pioneering ideas and work by Zwanzig [10]. This
led to the concept of instantaneous normal modes (INMs),
which extends the concept of normal modes to liquids, to
include the above mentioned overdamped modes. In short,
the locally anharmonic dynamics of atoms in liquids leads
to many saddle points in the energy landscape. These saddle
points are associated with localized unstable (exponentially
decaying) modes with purely imaginary frequency. The imag-
inary frequencies correspond to negative eigenvalues of the
Hessian matrix of the atomistic system. In simpler terms,
the anharmonicity leads to locally unbalanced forces between
atoms (which are constantly pushed away from their bond-
ing minima by the thermal fluctuations), which then lead to
exponentially decaying motions in time with an Arrhenius-
dependent timescale on T , i.e., the INMs eiω∗t ∼ e−�t , with
� ∼ e−U/kBT , and ω∗ is purely imaginary ω∗ = −i�.

As shown by many numerical studies over the past decades,
the INMs dominate the low-frequency and intermediate-
frequency sectors of the density of states (DOS) of liq-
uids [9,11,12]. At low frequencies, they coexist with one
longitudinal acoustic phonon and one transverse diffusive
mode (momentum-shear diffusion), whereas, at higher fre-
quencies, transverse acoustic phonons only recently have been
shown to exist in liquids and to play a role in their ther-
modynamics at higher energies (the so-called k gap) [13].
Interestingly, these modes define the regime of applicability
of hydrodynamics [14], intended as an effective continuum
description of fluids.

In this paper, we provide a first-principles theory of the spe-
cific heat of liquids, which, for the first time, effectively takes

into account the intrinsic anharmonicity of liquid dynamics
and the fact that the DOS of liquids (derived analytically
in recent work [15]) is dominated by INMs. The theory
provides an excellent fitting to experimental data of several
liquids and correctly recovers the Dulong-Petit law as its
high-temperature limit. The results presented here provide a
long-sought answer to the century-long question about the
specific heat of liquids, more than 100 yr after Debye’s theory
for solids.

II. THEORETICAL MODEL

As is customary for specific heat calculations, one starts
from the total energy of a collection of excitations. For
harmonic solids, these excitations are simple harmonic os-
cillators with frequencies strictly real; in the case of liquids,
the frequencies can be imaginary (as for the INMs). States
with imaginary frequencies in quantum mechanics are not
at all uncommon [16], and they arise in nuclear physics—
the Gamow states—and in particle physics—the W and Z0

bosons [17,18]. These modes are simply called resonances,
states with a finite lifetime coming from a large imaginary
part, which contributes and may even dominate the parti-
cle mass and energy [16,18]. In other contexts, they take
the name of quasinormal modes; they are intimately linked
to non-Hermiticity [19] (i.e., dissipation or relaxation) and
experimentally observed even in astronomic black hole col-
lisions [20].

Here we describe a population of INMs as a weakly
interacting Bose gas with the Hamiltonian given by H =∑

q �=0 εqb†
qbq [21] where we do not include the ground state

(T = 0) terms (which are irrelevant since we will later take
a derivative with respect to T ). In the above expression, b†

q
and bq are the bosonic (Bogolyubov) creation and annihila-
tion operators equipped with standard commutation relations
and with associated momentum q, whereas εq is the en-
ergy [21]. We then formally rewrite εq ≡ h̄ωq for the energy
of a single boson, where ωq ≡ |ωq| as appropriate for unsta-
ble bosons [9,16–18], and we further consider that b†

qb = nq

where nq = (eh̄ωq/T − 1)−1 is the Bose-Einstein (BE) occupa-
tion number. Since we have a gauge freedom in defining the
ground-state energy (because it obviously does not contribute
to the specific heat), we define it as h̄ωq/2 in order to maintain
a formal analogy with the case of solids.

Hence, the energy of a collection of weakly interacting
bosons under the above assumptions can be written as

E =
∑

q

h̄ωq

2

eh̄ωq/T + 1

eh̄ωq/T − 1
, (1)

where q ≡ |q| is the modulus of the momentum since we are
considering isotropic liquids. In the above, we are working in
units, such that kB = 1.

Using the standard replacement
∑

q → ∫ d3q
(2π )3 , and further

introducing the vibrational density of states g(ω) defined via
d3q

(2π )3 = g(ω)dω, we arrive at the following integral (which
can be found in textbooks) for the specific heat [21],

CV (T ) = 3N
∫ ∞

0

( ω

2T

)2
sinh

( ω

2T

)−2
g(ω)dω, (2)
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where we have also set h̄ = kB = 1.
Upon inserting the normalized Debye DOS g(ω) =

3ω2/ω2
D in the above integral, one readily recovers the

low-T limit of the specific heat as CV ∼ T 3, and the high-
temperature limit as the Dulong-Petit law CV ∼ 3N (in units
of kB = 1). Let us now turn to the case of liquids. The start-
ing point is an overdamped equation of motion for particle
dynamics,

dv
dt

= −�v, with � ≡ 1/τ, (3)

where τ is the relaxation time and � is a damping coef-
ficient (the relaxation rate), which for strongly anharmonic
excitations represents the (short) lifetime of the excitation.
This overdamped dynamics and its associated negative eigen-
values can be quantitatively linked to the anharmonicity of
the underlying energy landscape [22]. Taking advantage of a
generalization of the Plemelj identity to arbitrary integration
pathways on the complex plane, recently it has been possi-
ble to derive an analytical form for the DOS of liquids that
takes INMs into account [15]. The final expression has the
following form [modulo a normalization factor to ensure that∫

g(ω)dω = 1]:

gliq(ω) ∼ ω

ω2 + �2
e−ω2/ω2

D , (4)

where � is the characteristic relaxation rate of an INM, which
exhibits a typical Arrhenius dependence on temperature [12],

�(T ) = �0 e−U/T . (5)

Furthermore, the factor of e−ω2/ω2
D is just a Gaussian cut-

off which implements the granularity of matter at the
atomic/molecular scale in terms of the ultraviolet cutoff ωD

and was already introduced in Ref. [12]. We have checked
that the main results do not depend essentially on the specific
form of the cutoff.

The above Eq. (4) has been shown in a recent work [15]
to provide an excellent fitting of numerical data of the DOS
of Lennard-Jones systems obtained from molecular dynamics
simulations in the literature [12,23].

These Eqs. (4) and (5) provide a direct connection between
relaxation and vibration in liquids and play a decisive role in
the following description of the specific heat.

Upon inserting a normalized form of (4) in (2), it is im-
mediately verified that the limit T → ∞ of the integral leads
CV = 3N , i.e., the Dulong-Petit law.

We now turn to the dimensional form of the specific heat
integral (2),

CV (T ) = kB

∫ ∞

0

(
h̄ω

2kBT

)2

sinh

(
h̄ω

2kBT

)−2

g(ω, T )dω,

(6)
where g(ω, T ) is given by (4) together with (5).

In (4), acoustic phonons are not explicitly taken into ac-
count because it has been shown in previous work that they are
not crucial to reproduce numerical data of DOS of Lennard-
Jones liquids [15]. It is also important to note that, at T < �D

where �D is the Debye temperature, the BE-related factor
sinh( h̄ ω

2 kB T )−2 in the integral for the specific heat effectively
gives a very low weight to all high-ω (phonon-type) ex-

FIG. 1. The (schematic) theoretical predictions of the model.
Left: The dependence of the liquids specific heat on the amplitude
of the INMs relaxation rate �. Right: The dependence on the charac-
teristic potential height U for relaxation.

citations, whereas it gives a high weight to low-frequency
excitations, such as the INMs. More precisely, high frequen-
cies could eventually be important only at extremely high
temperatures, and they cannot possibly be responsible for the
low-temperature (above melting transition) decay typical of
liquids. Indeed, as we will prove, there is no need to take into
account high-frequency modes (e.g., emerging shear waves in
the k-gap model [8]) to reproduce the experimental trends.

Furthermore, quoting from Born and Huang [24] at T >

�D, the specific heat is not sensitive to the specifics of the
frequency distributions, and the Einstein model provides a
correct estimate in terms of high-energy atomic or molecular
vibrations with ω ∼ ωD or larger (intramolecular vibrations).
Hence, in this high-temperature regime, phonons as collec-
tive lattice vibrations do not exist anymore, whereas the
high-frequency noncollective (gaslike) vibrations contribute a
constant (independent of T ) to the specific heat [24]. These
arguments suggest that the influence of the INMs on the spe-
cific heat and on its observed decay with T could possibly be
the dominant one.

Illustrative calculations of the specific heat using the above
theory are shown in Fig. 1. It is clear from these theoretical
calculations that the temperature dependence of the specific
heat is mostly controlled by the relaxation rate of excitation
lifetime � and its Arrhenius dependence on T . In particular,
despite the dimensionful prefactor �0 produces only a vertical
shift in the C(T ) function (left panel of Fig. 1), the energy
barrier U plays a much more fundamental role. It determines
the curvature of the specific heat; the larger the potential
energy U , the slower the temperature decay of the specific
heat (right panel of Fig. 1).

This Arrhenius dependence was fortuitously captured by
Granato’s interstitial defect argument, although its true physi-
cal origin resides in the INMs and in the many saddle points of
the energy landscape. From a physical point of view, the decay
of C(T ) with increasing T is caused by the decrease in the
average lifetime of the INM excitations, which is equal to �−1.
Hence, since the heat is stored by the INMs as the dominant
vibrational excitations in liquids, the fact that their lifetime
decreases with increasing T leads to a lower capability of
storing heat in the vibrational excitations.

This picture is confirmed by the fact that the specific heat is
reduced upon increasing the strength of the INMs relaxation
rate �0, i.e., upon decreasing their lifetime. Moreover, the
model directly shows that by increasing the characteristic
potential height U of the anharmonic liquid landscape the
specific heat grows. This can be simply explained by the fact

014103-3



MATTEO BAGGIOLI AND ALESSIO ZACCONE PHYSICAL REVIEW E 104, 014103 (2021)

TABLE I. The numerical values used in the fitting procedure.
The symbol ∗ indicates that the values are not obtained from the
fit, but they are fixed with the literature data [25–27]. The only free
parameter is �0.

Liquids: (K) Xe Kr Ne Ar N2

ω∗
D 64 72.1 74.6 93.1 86

U ∗ 226.1 162.5 33.9 116.7 102.12
�0 240 100 80 60 29

that a higher barrier suppresses the probability of the molec-
ular rearrangements responsible for the INMs dynamics and,
therefore, makes their lifetimes longer. This is fully consistent
with the emerging picture of heat being stored in the INMs in
liquids.

III. RESULTS

We now turn to the fitting procedure and the main results
of our analysis. Combining Eqs. (4) and (5), our model dis-
plays three physical parameters: the Debye frequency ωD,
the activation energy U , and the relaxation rate prefactor �0.
The first two parameters for simple liquids are well known,
and they are fixed to their literature values [25–27] displayed
in Table I. The activation energy is taken to be equivalent
to the height of the Lennard-Jones energy barrier ε. All in
all, our fitting procedure involves a single fitting parameter
�0. In Fig. 2, we present a series of comparisons between
the specific heat calculated using (4) inside the specific heat
integral (6) and experimental data of simple liquids of various
nature but all reasonably well approximated by the Lennard-
Jones potential. The obtained values for the relaxation rate
scale �0 are shown in Table I. In all instances, the fitting is
excellent and perfectly captures the decline of the specific heat
with increasing temperature, explained by the present theory
in terms of reduced lifetime of INMs. The results show as
already anticipated that, the larger the characteristic energy U
(which is related to ε), the larger the specific heat, and the
slower its temperature decay. This confirms once more not

FIG. 2. The comparison between the model, Eqs. (4)–(6), and the
experimental data for four different liquids. The experimental data
are taken from Refs. [6,28]. The values of the various parameters are
displayed in Table I.

FIG. 3. The temperature dependent INM relaxation rate �(T )
obtained by using the single-parameter fitting in Table I. The solid
portion of the curves is the one corresponding to the temperature
range of the experimental data fitted.

only the validity of our theory, but also its predictive power
able to connect microscopic features, such as the characteristic
potential barrier U , to macroscopic thermodynamic observ-
ables, such as the temperature dependence of the specific
heat.

In order to emphasize the predictive power of our the-
ory and the excellent agreement with the data, we represent
the INMs temperature dependent relaxation rate �(T ) using
the parameters obtained from the fits in Fig. 3. For all the
liquids analyzed, we find a relaxation rate on the order of
1/ps. According to transition state theory [29], the molecular
hopping (attempt) rate is directly proportional to the INMs
relaxation rate, which corresponds to the (negative) curvature
of the potential landscape. Interestingly, our order of mag-
nitude estimate of the single fitting parameter �0 coincides
with the values reported in the literature, see, for example,
Ref. [12].

IV. CONCLUSION

To summarize, the above theory provides a definitive
answer to the mystery of liquid specific heat and ideally
completes the agenda of the kinetic theory of matter, set
over 100 yr ago by Debye, Einstein, Planck, and co-workers.
As in Debye’s work [1] for solids, the crucial step for the
successful derivation of the specific heat also in the case of
liquids relies on finding the correct form of the vibrational
DOS. Debye derived his famous T 3 law for the specific
heat of solids by correctly counting 3D plane waves in an
isotropic solid, leading to the Debye vibrational density of
states ∼ω2. Here we did the same for liquids where the
relevant excitations are not plane waves or phonons but the
INMs, i.e., overdamped relaxations from saddle points in the
energy landscape. This leads to a DOS for liquids ∼ω at
low frequencies [15], whose form is given in Eq. (4). In
turn, this DOS leads to a monotonically decreasing C(T )
with increasing T as a result of Arrhenius-type relaxation of
INMs and recovers the Dulong-Petit plateau in the high-T
limit.

These results fill the gap in our understanding of thermal
and vibrational properties of condensed matter.

014103-4



EXPLAINING THE SPECIFIC HEAT OF LIQUIDS BASED … PHYSICAL REVIEW E 104, 014103 (2021)

Finally, given the success of the theory by Trachenko
et al. [7], it is important to draw some comparisons. Given
our results, it is clear that the key point in their treatment
is not the presence of propagating shear waves, which ap-
pear at large momenta and frequencies (at least, at momenta
larger then

√
2kg), but rather the collection of overdamped

modes below that point. In particular, the k-gap dispersion
relation [8] displays purely relaxing modes below k = kg.
Not only that, but even between kg < k <

√
2kg, the acoustic

waves are mostly overdamped and, therefore, more similar in
nature to INMs than to propagating shear waves. Moreover,
our results are in agreement with those of Ref. [30] where the
heat capacity decreases by increasing the k-gap momentum.
Indeed kg ∼ �; a larger k gap implies a shorter lifetime for the
relaxational modes ω = −i� and, therefore, a lower specific
heat as explained by our theory.

Following the ideas of Ref. [31], it would definitely be
interesting to achieve a more fundamental understanding of
this relaxation timescale based on symmetries rather than mi-
croscopic mechanisms, in analogy to the modern formulation
of phonons and Debye theory in terms of the spontaneous
symmetry breaking of spacetime translations.
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