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Spontaneous generation and reversal of helicity in anisotropic turbulence
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Helicity plays an important role in spectacular geophysical phenomena such as hurricanes or the generation
of the terrestrial magnetic field. The present investigation shows how helicity can be created in a statistically
homogeneous but anisotropic flow, driven by buoyancy. If the flow is close enough to a two-dimensional
limit, spontaneous symmetry breaking leads to the generation of mean helicity. In particular, we explain these
observations by identifying a simple linear mechanism, the relevance of which is illustrated by simulations of
unstably stratified turbulence in a conducting fluid on which a magnetic field is imposed. Finally it is shown that
the self-organized state displays dynamical reversals of the sign of the mean helicity.
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a. On the origin and importance of helicity. Helicity is asso-
ciated with the corkscrew motion of fluid particles. The mean
helicity [1] is a topological invariant of the Euler equations
and is defined as

H = 〈u · ω〉, (1)

where u is the velocity, ω = ∇ × u the vorticity, and the
brackets denote an ensemble average. Its value measures the
knottedness of the vortex lines in a fluid [2] and is zero in a
mirror-symmetric flow.

The presence of helicity is presumably important for the
generation of the Earth’s magnetic field [3–5]. Furthermore,
helicity is strong in hurricanes [6–8] and helical modes can
be considered the building-blocks of the turbulent energy cas-
cade of turbulent flows [9–13]. It has been known that the
presence of helicity in isotropic turbulence does somewhat
weaken the energy cascade [14–16]. These effects become
more drastic and alter completely the energy cascade when
strong helical forcing is used [17], a possibility anticipated
some decades ago [18]. Also, in the presence of body forces
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such as the buoyancy force or rotation, the influence of helic-
ity can affect flow properties in a significant way [19,20]. Yet
another interesting feature is that an inhomogeneous distribu-
tion of mean helicity can induce a mean flow [21,22].

Helicity can thus play an important role in turbulent flows.
Both in laboratory experiments and numerical simulations
aiming at the investigation of its effects, it is usual to in-
ject helicity into a flow either by boundary conditions or by
adding a helical volume force to the system. In the dynamo
experiments of Riga and Karlsruhe [23,24], for example, a
helical mean flow was imposed through the shape of the
container. In the von Kármán sodium experiment [25], mean
helicity is injected by counter-rotating impellers. In numerical
simulations, helicity is often injected by adding an ABC flow
containing mean helicity [26,27], or by starting from helical
initial conditions [28,29]. Using artificial forcing combined
with strong rotation, helicity can be generated in a more spon-
taneous manner [30]. Apart from this last reference, in most
of the above cited investigations, helicity is thus artificially
imposed and its influence on the system is subsequently as-
sessed. In natural flows, a known source of helicity is Ekman
pumping [31,32], or the interplay of inertial wave packets with
buoyancy [33,34].
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However, in the absence of statistical inhomogeneity or
artificial forcing, is it possible to generate helicity? In the
present investigation, we will show how helicity can be gen-
erated spontaneously by symmetry breaking of an initially
nonhelical system. It seems that the mechanism presented in
this Letter is thereby fairly generic and a good candidate to
explain the genesis of helical motion in a number of geo- and
astrophysical flows.

In the following we will derive a simple model, involving
the linear interaction of skew diffusion [a quantity defined
below in Eq. (5)] and helicity. Analyzing this model, we
will show that two ingredients are important for the current
mechanism to operate: the presence of an unstable density
stratification, and strong anisotropy.

b. Unstably stratified turbulence, skew diffusion, and helic-
ity. The governing equations of unstably stratified turbulence
in the presence of a uniform density gradient in the z direction
are, in the Boussinesq approximation,

∂t u + u · ∇u = −∇p + ν�u + θez + F/ρ0, (2)

∂tθ + u · ∇θ = κ�θ − N2u · ez, (3)

∇ · u = 0, (4)

where p is pressure divided by the mean density ρ0, ν the kine-
matic viscosity, θ = ρg/ρ0 the buoyancy perturbation, with ρ

the density fluctuation, g the acceleration due to gravity, κ the
diffusivity, N the Brunt-Väisälä frequency, and F an additional
body force or damping term. Later on in this investigation we
will apply a magnetic field to the system, in which case the
term F is associated with the Lorentz force.

In statistically homogeneous, mirror-symmetric flow, in the
presence of a constant mean density gradient, the large-scale
dynamics of the system are characterized by the kinetic energy
〈u · u〉/2, buoyancy variance 〈θ2〉, and buoyancy flux 〈uzθ〉.
These three quantities measure the evolution of the flow and
the interaction of the density and velocity fields. When mirror
symmetry is broken, which corresponds to the presence of
mean helicity H , a new statistical correlation appears (zero
in mirror-symmetric flow), the skew diffusion

Q ≡ Qz = 〈θωz〉, (5)

a quantity introduced by Moffatt [35], and somewhat forgotten
since. However, in recent work this quantity was evaluated in
isotropic helical turbulence on which a uniform passive scalar
gradient is imposed [36].

An important insight, which motivates the present inves-
tigation, is that skew diffusion can be generated by a linear
mechanism in the presence of helicity. From the evolution
equations for u and θ [Eqs. (2)–(4)] we derive (in the absence
of F),

dQ

dt
= N2Hz − DQ − εQ, (6)

where the nonlinear damping and viscous terms are respec-
tively defined by

DQ = −〈θω · ∇uz〉, εQ = (ν + κ )〈∇θ · ∇ωz〉. (7)

We thus see that the production term [first term in the righ-
hand side of Eq. (6)] is directly proportional to the vertical
component of the helicity Hz = 〈uzωz〉.

Analogously, when writing the equation for the helicity, it
is observed that the skew diffusion appears as a production
term,

dHz

dt
= Q − DH − εH , (8)

with

DH = 〈ωzez · ∇p〉, εH = ν〈∇ω : ∇u〉. (9)

The production term is not present if the scalar is passive.
However, when back reaction through buoyancy is present,
the system is thus piloted by a linear production mechanism
[first terms on the right-hand side of Eqs. (6) and (8)]. The
other terms in the system are nonlinear damping DQ, DH and
viscodiffusive terms εQ, εH .

In the absence of the nonlinear damping, we can expect
growth of Hz and Q if diffusive effects are small enough. The
whole question is thus whether the nonlinear damping terms
are strong enough to annihilate the combined linear produc-
tion of helicity and skew diffusion. There is an asymptotic
limit where this should happen: from Eqs. (6)–(8) it can be de-
duced that a system invariant along ez (hereafter called 2D3C
for two-dimensional three components) will not be damped by
the nonlinear terms.

Indeed, in the 2D3C limit, the gradient of the velocity and
pressure field reduces to ∇ = (∂x, ∂y, 0)T and consequently
ω = ωzez. Therefore both DH and DQ are zero since ez · ∇
vanishes. It seems therefore plausible that helicity (and skew
diffusion) will be generated in systems close to the 2D3C limit
[37]. While the buoyancy force is anisotropic, it is known
to sustain fully three-dimensional turbulent states [28,38,39]
and is therefore probably not sufficient on its own to reach
the 2D3C limit. In the present investigation we will consider
both the case F = 0 and the case where this term is associated
with an externally imposed magnetic field, allowing the flow
to approach the 2D3C regime.

c. Results. Equations (2)–(4) are integrated using pseu-
dospectral Direct Numerical Simulations. Details on the 12
simulations documented in this investigation are given in the
Supplemental Material [40], which includes Ref. [47]. The
typical Reynolds number based on the rms velocity fluctu-
ation and integral length scale is varying in the range RL ∈
[103, 104] for all runs with nonzero magnetic field. The initial
value of the normalized helicity is small in all runs. All results
are presented during a statistically steady state.

We first consider a reference case of buoyancy-driven tur-
bulence without imposed magnetic field [F = 0 in Eq. (2)].
Isoenstrophy surfaces are shown in Fig. 1(a) for the case
N = 0.6 illustrating the presence of small-scale flow struc-
tures. Even though the mechanism which generates the flow
is inherently anisotropic, no generation of mean helicity was
observed, irrespective of the value of N , which was varied
in the range N ∈ [0.3, 4.5]. These initial tests show that in
statistically homogeneous buoyancy-driven turbulence with-
out the presence of other effects, the strength of the nonlinear
damping is too large to allow for a spontaneous generation of
mean helicity.
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FIG. 1. Enstrophy in unstably stratified turbulence (N = 0.6,
ν = 0.0067). (a) Without magnetic field [G = 0; see Eq. (11)];
(b) with magnetic field, G = 300.

In order to reduce the importance of the nonlinear damp-
ing terms we add an additional source of anisotropy to the
simulations, in the form of an imposed vertical magnetic field
[F in Eq. (2)]. Indeed the Joule damping associated with the
Lorentz force, rapidly tends to render the system invariant
in the direction of the magnetic field if this latter is strong
enough [41,42]. Equivalently, we could have added rotation to
the system, as in [20], which also allows one to approach the
2D3C limit [43]. We consider the quasistatic approximation
where the Lorentz force appears in closed form [42] in the
Navier-Stokes equations, and the induction equation does not
need to be solved. The Lorentz force acts then as a damping
on the velocity fluctuations and its influence writes in this
approximation, in Fourier representation,

F̂ = − B2
0

ημ0
(cos2 φ)û, (10)

with μ0 the permeability, η the magnetic diffusivity, and φ

the angle between the wave vector associated with û and
the direction of the magnetic field. This linear anisotropic
damping term is of interest to gradually reach a 2D3C state.
We fix the value N = 0.6 and vary the value of B0. The control

parameter is now the dimensionless number

G = B2
0

Nηρ0μ0
, (11)

which is varied in the range G ∈ [0, 1100]. For large values of
G, the flow becomes almost invariant in the vertical direction
[see Fig. 1(b)]. We quantify this by measuring the vertically
averaged kinetic energy compared to the total kinetic energy
as in [44]:

γ = 〈E〉z

〈E〉 ≡
〈∥∥ 1

L

∫ L
0 u dz

∥∥2〉

〈‖u‖2〉 , (12)

which varies from γ = 0.6 for G = 0 to γ = 0.95 for G =
1100. This illustrates that the flow is close to the 2D3C limit
for the largest values of G we considered.

We show in Fig. 2(a), the results of a run where G = 300,
illustrating that there is helicity generation when the mag-
netic field is strong enough. Below G ≈ 40 the value of the
mean helicity could not easily be disentangled from random
fluctuations.

The typical behavior for large values of G, as in Fig. 2(a),
is a linear phase (Nt < 5) for which the growth rate is ex-
ponential as predicted by the linearized equations (6)–(8),
followed by a saturation when damping terms can no longer
be neglected. Eventually helicity fluctuates around a steady
state (Nt > 100).

In the following we average helicity over the statistically
steady state. Figure 2(b) shows the relative vertical helicity

H̃z = 〈uzωz〉/
(√〈

u2
z

〉√〈
ω2

z

〉)
. (13)

This quantity does not exceed 0.1, even for the largest values
of the magnetic field strength. We will now give an explana-
tion for this observation.

An intuitive, structure-based interpretation of helicity gen-
eration in the present flow is that the helicity corresponds to
segregated patches of vertical vorticity with a definite sign
of vorticity while they rise, and the opposite sign when they
descend. The anisotropic damping by the magnetic field leads
to an invariance in the vertical direction of these patches.
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FIG. 2. (a) Time evolution of vertical kinetic helicity Hz and potential helicity z for N = 0.6; G = 300. (b) Normalized helicities H̃z, ̃z

as a function of G (for fixed N = 0.6).
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FIG. 3. Horizontal cuts through the simulation domain for G = 500. The quantities are (a) vertical component of local helicity hz,
(b) vertical velocity uz, (c) vertical vorticity ωz, and (d) stream function ψz associated with the velocity in the horizontal plane.

This would correspond, in a horizontal cut through the do-
main, to a dominant value of the vertical helicity of one
sign. This is assessed in Fig. 3(a). In this visualization, both
positive and negative small-scale helicity patches (hz = uzωz)
are observed. Furthermore, comparing the vertical velocity
component Fig. 3(b) and vorticity Fig. 3(c), no clear spatial
correlation is observed. It is thus not clear from these pictures
which structures are responsible for the mean helicity. This
visually confirms the small value of the relative helicity H̃z.

It will be shown that the helicity is not contained in
the small vortical structures visualized in Fig. 1(b) [or
Fig. 3(c)], but in larger structures that are directly forced
by the buoyancy instability driving the turbulence and which
are associated with a two-dimensional condensate. With con-
densate we mean energy in the largest scales of a close
to two-dimensional flow. In the Supplemental Material [40]
it is shown that these large scales are close to a state
where vorticity and velocity are perfectly aligned. Such a
condensate results from blockage of the forward energy cas-
cade for close-to-two-dimensional flow at large values of
the magnetic field strength [45]. In order to highlight these
large-scale structures in physical space, we introduce the
stream function associated with the two-dimensional mo-
tion, ψz such that ωz = −�x,yψz, with �x,y the horizontal
Laplacian.

Indeed, both ωz and ψz are associated with rotating velocity
patterns, but the vorticity is in general associated with small-
scale structures, whereas the stream function characterizes
larger-scale fluid motion. Visualizing ψz, in Fig. 3(d), it is
observed that the large-scale rotating motion is fairly well
correlated with the vertical velocity Fig. 3(b), which sug-
gests that the mean helicity is contained in the large-scale,
two-dimensional condensatelike structure of the flow. Indeed,
considering the vorticity, it is almost impossible to discern the
helicity containing structures of the flow.

To substantiate these observations, we introduce a new
quantity named potential helicity (whereas the former helicity
is designated by kinetic helicity) defined by

z = 〈uzψz〉. (14)

This quantity is shown to evolve in time very similar to the
kinetic helicity, as shown in Fig. 2(a).

The relative potential helicity

̃z = 〈uzψz〉/
(√

u2
z

√
ψ2

z

)
(15)

is, however, observed to be significantly larger than the ki-
netic helicity [Fig. 2(b)]. The fact that this quantity is close
to unity and that the non-normalized value almost coincides
with the kinetic helicity shows that the helicity is contained
in the largest structures, associated with wave number k ≈ 1,
which is confirmed by the spectra shown in the Supplemental
Material [40].

Note that in a different limit, namely, weak magnetohy-
drodynamic turbulence, for the imbalanced case with strong
correlation between the magnetic field and the velocity field,
condensates of the residual energy were observed, associated
with the breakdown of mirror symmetry at the largest scales
[46].

d. Reversals of the helicity. The presence of strong fluctu-
ations could possibly allow for the reversal of the sign of the
helicity. Indeed, both signs of the helicity are equally probable
and it is natural to wonder whether the system can sponta-
neously reverse the sign of the helicity. We have investigated
this possibility for small values of G, where the flow is not
too close to its 2D3C limit. We show the results in Fig. 4 for
G = 80. We indeed observe reversals. We have shown in the
visualizations and the spectra in the Supplemental Material
[40] that the helicity is governed by the largest scales of the
flow. The reversals seem therefore related to the stability of
the flow structures associated with these scales. A complete
statistical analysis of the reversals and the underlying dynam-
ics is beyond the scope of this Letter.

e. Conclusions. We presented a generic mechanism to gen-
erate helicity without the need for walls, viscous effects, or
statistical inhomogeneity. The generation of helicity is pi-
loted by the interaction between skew diffusion and helicity,
represented by Eqs. (6) and (8). For the mechanism to be
effective, the flow needs the presence of an unstable density
gradient and a body force which allows the system to attain a
close-to-two-dimensional flow state.

The helicity is contained in condensatelike large-scale
structures, associated with wave number k = 1, which are
better assessed using the stream function associated with the
horizontal motion than using the vorticity.
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FIG. 4. Reversals of the value of the mean helicity can be ob-
served for certain values of the magnetic field (here G = 80).

The spontaneous nature of the helicity generation and
the random reversals invite one to speculate on the rele-
vance of the present observations for planetary dynamos and
hurricane genesis. Considering the combination of unsta-
ble stratification with other effects such as system rotation
seems a logical direction to further explore the present
class of symmetry breaking and its possible geophysical
relevance.
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