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Long-loop feedback vertex set and dismantling on bipartite factor graphs
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Network dismantling aims at breaking a network into disconnected components and attacking vertices that
intersect with many loops has proven to be a most efficient strategy. Yet existing loop-focusing methods do
not distinguish the short loops within densely connected local clusters (e.g., cliques) from the long loops
connecting different clusters, leading to lowered performance of these algorithms. Here we propose a new
solution framework for network dismantling based on a two-scale bipartite factor-graph representation, in which
long loops are maintained while local dense clusters are simplistically represented as individual factor nodes.
A mean-field spin-glass theory is developed for the corresponding long-loop feedback vertex set problem. The
framework allows for the advancement of various existing dismantling algorithms; we developed the new version
of two benchmark algorithms BPD (which uses the message-passing equations of the spin-glass theory as the
solver) and CoreHD (which is fastest among well-performing algorithms). New solvers outperform current
state-of-the-art algorithms by a considerable margin on networks of various sorts. Further improvement in
dismantling performance is achievable by opting flexibly the choice of local clusters.

DOI: 10.1103/PhysRevE.103.L.061302

Network dismantling is the optimization version of the
celebrated site percolation problem. It aims at breaking a
network into many disconnected components with the mini-
mum number of vertex deletion [1-8]. Dismantling a network
essentially means demolishing its long-range loops, and it
is deeply connected to the concept of feedback vertex set
(FVS, a set of vertices whose removal breaks all the loops
in the network [1]). The dismantling problem is rooted in
many structural and dynamical issues of network science,
such as contagion spreading and vaccination [9,10], vital
vertex identification [11,12], control of complex systems
[13,14], and network robustness enhancement [15]. Many
different heuristic algorithms were proposed over the years
to solve this important problem [16-21]. Among them some
best-performing algorithms (BPD [4,7], Min-Sum [5], and
CoreHD [16,17]) are FVS-based iterative processes that delete
those vertices considered most vital for loop integrity. The
dismantling and the FVS problem are equivalent for synthetic
random networks in which most loops are long range [1];
therefore the FVS strategy is optimal for dismantling such
networks [4,5].
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Triangles and other short-range loops are, however, abun-
dant in real-world networks, leading to densely connected
local clusters and communities [22-28], which are often
preferably not to be split into parts. Deleting vertices that are
highly involved in short-range loops within dense local re-
gions also increases the dismantling cost [10,21]. It should be
more advantageous to delete those articulation points linking
different local clusters or communities [21,29], yet existing
FVS-based methods so far do not differentiate short-range and
long-range loops.

In this Letter, we design a long-loop FVS system and
present an improved solution framework for network disman-
tling. Our model represents local dense clusters as factors in
a two-scale bipartite factor-graph, intentionally overlooking
loops within the specified clusters. Many short-range loops in
the original network are thus absent in the constructed factor-
graph, while long-range loops are preserved. By this means,
solutions of message-passing techniques (e.g., BPD) would be
near optimal after original clustered graphs are transferred to
(quasi-) trees, an idea investigated similarly in recent attempts
at other tasks [30-32]. In this work, we address the similar
idea on the network dismantling problem. We derive coarse-
grained (two-state) message-passing equations for this model
to evaluate the impact of node removal to the factor graph,
and use this equation set as a solver for network dismantling,
which is the advanced version of BPD (termed as FBPD)
with BPD reducing to it as a special case. Besides BPD, the
new model allows for the advancement of various existing
algorithms, and we further develop the corresponding version

©2021 American Physical Society
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FIG. 1. Factor-graph construction for the long-loop feedback vertex set problem. This example network (a) contains 22 vertices (circles).
We identify all maximal cliques as local clusters and represent them as factors (squares). The resulting bipartite factor-graph (b) has 13 factors
and 22 vertices; a link between a vertex and a factor indicates that the vertex is a member of the cluster represented by the factor. Thick dotted

links in (c) highlight the only intercluster long loop in the factor-graph.

of the CoreHD algorithm (termed as FCoreHD). We find that
even when only the shortest loops in cliques of three and
four vertices (i.e., triangles and tetrahedra) are overlooked,
the factor-graph model can already lead to remarkable and
consistent improvements in dismantling performance as com-
pared with the conventional network model. Nevertheless, this
solution framework is flexible and leaves room for further
opting the design of the factor graph.

Factor-graph representation. Given a simple network G
of N vertices and M undirected edges, which contains many
densely connected local clusters or communities as well as
long-range loops, our objective is to delete a minimum num-
ber of vertices so as to break long loops while preserving
local loopy structures as much as possible. To minimize the
distraction of short loops to long-loop breaking, we introduce
a set of factors and expand the original network into a bipartite
factor-graph, G (Fig. 1). Each factor (square in Fig. 1) a of G
represents a cluster of G which is a densely connected local
region with a high proportion of short loops, and a link (i, a)
is drawn between every vertex (circle in Fig. 1) i of this cluster
and the factor a to indicate that i is a member of cluster a.
There is a huge literature on discovering clusters or communi-
ties in a complex network [28], and our theoretical framework
is flexible to different criteria that might be adopted in de-
termining clusters. A particularly straightforward recipe is to
specify cliques of the graph as the clusters [25]. Notably, if an
edge of G is not assigned to any such multivertex clusters, then
the two incident vertices are regarded as forming a minimum-
size cluster (i.e., a 2-clique). Clusters may partially overlap
at some vertices; thus a vertex is generally connected to many
factors in G (Fig. 1). Notice that all edges and loops within the
identified clusters completely disappear in the factor-graph G.
All loops in G, necessarily alternating between vertices and
factors, correspond to intercluster (and often long) loops of
the original graph G.

Model with local constraints. For a factor-graph G of ver-
tices and factors, we define a subset I of its vertices as a
feedback vertex set if the set intersects with every loop of G
[1]. A minimum FVS (minFVYS) is then a FVS of global min-
imum cardinality, which offers an optimal way of breaking
all the intercluster loops and dismantling G into a collection
of tree components [1]. However, the minFVS problem is
an NP-hard combinatorial optimization problem and an ex-
act solution is practically impossible [33]. Here we derive
an approximate but efficient message-passing algorithm by
extending an earlier spin-glass model [2]. In the following
discussions we use symbols i, j, k, ... to indicate vertices
and a, b, c,... to indicate factors, and denote by di (da)
the set of nearest-neighboring factors (vertices) of vertex i
(factor a).

First, a state c; is introduced to each vertex i, which is either
zero (¢; =0, indicating i being inactive) or is equal to the index
a of aneighboring factor (i being active, ¢c; = a € 9i). A config-
uration of the whole system is denoted as c=(cy, ..., cy), and
its energy is simply the total number of zero-state (inactive)
vertices. Second, a local constraint yx, is introduced for every
factor a as

xa= 100 +80)+2 (185 —e0) T (6 +60).

ieda icda jeada\i
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where 87 =1 if m=n and §), =0 otherwise, and da\i means
vertex i is excluded from set da. Notice that x, =1 only if at
most one of the neighboring vertices of factor a takes state
other than 0 and a; otherwise, x,=0. We require ¢ to satisfy
Xa =1 for all the factors a. Given such a valid configuration c,
each connected subgraph of G formed by the active vertices
and the attached factors is then most often a tree (free of
any loop) or occasionally a cycle-tree (containing exactly one
loop) [2]. If cycle-trees do exist, then we can easily break each
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of the associated loops by inactivating a single vertex, and
then all the inactivated vertices of ¢ form a FVS. Conversely,
each FVS T" of G can be mapped to a set of valid configura-
tions ¢ after setting c; =0 for every vertex i I" [2].

We define the partition function Z(8) of the system as

zB) =Y [+ ? =D xa )

where B is the inverse temperature parameter. At large
values of B, the partition function is predominantly con-
tributed by minFVS configurations and their low-energy
excitations.

Belief-propagation (BP). We solve the spin glass model
(2) by the now standard replica-symmetric cavity method
[34,35]. First, the probability of vertex i taking state c¢; in the
absence of the constraint from neighboring factor a, denoted
as ¢, ,, is estimated via the following self-consistent BP

J

e Tlacoi [1 + 2 jevani (qj;(#qu‘,ta —1)]

equations
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with normalization ¢, ,+q%, ,+ ,cs i\a q%.,=1, where
di\a means excluding factor a from set di. In the numerical
implementation we need only to iterate the coarse-grained
probability qfig—ql_)u—i—q?_)u, rendering the minFVS prob-
lem essentially an Ising-type spin glass system. Second, the
marginal probability of vertex i taking state ¢;=0 (i.e., being
a feedback vertex) under the constraints of all its neighboring

factors a, denoted as q?, is estimated via

g =

The mean fraction p of feedback vertices at inverse tempera-
ture B is then

=%Zﬁ 5)

Explicit expressions for the free energy density and the
entropy density can be derived and be evaluated at a BP fixed
point [36]. We are then able to estimate the minFVS relative
size by taking the B— oo of p (if the entropy density is
non-negative at this limit) or by taking the value of p at the
maximal value of 8 at which the entropy density reaches zero
from above [2].

Similarly to the iterative process of the BPD algorithm, we
can try to construct a quasiminimum FVS for the factor-graph
G by deleting at each BP iteration a tiny fraction of vertices
i of G whose estimated inactive probability ¢? are the highest
among remaining vertices, until all the loops in G are broken.
We refer to this factor-graph decimation process as FBPD.

Results on random and real networks. We test the per-
formance of FBPD on random networks G formed by local
n-cliques (i.e., fully connected n-vertex subnetworks). Each
vertex participates in exactly K randomly chosen n-cliques
and the graph is otherwise completely random [37-41]. The
total number of n-cliques and edges is NK/nand M =NK(n —
1)/2. All vertices are involved in both intraclique short loops
and interclique long loops. Naturally we represent each n-
clique as a factor, getting a factor-graph G that retains only
long loops and is locally treelike. Quantitative results obtained
on the cases of n=3 (triangle clusters) and n=4 (tetrahedron
clusters) are shown in Fig. 2. We find that, at a given value of
K, the fraction p of long-loop feedback vertices achieved by
FBPD on individual network instances is only slightly exceed-
ing the theoretical minFVS relative size ppin predicted by the
replica-symmetric mean-field theory. For example at K =10
and n=3, pmin =0.6932 while the FBPD empirical values are

e’ Haeai [1 + Zjeaa\i (m - ])] + Zaeai [1 + Zjeaa\i (m - 1)]

“4)

(

0p~0.7080 for graphs of size N=10° (8 =7 for FBPD, and
algorithmic results are insensitive to this parameter).

Besides the message-passing FBPD, the factor-graph rep-
resentation allows for the advancement of other long-loop
breaking heuristics. All loops of a network G are contained
in its 2-core, the maximum subnetwork in which every vertex
is connected to at least two other vertices of this subnetwork.
Similarly, the 2-core of the corresponding factor-graph G
contains all the long loops of G. A simple and fast algorithm to
destroy the 2-core of G is CoreHD, which recursively removes
a highest-degree vertex of the extant 2-core [16,17]. We tested
the factor-graph version of CoreHD (termed as FCoreHD)

0.9

0.8+

x

Random regular triangle graph

X-FBPD | |
+ RS theory| |

FVS relative size

FIG. 2. The minimum fraction of long-loop feedback vertices for
random regular triangle networks (lower) and tetrahedron networks
(upper). K is the number of triangles or tetrahedra participated by
each vertex. The FBPD algorithmic results obtained on single net-
work instances of N =100 002 (crosses) are only slightly higher than
predictions from the replica-symmetric mean-field theory (pluses).
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FIG. 3. Shrinkage of the 2-core of the LastFM network (7624
vertices, 27 806 edges) along the sequential removal of vertices. The
FBPD(n) and FCoreHD(n) trajectories are obtained on the factor-
graph G, considering cliques up to size n (3 or 4). Trajectories from
BPD, CoreHD, and CI (level 4 and 5) algorithms are compared
against.

on random clustered networks. FCoreHD’s performance is
inferior to FBPD but clearly outperforms CoreHD. Similar
results are observed on real networks. The 2-core of a real
network will generally shrink much faster if its vertices are
sequentially deleted according to the factor-graph algorithms
(FBPD, FCoreHD) than according to the graph algorithms
(BPD, CoreHD). Figure 3 offers a concrete demonstration,
where the corresponding trajectories from the CI algorithm
(level 4 and 5) are also compared against.

We now compare the performance of factor-graph (FBPD,
FCoreHD) and graph (BPD, CoreHD) solvers on network dis-
mantling. Algorithms first delete vertices to solve the minFVS
problem and then reinsert some vertices to the network under
the constraint that any remaining connected component con-
tains at most 0.01N vertices [3-5,16,42]. Real-world networks
of miscellaneous sorts are used in experiments, including road
network [27], power grid [22], internet (IntNet) [43], email
networks (Emaill/2) [26,44], protein interaction network
(Yeast) [45], product co-purchasing network (Amazon) [46],
Wikipedia network (Wiki) [47], citation network (Cite) [43],
and social networks on various platforms (LastFM, Github,
Twitch, Facebook networks FBK-a/b, Deezer, Brightkite BK)
[47-51]. For each network G, we adopt two factor-graph
versions (G3 and G4). G; is obtained by repeatedly picking a
3-clique at random from G as a factor and then deleting all the
edges of this 3-clique; when there is no more 3-cliques then
we continue with 2-cliques (the conventional edges). Gy is
similarly constructed while starting with 4-cliques, and there-
fore more loops are treated as intracluster loops. Results listed
in Table I confirm the improvement of factor-graph algorithms
over graph algorithms. It is observed that FBPD in general
claims a substantial margin over the other three algorithms. In
many cases, the performance of FBPD improves as more short
loops are replaced by factors (e.g., using G, with larger values
of n). We also tested the MinSum algorithm on these networks

TABLE I. Dismantling results of real-world networks. N, net-
work size; n, number of vertices deleted by the algorithm.
Superscripts B, FB, C, FC indicate BPD, FBPD, CoreHD, FCoreHD;
subscripts 3 and 4 indicate the maximum cliques considered (trian-
gles and tetrahedra, respectively).

Network N n® n®  nfB n° ¢ nfc

Emaill 986 456 454 455 452 458 452
Road 1174 148 149 149 149 147 147

Yeast 2284 357 351 354 353 350 355
FBK-a 4039 1907 1921 1872 1914 1892 1872
Grid 4941 312 301 304 317 302 305
Wiki 5201 1148 1138 1134 1150 1149 1145
IntNet 6474 160 159 159 160 161 156

LastFM 7624 1285 1262 1258 1296 1296 1276

Twitch 9498 3013 3011 2992 3036 3037 3021
FBK-b 13866 3311 3295 3293 3356 3332 3302
Cite 34546 13433 13393 13399 13547 13484 13475
Email2 36692 2616 2626 2647 2621 2648 2647
Github 37700 6468 6422 6423 6554 6520 6495
Deezer 54573 23805 23751 23686 24180 24098 24112
BK 58228 6225 6140 6130 6257 6213 6207

Amazon 262111 45038 44862 44438 45612 44915 44803

and results confirm previous studies [4,16], suggesting that
MinSum’s overall performance is comparable to BPD but is
much slower in speed than BPD/FBPD, while all of them are
slower than CoreHD /FCoreHD by a few orders of magnitude.

Conclusion. The factor-graph representation overlooks
short-range structures in a complex network and allows us
to rank vertices according to their contribution to long-
range loops. As one important application, we demonstrated
that factor-graph FVS algorithms (FBPD, FCoreHD) con-
siderably outperform corresponding graph FVS algorithms
(BPD, CoreHD) in dismantling real networks, even when
only the shortest loops in 3-cliques and 4-cliques were over-
looked. This representation also enables the computation of
the ensemble-averaged size of long-loop minimum feedback
vertex sets for random clustered networks.

In the present work we consider the straightforward way
of constructing factor-graphs via cliques. Opting the choice
of factors to achieve an optimal factor graph for a given real-
wold network instance is an interesting open issue, insightful
for future studies especially for domain applications. Another
future direction is to extend the factor-graph framework to
directed networks and consider the more difficult problem of
breaking all long-range directed cycles.
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