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Response tensor for a spin-dependent electron gas: Dependence on the choice of spin operator
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It is shown that the choice of spin operator affects the form of the response tensor describing a spin-dependent
electron gas. The covariant, spin-dependent response tensor for a magnetic dipole moment-polarized electron
gas (statistical distribution of electrons and positrons) is evaluated. A simultaneous eigenfunction of both the
magnetic-moment spin operator and the Dirac Hamiltonian is constructed, from which explicit expressions for
the magnetic-moment states and the corresponding vertex functions are derived. It is shown that a gas of electrons
having a preferred magnetic-moment spin has a rotatory-type response that is gyrotropic. In contrast, when the
helicity is chosen as the spin operator, the response of an electron gas with a preferred helicity spin has a rotatory
response that is analogous to an optically active medium. The distinction between these spin operators does not
appear in conventional treatments of spin dependence in quantum plasmas.
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Introduction. The response (to an electromagnetic distur-
bance) of quantum relativistic spin-dependent plasmas has
been discussed in the literature using different treatments.
There are three main approaches. The simplest approach is
quantum fluid theory (QfT) [1], which is analogous to the
fluid description of a classical plasma. Another approach is
plasma kinetic theory (PKT) [2], which is based on the Wigner
function [3]. Both QfT and PKT can be generalized to include
spin and relativistic effects [4,5]. Spin is included using the
Schrödinger-Pauli theory, in which the spin operator is the
vector with components given by the three Pauli matrices,
σx, σy, and σz. Relativistic effects are included by replacing
Schrödinger’s equation by Dirac’s equation.

Complications arise in the generalization of both QfT and
PKT, in particular, how the spin is treated: The Dirac wave
function is a column vector in the four-dimensional Dirac spin
space, with the four components (for a particle at rest) inter-
preted as an electron or a positron with spin up or spin down.
A complication is that in general one cannot readily identify
wave functions for a single electron or a single positron.
A conventional approach is to make the Foldy-Wouthuysen
(FW) transformation, which involves an infinite expansion.
In practice, this expansion needs to be truncated, and then
the separation of electron and positron states is only approx-
imate. The conventional approach to treating the spin is then
to introduce Pauli-type matrices in both the 2 × 2 subspaces
that describe either an electron or a positron. One can then
interpret the spin by analogy with the Schrödinger-Pauli the-
ory in both subspaces. This procedure defines a 4 × 4 spin
operator that is an outer product of two 2 × 2 Pauli matrices.
However, this spin operator does not commute with the Dirac
Hamiltonian (Ĥ ), so that the wave functions do not retain their
(postulated) form as time evolves.
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A spin-dependent electron gas is well defined in
Schrödinger-Pauli theory, since the spin operator (σ̂ ) com-
mutes with the Schrödinger Hamiltonian for a free electron.
The eigenvalues of σz, s/2 with s = ±1, are then constants
of the motion. In contrast, the Dirac spin operator, Sμν =
1/2(γ μγ ν − γ νγ μ), which is both a 4 × 4 matrix and a sec-
ond rank 4-tensor, does not commute with Ĥ . A relativistically
acceptable spin operator must commute with the Dirac Hamil-
tonian. The eigenvalues, s = ±1 of the spin then refer to this
specific operator. Two examples of relativistically acceptable
spin operators are the magnetic dipole moment operator (μ̂),
and the helicity operator (σ̂ ) [6–8].

In this paper, we study relativistic quantum plasmas using
the framework of quantum plasmadynamics (QPD) [9–11].
In QPD, the response to an electromagnetic disturbance for
an electron gas can be written in a manifestly covariant form
as a generalization of the vacuum polarization with the elec-
tron propagator in vacuo replaced by a statistically averaged
electron propagator [10]. The statistical average involves oc-
cupation numbers nε

s ( �p) describing electrons (ε = +1), and
positrons (ε = −1), with s = ±1 being the eigenvalues of
a spin operator that commutes with the Dirac Hamiltonian.
Natural units (c = h̄ = 1) are used throughout this paper.

We derive the linear response 4-tensor �
μν

sd , correspond-
ing to a spin-dependent electron gas with the spin operator
identified as the z component of the magnetic-dipole-moment
operator. One motivation is to compare the response for
a magnetic-moment polarized electron gas with that of a
spin-polarized electron gas in which the spin operator is the
helicity which was discussed by Melrose and Weise [12],
who suggested that a helicity-dependent electron gas could be
constructed by collecting electrons produced in the decay of
neutrons, which results in electrons with a specific helicity. In
the helicity-dependent case, �

μν

sd implies a rotatory response
analogous to a solution of dextrose, which can be described
as optically active. This is plausible in that an electron (or
positron) with positive helicity has a handedness analogous
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to the handedness of a molecule of dextrose. The question
that we aim to answer is how the spin-dependent part of the
response depends on the choice of spin operator. This question
does not arise in theories, such as those mentioned above, in
which the spin operator is Pauli-like and “spin dependence”
does not involve distinguishing between different spin opera-
tors (that commute with the Dirac Hamiltonian).

The distinction between spin operators does not appear
in QfT, PKT, or Dirac-Heisenberg-Wigner (DHW) theory
[13–15]. DHW theory is used to study the Dirac vacuum (in
the context of quantum kinetic theory), using the one-time
Wigner function in Ref. [13]. The approach used in Ref. [13]
is not manifestly covariant. One of the components of the
DHW function in Ref. [13] is interpreted as the magnetic
moment density; however, no corresponding response tensor
is identified. Observable effects due to the choice of spin
operator on wave polarization, in relativistic quantum plas-
mas, are not considered in Refs. [13–15]. The key difference
is that the manifestly covariant framework of QPD uses an
operator-based approach, whereas the Wigner-function ap-
proach in Refs. [13–15] is based on wave functions. It should
be noted that Refs. [13–15] require the Hartree approximation,
which is not relevant in QPD. Existing Wigner-function-based
theories do not differentiate between spin operators, implicitly
ignoring the requirement that a spin operator commute with
the Hamiltonian. An objective in this paper is to explore
whether the difference between acceptable spin operators has
an observable effect.

An isotropic magnetic-dipole-moment-dependent electron
gas is qualitatively different from an isotropic helicity-
dependent electron gas in that the magnetic-moment case has
a preferred axis, here the z axis, whereas there is no preferred
axis in the helicity-dependent case. For example, a magnetic-
dipole-moment-dependent electron gas could be constructed
by separating spin up from spin down in an external magnetic
field along the z axis and collecting only those particles with
spin up. We are interested in how the existence of this direc-
tion affects the spin-dependent part of the response tensor.

We identify the response tensor for an arbitrary electron
gas that is unmagnetized. The response tensor of a spin-
dependent electron gas can be separated into a spin-dependent
part and a spin-independent part. The spin-independent part
can be evaluated without the introduction of a spin opera-
tor, specifically by taking the trace over a product of Dirac
matrices. We also identify a simultaneous eigenfunction of
the Dirac Hamiltonian and the magnetic-moment operator.
The corresponding vertex function is derived and is used
to evaluate the spin-dependent part of the response tensor
describing a magnetic-moment polarized electron gas. It is
shown that this response tensor is of a rotatory form that is
different from the form Eq. (5), which applies to the helicity-
dependent case [16]. This difference between the responses
of the helicity-dependent and magnetic-moment-dependent
cases is discussed later in this Letter.

Response of an unmagnetized electron gas. Quantum plas-
madynamics (QPD) [10,11] introduces a covariant description
for the (linear) response tensor. The disturbance is described
by the 4-potential Aμ(k), and the induced 4-current Jμ(k)
describes the response, where the argument k is the wave 4-
vector kμ = (ω, �k). The linear response tensor �μν (k) relates

these two quantities Jμ(k) = �μν (k)Aν (k). Charge continuity
and gauge invariance impose the following conditions respec-
tively:

kμ�μν (k) = 0, kν�
μν (k) = 0. (1)

The higher order nonlinear response tensors follow by consid-
ering the electron loops having n + 1 vertices. The response
tensor gives a complete description of the electromagnetic
properties of a given medium. The mathematical constraints
on the response tensor indicate the physical requirements of
the medium.

The covariant description of isotropic media. The linear
response �μν (k) can be written as a sum of components,
where each component is the product of an invariant func-
tion with a second-rank tensor. The possible second-rank
tensors for isotropic media are the 4-vector kμ, 4-velocity
vμ, the metric tensor gμν (in this paper the signature −1
is used), and the completely asymmetric tensor εμνρσ . The
allowed products of the invariant function with an appropriate
second-rank tensor are constrained by the reality condition
�μν (k) = [�μν (−k)]∗, charge continuity, and gauge invari-
ance [Eq. (1)], and the Onsager relations. In particular, the
Onsager relations require that the time-reversed nondissi-
pative part of the response needs to be an even function
�̄Hμν (k̄)|F̄0

= �Hμν (k)|F0 , where H indicates a Hermitian
quantity, the bar indicates a time reversal, and F̄0 indicates
a time-reversed static field. Similarly the dissipative part (in-
volving an anti-Hermitian part) must be an odd function.

For an isotropic medium, one can only construct three inde-
pendent tensors satisfying the above conditions, and therefore
at most three invariants are required to completely describe
the response of an arbitrary isotropic medium. The general
form of the response tensor for an isotropic medium takes the
following form [17]:

�μν (k) = �L(k)Lμν (k, u) + �T (k)T μν (k, u)

+�R(k)Rμν (k, u), (2)

where uμ is the 4-velocity of the rest frame of the plasma;
Lμν, T μν, Rμν respectively define the longitudinal, transverse,
and rotatory parts, and �L,�T ,�R are their corresponding
response functions. The tensors in Eq. (2) can be thought of
as the projection-like operators for �L,�T , and �R.

The longitudinal tensor may be written as the outer product
of two 4-vectors: Lμν (k, v) = −Lμ(k, v)Lν (k, v), where this
is normalized in such a way that in the rest frame u = (1, �0 )
one has L(k, u) = (|�k|/ω, �k/|�k|) and

Lμ(k, u) = kukμ − k2uμ

ku
√

(ku)2 − k2
. (3)

The transverse tensor is normalized such that it takes the form
of the unit transverse second-rank tensor in the rest frame:

T μν (k, u) = (ku)2

k2
Lμ(k, u)Lν (k, u) + gμν − kμkν

k2
. (4)

The rotatory tensor is

Rμν (k, v) = iεμνρσ Lρ (k)vσ . (5)
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The invariants can be constructed from the linear response
for an isotropic plasma, and they take the following forms:

�L(k) = (kv)4

k4
Lμν (k, v)�μν (k), (6)

�T (k) = 1
2 Tμν (k, v)�μν (k), (7)

�R(k) = − 1
2 Rμν (k, u)�μν (k). (8)

Response of an arbitrary electron gas. The polarization of
the vacuum field can be calculated using the electron propaga-
tor in vacuo. In an analogous way, the general response tensor
can be computed using QED by replacing the vacuum electron
propagator with a statistically averaged propagator describing
the electron gas. This average involves occupation numbers
nε

s ( �p) describing electrons (ε = +1), and positrons (ε = −1),
where s = ±1 is the spin eigenvalue. The general response of
an arbitrary electron gas, derived in Ref. [18], has the form:

�μν (k) = −e2
∑

ε,ε′,s,s′

∫
d3 �p

(2π )3

∫
d3 �p ′

(2π )3
(2π )3

× δ3(ε′ �p ′ − ε �p + �k)
εnε

s ( �p ) − ε′nε′
s′ ( �p ′)

ω − εε + ε′ε′ + i0

× [�ε′ ε
s′ s (�p ′, �p , �k )]μ

[
�ε′ ε

s′ s (�p ′, �p , �k )
]∗ν

, (9)

with ε =
√

�p 2 + m2, and ε′ =
√

�p ′ 2 + m2. The vertex func-
tions used to calculate the linear response tensor are defined
as

[
�ε′ ε

s′ s (�p ′, �p , �k )
]μ = ūε′

s′ (ε′ �p ′)γ μuε
s (ε �p )√

4εε′ , (10)

where γ μ are the Dirac matrices, and uε
s , ūε′

s′ are the electron
and positron eigenfunctions respectively.

Spin-dependent and spin-independent contributions. The
occupation number can be separated into spin-averaged and
spin-specific components. This is achieved by explicitly iden-
tifying the choice of spin eigenvalue for a given ε in the
following way:

nε ( �p) = 1
2 [nε

+( �p ) + nε
−( �p )], (11)

nε ( �p) = 1
2 [nε

+( �p ) − nε
−( �p )]. (12)

It follows that the linear response tensor in Eq. (9) separates
into a spin-dependent part �

μν

sd (k), and a spin-independent
part �

μν

in (k), such that �μν (k) = �
μν

sd (k) + �
μν

in (k). To see
this, notice that we have in Eq. (9)

∑
s,s′

nε
s ( �p )

[
�ε′ ε

s′ s (�p ′, �p , �k )
]μ[

�ε′ ε
s′ s (�p ′, �p , �k )

]∗ν

= nε ( �p )A + nε ( �p )B, (13)
∑
s,s′

nε′
s′ ( �p ′)

[
�ε′ ε

s′ s (�p ′, �p , �k )
]μ[

�ε′ ε
s′ s (�p ′, �p , �k )

]∗ν

= nε′
( �p ′)A + nε′

( �p ′)C, (14)

with

A =
∑
s,s′

[
�ε′ ε

s′ s (�p ′, �p , �k )
]μ[

�ε′ ε
s′ s (�p ′, �p , �k )

]∗ν
, (15)

B =
∑
s,s′

s
[
�ε′ ε

s′ s (�p ′, �p , �k )
]μ[

�ε′ ε
s′ s (�p ′, �p , �k )

]∗ν
, (16)

C =
∑
s,s′

s′ [
�ε′ ε

s′ s (�p ′, �p , �k )
]μ[

�ε′ ε
s′ s (�p ′, �p , �k )

]∗ν
. (17)

The spin-independent part of the response tensor is [19]

�
μν

in (k) = 2e2
∫

d3 �p
(2π )3

∑
ε

nε ( �p )

ε

×
[

Fμν (εp, εp − k)

k2 − 2εpk
+ Fμν (εp + k, εp)

k2 + 2εpk

]
, (18)

where Fμν (ε p̃, ε′ p̃′) = εεε′ε′A, and p̃ = [ε, �p], p̃ ′ =
[ε′, �p ′].

There are two different options to evaluate �
μν

in (k). One
way is to introduce a spin operator and directly compute it
using a specified vertex function. In particular, A is the same
regardless of the choice of spin operator (provided that it
commutes with the Dirac Hamiltonian and is well defined
under a Lorentz transform). Alternatively one can evaluate the
spin-independent response without explicitly specifying any
spin operator by evaluating the following trace written using
the Feynman slash notation:

Fμν (K, K ′) = 1
4 Tr[γ μ( /K + m)γ ν ( /K ′ + m)]. (19)

The spin-dependent part of the response tensor is the sum
of two contributions:

�
μν

sd (k) = −e2
∑
ε,ε′

∫
d3 �p

(2π )3

εnε ( �p)

ω − εε + ε′ε′ + i0
B

+ e2
∑
ε,ε′

∫
d3 �p ′

(2π )3

ε′nε′
( �p ′)

ω − εε + ε′ε′ + i0
C. (20)

Response of a magnetic-moment-dependent electron gas.
In this section, we evaluate Eqs. (16) and (17), which will
contribute to the first and second parts of the spin-dependent
linear response tensor �

μν

sd (k) respectively. Both B and C
are explicitly dependent on the choice of spin operator. The
nonzero components of B and C give the magnetic moment-
dependent part of the response tensor.

Magnetic moment eigenfunction. The temporal evolution
of the magnetic moment operator �̂μ is governed by d �̂μ/dt =
i[Ĥ, �̂μ], where Ĥ is the Dirac Hamiltonian. The inclusion
of the electromagnetic field recovers d �̂μ/dt = eγ 0 �σ × �B −
ie�γ × �E , where �σ are the Pauli matrices in the 4 × 4 Dirac
spin space. Therefore, μ̂z is a constant of the motion if a mag-
netostatic field is present along the z axis. The z component of
the magnetic moment operator takes the following form:

μ̂z =

⎛
⎜⎜⎜⎝

εm 0 0 p⊥e−iφ

0 −εm −p⊥eiφ 0
0 −p⊥e−iφ εm 0

p⊥eiφ 0 0 −εm

⎞
⎟⎟⎟⎠, (21)
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and its eigenvalues are sλ, where s = ±1 and λ =
√

m2 + p2
⊥ .

The momentum is expressed using cylindrical polar coordi-
nates �p = (p⊥ cos φ, p⊥ sin φ, pz ).

The spin operator μ̂z is a relativistically acceptable spin
operator [6–8], since it commutes with the Dirac Hamiltonian,
which ensures the eigenvalues of μ̂z are constants of the mo-
tion. The polarization states correspond to the eigenfunctions
of the component of the magnetic-moment operator �̂μ along
the direction of the magnetic field �B used to separate the up-
and down-spin states in creating the plasma.

We assume plane-wave solutions of the form
exp [−iε(εt − �p · �x)], where �̂p = −i∂/∂�x in the coordinate
representation. The sign of pz is written P = pz/|pz|. One

can then rewrite the electron and/or positron wave function
more conveniently by using the identities

pz = P
√

ε + sελ
√

ε − sελ, (22)

p⊥ = √
λ + sm

√
λ − sm. (23)

A specific choice of simultaneous eigenfunctions of both
μ̂z and the Dirac Hamiltonian is

uε
s (ε �p ) = 1√

4λε

⎛
⎜⎜⎜⎝

√
ε + εsλ

√
λ + sm e−iφ/2

−P sε
√

ε − εsp
√

λ − sm eiφ/2

P
√

ε − εsλ
√

λ + sm e−iφ/2

sε
√

ε + εsλ
√

λ − sm eiφ/2

⎞
⎟⎟⎟⎠. (24)

The vertex function [Eq. (10)] for the magnetic moment eigenfunction [Eq. (24)] is given by

[
�ε,ε′

s,s′ ( �p ′, �p )
]μ = 1√

16λλ′εε′

⎛
⎜⎜⎜⎝

[α′
+α+ + P ′ Pα′

−α−][β ′
+β+e−i(φ−φ′ )/2 + �β ′

−β−ei(φ−φ′ )/2]

[α′
+α+ − P ′ Pα′

−α−][εsβ ′
+β−ei(φ+φ′ )/2 + ε′s′β ′

−β+e−i(φ+φ′ )/2]

−i[α′
+α+ − P ′ Pα′

−α−][εsβ ′
+β−ei(φ+φ′ )/2 − ε′s′β ′

−β+e−i(φ+φ′ )/2]

P [α′
+α− + P ′ Pα′

−α+][β ′
+β+e−i(φ−φ′ )/2 + �β ′

−β−ei(φ−φ′ )/2]

⎞
⎟⎟⎟⎠, (25)

where a± = √
ε ± sελ, b± = √

λ ± sm e∓iφ/2, � = ss′εε′, a′
± = √

ε′ ± s′ε′λ′, and b′
± = √

λ′ ± s′m e∓iφ′/2.
The response tensor for magnetic-moment eigenstates. Direct evaluation of Eq. (20) recovers the magnetic-moment-dependent

part of the response tensor,

�
μν

sd = ime2k2
∑

ε

∫
d3 �p

(2π )3

εnε ( �p)

(pk)2 − (k2/2)2
bμν (k, p),

where

bμν (k, p) =

⎛
⎜⎜⎜⎝

0 ky/p −kx/p 0
−ky/p 0 (−εω + pzkz )/εp −pzky/εp
kx/p (εω − pzkz )/εp 0 pzkx/εp

0 pzky/εp −pzkx/εp 0

⎞
⎟⎟⎟⎠, (26)

with pk = ωε − �p · �k, and k2 = ω2 − |�k |2. A sample deriva-
tion of Eq. (26) can be found in the Appendix. The response
tensor [Eq. (26)] satisfies gauge invariance and charge con-
tinuity [Eq. (1)]. The wave functions uε

s (ε �p ) and ūε
s (ε �p ) are

simultaneous eigenfunctions of both μ̂z and Ĥ . Therefore, the
properties which follow from Eq. (26) must be physical.

Rotatory response. The spin-dependent response tensor for
a magnetic-dipole-moment polarized electron gas is antisym-
metric and of the rotatory form. A magnetic-dipole-moment
polarized electron gas is a gyrotropically active plasma, analo-
gous to a cold magnetised electron gas. Before considering the
general case, it is instructive to investigate a particular case.
Select �k along a particular axis in the rest frame of the electron
gas. Choosing this axis to be along the z axis �k = (0, 0, |�k |)
implies that �p · �k = pz|�k |. It follows that the integrals over
terms that depend on px or py in Eq. (26) give zero, and thus
the only nonzero terms in Eq. (26) are b12 = −b21. Therefore,
the only nonzero component of the rotatory tensor when �k is
along the z axis in the rest frame is b12.

The general case can be investigated by noting that the
spin-dependent part of the response tensor for both the helicity

and magnetic-moment operators may be written in the form
bμν = εμνρσ kρgσ . For the helicity case, one has

gσ ∝ pσ + m2

ε
uσ , (27)

where uμ is the 4-velocity of the plasma frame. In the rest
frame, uμ = (1, 0). By inspection of Eq. (26), the response of
a magnetic-moment polarised electron gas can be written in
the form

gσ ∝ bσ + pzkz

ε
uσ , (28)

with bμ = (0, b) in terms of the unit vector b along the di-
rection of the magnetic moment. An isotropic plasma has no
preferred direction for p. Upon averaging over p, one has
〈pσ 〉 = εuσ and 〈pz〉 = 0. The two cases give gσ ∝ uσ and
gσ ∝ bσ , respectively. Both correspond to rotatory responses,
with the handedness determined relative to k and to b, respec-
tively.
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One may describe the difference between the responses
of the helicity and magnetic-moment cases as optically ac-
tive and gyrotropic respectively. In an isotropic plasma with
helicity-polarized electrons, there is no specific direction de-
fined, and one can select k in any direction without losing
generality. In contrast, the magnetic-moment operator in the
present paper is μ̂z, which involves a specific choice of the z
direction.

Discussion and conclusions. The result derived in this pa-
per shows that the response of a spin-dependent electron gas
depends on the relevant spin operator. We suggest ways in
which a helicity-dependent and magnetic-moment-dependent
electron gas may be constructed. As already shown [12], if
the spin operator is chosen to be the helicity operator, the
response of a spin-dependent isotropic electron gas has a
rotatory component as in an optically active medium, such as
a solution of dextrose. The natural modes of such a medium
are circularly polarized. In contrast, we find that when the
spin operator is chosen to be the magnetic-moment operator,
the spin-dependent part of the response of an isotropic (in
momentum) electron gas is gyrotropic, corresponding to a
rotatory part along the axis that defines spin up and spin down.

The natural modes of such a medium are elliptically polarized
in general, reducing to circular and linear polarizations for
propagation parallel and perpendicular to the axis that defines
spin up and spin down.

The spin-dependent part of the response is a correction of
order h̄, so that the difference between these two cases is a
small effect [20], but nevertheless is in principle observable.
The main implication of our result is that the concept of a
“spin-dependent” electron gas is ill defined in the absence of
a clearly defined choice of an acceptable spin operator, which
commutes with the Dirac Hamiltonian. The Wigner-function
approach to quantum plasmas, in which the distinction
between spin operators is absent or obscure, omits potentially
observable consequences of the difference between spin
operators. It would be of interest to identify how the different
choices of spin operator might be included in Wigner-function
theories.
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APPENDIX

Derivation of b12. The derivation of the 12-component of Eq. (26) proceeds as follows. We start with taking the product of
the vertex functions corresponding to the tensor entry to be computed:

[�]1[�]∗2 = i

16εpε′ p′ × [2ε′ε + 2s′ε′ p′sεp − 2p′
z pz][2s′mp − 2p′sm − (ei(φ′+φ) − e−i(φ′+φ) )ss′εε′ p⊥ p′

⊥],

where ∑
s,s′

s[�]1[�]∗2 = im

εε′ p
(−ε′ε + p2εε′ + p′

z pz
)

(A1)

and ∑
s,s′

s′[�]1[�]∗2 = im

εε′ p′ (ε′ε − p′ 2εε′ − p′
z pz ). (A2)

The spin-dependent part of the response tensor is the sum of the two terms in Eq. (20),

�12
sd = −e2

∑
ε,ε′

∫
d3 �p

(2π )3

εnε ( �p)

ω − εε + ε′ε′
im

εε′ p
(−ε′ε + p2εε′ + p′

z pz ) (A3)

+ e2
∑
ε,ε′

∫
d3 �p ′

(2π )3

ε′nε′
( �p ′)

ω − εε + ε′ε′
im

εε′ p′ (ε′ε − p′ 2εε′ − p′
z pz ). (A4)

The conservation of momentum relations ε′ �p ′ = ε �p − �k, and ε′�ε ′ = ε�ε − �ω can be used to evaluate both contributions to the
response tensor as follows. In the first term, the primed quantities are rewritten in terms of unprimed quantities: p′ = εε′ p − ε′k,
ε′ = εε′ε − ε′ω. In the second term, the unprimed quantities are rewritten in terms of primed quantities: p = εε′ p′ + ε′k, ε =
εε′ε′ + ε′ω. The result is

�12
sd = −e2

∑
ε,ε′

∫
d3 �p

(2π )3

εnε ( �p)

ω − εε + ε′ε′
im

εε′ p
[
ε′(−ε2 + p2 + p2

z

) + εε′(εω − pzkz )
]

+ e2
∑
ε,ε′

∫
d3 �p ′

(2π )3

ε′nε′
( �p ′)

ω − εε + ε′ε′
im

εε′ p′
[
ε
(
ε2 − p′ 2 − p′ 2

z

) + εε′(ε′ω − p′
zkz )

]
.

The next step is to evaluate the sums over ε′ = ± in the first term and sums over ε = ± in the second term. This requires the
use of the following identities:[

1

ω − εε + ε′ − 1

ω − εε − ε′

]
= −2ε′

−2εpk + k2
,

[
1

ω − ε + ε′ε′ − 1

ω + ε + ε′ε′

]
= 2ε

2ε′ p′k + k2
.
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The result is

�12
sd = −ime2

∑
ε

∫
d3 �p

(2π )3

nε ( �p)

εε′ p
× [

p2 + p2
z − ε2

]( −2ε′

−2εpk + k2

)
(A5)

− ime2
∑

ε

∫
d3 �p

(2π )3

nε ( �p)

εε′ p
[εεω − εpzkz]

( −2ε′

−2εpk + k2

)
(A6)

+ ime2
∑
ε′

∫
d3 �p ′

(2π )3

nε′
( �p ′)

εε′ p′
[
ε′2 − p′2 − p′ 2

z

]( 2ε

2ε′ p′k + k2

)
(A7)

+ ime2
∑
ε′

∫
d3 �p ′

(2π )3

nε′
( �p ′)

εε′ p′ [ε′ε′ω − ε′ p′
zkz]

(
2ε

2ε′ p′k + k2

)
. (A8)

By inspection of the identity in Eq. (22) it follows that ε2 − p2 − p2
z = 0 and p2 + p2

z − ε2 = 0. Note that the eigenvalues
of the magnetic-dipole-moment spin operator are sp, where s = ±. The next step is to swap the dummy variables present in
the second contribution to the response tensor as follows: p′, ε′, ε′ → p, ε, ε. It is now clear that Eqs. (A5) and (A7) do not
contribute to the response, since they are equal to zero. The two contributions to the response tensor may now be combined into
a single expression:

�12
sd = ime2

∑
ε

∫
d3 �p

(2π )3

εnε ( �p)

εp
[εω − pzkz]

(
1

−2εpk + k2
− 1

2εpk + k2

)

= ime2k2
∑

ε

∫
d3 �p

(2π )3

εnε ( �p)

(pk)2 − (k2/2)2

(−εω + pzkz

εp

)
.

By inspection of the above, one recovers the 12-component appearing in Eq. (26). The derivations of the other components
of the response tensor follow in a similar way.
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