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Electrolyte structure near electrodes with molecular-size roughness
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Understanding electrodes’ surface morphology influence on ions’ distribution is essential for designing su-
percapacitors with enhanced energy density characteristics. We develop a model for the structure of electrolytes
near the rough surface of electrodes. The model describes an effective electrostatic field’s increase and associated
intensification of ions’ spatial separation at the electrode-electrolyte interface. These adsorption-induced local
electric and structure properties result in notably increased values and a sharpened form of the differential capaci-
tance dependence on the applied potential. Such capacitance behavior is observed in many published simulations,
and its description is beyond the capabilities of the established flat-electrodes theories. The proposed approach
could extend the quantitatively verified models providing a new instrument of the electrode surface-parameter
optimization for specific electrolytes.
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Supercapacitors have some of the best prospects of modern
energy sources due to the outstanding charging and discharg-
ing times, extremely long life cycle, and ecology-friendly
process of the charge storage [1]. Since supercapacitors store
electrical energy using the ions’ adsorption, the porous car-
bon materials with a high specific surface area (SSA) are
used as popular electrodes [2–4]. Such materials exhibit wide
pore size distribution dividing a large pore volume between
micro- and mesoscales [5]. However, the vital experimental
discovery of the capacitance increase inside subnanoporous
electrodes [6] shows that not all pores contribute effectively
to the capacity. Further experimental [7] and theoretical [8]
studies demonstrated that the capacitance of the nanoporous
electrodes is an oscillating function of the size of the pores
with the largest value corresponding to pore’s size comparable
to the ion diameter. This anomalous enhancement of the ca-
pacity demands the dense packing of the identically charged
ions in spite of the electrostatic repulsion. It was explained
and simulated in [9,10] accounting for the polarization of the
conductive pore boundaries which screens the electrostatic
ion-ion interaction. These results show the importance of the
molecular-size influence on the electrode-electrolyte interface
storing the energy in the supercapacitor-based technologies.
Thus, the molecular-scale surface roughness which is inherent
for the carbons mesopores [11] could crucially influence the
capacity properties.
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The investigation of the morphology’s influence on the
electrical properties has a long history starting with the ex-
periments with solid metal electrodes (see [12] for review).
The first models were developed by Daikhin, Kornyshev, and
Urbakh for the description of the diluted electrolytes near
the electrodes with a weak roughness. The authors used per-
turbation theory for both the linear [13] and nonlinear [14]
Poisson-Boltzmann equations. The electrostatic fields per-
turbed by the roughness have been shown to result in the
increase of the capacity in comparison with the flat electrodes.
The systematic molecular dynamic (MD) studies [15–20]
demonstrated the enhanced capacitance for the carbon elec-
trodes with the molecular-scale patterns on the surface. Very
recently the importance of the morphology has been clearly
illustrated by the experimental comparison of two porous car-
bon samples with almost equal SSA, porous size distribution,
and composition but different surface roughness [21]. The
measured capacitance of the material with higher roughness
is more than 50% higher than the smoother electrode. Thus,
the adoption of the nanosize pores is not the only direction
to enhance the capacitance, another option is using electrodes
with geometrically heterogeneous surfaces [22].

The differential capacitance (DC) Cd depending on the
applied potential U is traditionally used as the main character-
istic to quantify the geometrical influence on the electrostatic
properties in the experiments [23,24] and simulations men-
tioned above. In the case of flat electrodes, Kornyshev [25]
predicted that DC as a function of potential exhibits camel
or bell shapes in the dependence on the electrolyte packing
density. The extension of this mean-field model accounting for
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FIG. 1. The sketch illustrates the characteristic distribution of the
asymmetric ions near a rough surface at positive applied potential.

intermolecular interactions [26] provides more realistic DC
properties: a smoother form and reduced maximum values for
the DC dependence on the potential. Also, a similar mean-
field density functional was used to estimate the number ratio
of the bounded (neutral clusters) and free states of the particles
in the ionic liquids [27]. In the case of rough electrodes the
computer simulations indicate a more complicated DC behav-
ior; for example, the MD study [15] showed that the electrode
surface’s geometrical heterogeneity could alter the form of the
ionic liquids’ DC from the camel shape to bell shape. Also, in
[16] the authors considered significantly rough surfaces which
induce a sharper form of the DC and the existence of a larger
number of peaks. Thus, to describe the rough surface influ-
ence on the DC the desired theory should extend the surface
description beyond flat and curved geometries [25,28–30] and
account for more realistic concentrate electrolyte properties
than used in pioneering works [13,14]

In this work, we develop a mean-field model describing
the electrolyte behavior near rough electrode surfaces. Here
we focus on the ionic liquids [31] exhibiting the complex
behavior of DC in the dependence of the surface roughness
[20,22]. In order to demonstrate the influence of the electrode
roughness on the DC properties more explicitly we consider
a simple mean-field model [25] as a basis (the flat electrode
limit). The mean-field models [25,26] describe the structure-
less “crowding” state only. Description of the well-structured
“overscreening” demands models beyond mean field; see, for
example, [32,33]. However, the oscillating charge behavior
indicating the overscreening has been observed in experi-
ments with atomically flat electrodes only [26]. Moreover,
it is known from theory [34] and experiment [11] that sur-
face heterogeneity destroys the well-structured adsorbent’s
layering. Therefore, as it has been previously noted [26] that
the surface heterogeneity makes relatively simple mean-field
models more appropriate for the description of the capacity
behavior. Similarly to works [13,14] we use perturbation the-
ory to obtain the boundary condition for the Poisson equation
[35]. But unlike approaches in [13,14] we account for the local
properties of the random surface to obtain the average ion
distributions closing a system of the self-consistent equations.

In our model, the solid surface profile is the correlated
Gauss process zs(x), where x is the coordinate in the lateral
direction, and the standard deviation δ and the correlation
length λ define the roughness in the normal direction and
the characteristic lateral structure, respectively (see Fig. 1).
We put the origin of the normal coordinate z so that the
solid profile average equals zero zs(x) = 0. The standard de-
viation defines the vertical distribution of the solid media,

and the correlation properties correspond to the decreasing
exponential function zs(x)zs(x + t ) ∼ e−|t |/λ. Therefore, the
small λ induces the palisade of the solid peaks, and the large
λ results in the formation of the sparse structure allowing the
fluid molecules to penetrate into perturbed or rough region
of the solid medium. Thus, to describe the ions molecules’
behavior near rough surfaces, both normal δ and correlation λ

parameters are crucial. Such a two-parametric random surface
model provides height profiles mimicking the geometry of the
real materials [36,37] and has a substantial advantage over
deterministic well-structured geometries allowing description
of randomly distributed surface-heterogeneity (defects and
functional groups) [38,39].

The electrolyte fills the available space that results in
the inhomogeneous density distributions of the ions mixture
ρi = ρi(x, z). Accounting for the applied potential U the elec-
trostatic field ψ = ψ (x, z) inside the pore is defined by the
Poisson equation and the boundary conditions

βe�ψ = −4πλBq in D,

ψ = U at ∂D,
(1)

where β = 1/kBT , kB is the Boltzmann constant, T is the
temperature, e is the electron charge, � = ∂xx + ∂zz is the
2D Laplace operator, q = ∑

i Ziρi, Zi are the valencies, and
λB = βe2/(4πεε0) is the Bjerrum length. The domain D =
{x, zs(x) < z < H/2} is half-space of the pore of width H
above rough surface ∂D = {x, z = zs(x)}. We impose the zero
field condition at the half width ψ (H/2) = 0 and, thus, con-
sider sufficiently large pores.

Subdividing D into the (bulk) volume Dv = {x, δ < z <

H/2} and the (near-)surface Ds = {x,−δ < z < δ} domains
and applying a perturbation procedure [35] involving match-
ing expansions for the electrostatic potential and charge
density with respect to ε = 2δ/H � 1 in Dv and Ds, we show
(see the Supplemental Material [40], Sec. I) that the average
electrostatic field ψ = ψ (z) above a rough surface can be
approximated with an error O(ε2) by the piecewise solution

ψ =
{
ψv, z � δ

ψ s, z < δ.

Here the averaging is performed over the realizations of the
Gauss random process with exponentially decaying lateral
correlation representing the rough surface [see Eqs. (S10)
and (S11) [40] for exact definitions via one- and two-point
distribution functions]. The field in the volume domain ψv is
given by solution of the following problem:

βe∂zzψv = −4πλBq, z � δ,

ψv = U + δ∂zψv, z = δ, (2)

and the field in the surface domain ψ s is given by

ψ s = U + z∂zψv|z=δ, z < δ. (3)

ψ s is linear in z and naturally equals to the applied voltage
at the apparent boundary of the pore z = 0. The slope of
the ψ s dependency on z is defined by the gradient of the
electrostatic field ψv at the boundary z = δ such that ψ is
smooth in the entire domain. The problem (2) for the aver-
age field ψv is decoupled from the surface domain. Thus,
the density distribution in the inner region is needed only
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to determine the electrostatic field in the entire pore. However,
the density in the surface domain crucially influences the
charge and capacitance properties. The total charge is defined
by the summation of the volume and surface regions Q =
Qs + Qv , where the cumulative contributions are defined from
the integrals Qs = ∫ δ

−δ
eq(z) dz and Qv = ∫ H/2

δ

∑
eq(z) dz.

Besides the electrostatic forces, the ions interact with the
solid boundaries via Lennard-Jones potential. We model this
interaction as hard wall repulsion and consider the ionic liq-
uid as hard spheres mixture [41]. In the electrodes with flat
surfaces, the minimal distance between ions and solid bound-
aries is defined by the hard sphere radii di/2. This behavior
contrasts with the molecules distributions near rough surfaces
that allow ions to penetrate into the rough region of solid
medium. Therefore, the function of the ions’ spatial distribu-
tion starts from some points zi < di/2. This starting point zi

may be negative for extremely rough surfaces and tends to the
hard wall value di/2 as the roughness becomes insignificant.
Considering the rough surface as the Gauss correlated process
the contact conditions can be calculated as functions of the
relative roughness parameters zi(δ/di, λ/di ) [40]. The details
of the dependence of the ions’ penetration into solid media on
the surface roughness and the diameter of molecules can be
found in [40], Sec. II. In comparison with the flat surface, the
roughness results in the region which is filled by both ions and
solid molecules, but at the same time, the vertical distribution
of the solid media decreases the space permitted for the ions. It
can be accounted by excluding the ratio of solid media at each
level z from the whole covered surface, then the permitted
surface area as a function of z has the following form:

S(z) = S0s(z) = S0

(
1 − 1

2
erfc

z√
2δ

)
, (4)

where S0 is the area of the surface projection on the lateral
plane. Expression (4) depends on the standard deviation only
and defines the vertical impact of the roughness (see deriva-
tion in [40], Sec. II).

To describe the electrolyte near rough surfaces we take into
account the average properties of the random rough surface:
the averaged electrostatic field, the modified configuration
volume, and the hard sphere interaction with the rough sur-
face. We account for these effects in terms of the Helmholtz
free energy potential F defined in the volume free from solid
media

∫
S(z) dz:

F [{ρ i}] =
∫

S(z) dz
∑

i

[
U ext

i (z) + ψ (z)Zi
]
ρ i(z) + F HS, (5)

where U ext
i (z) is the hard boundary potential, and F HS is the

contribution from hard spheres interaction. The equilibrium
condition defines the chemical potentials μi = 1

S(z)
δF [{ρi}]

δρ i
,

which are constant across the volume. As one can see from the
detailed calculations in [40], Sec. III, the density distributions
have the following form:

ρ i(z) = s(z)θ (z − zi )ρ
0
i

e−Ziβeψ

1 − ∑
i γi + ∑

i γie−Ziβeψ
, (6)

where ρ0
i is the bulk density describing the component

far enough from the surface, and γi = viρ
0
i are the model

parameters showing the packing density of the fluids, where

vi = πd3
i /6 is the ions volume. It is worth noting that in the

case of zi = 0, ρ0
i = ρ0 and vi = v the result (6) agrees with

[25] for γ = ∑
i viρ

0
i .

In contrast with the perturbation theory for the Poisson-
Boltzmann equation [13,14] where the calculation of the
electrostatic field corrections up to the second order in rough-
ness has been required to determine the first nonvanishing
correction to capacity, we keep only first-order terms while
deriving the system (2) and (3) (see [40], Sec. I). A notable
result of our calculations, illustrated below, is that in the case
of nonequal minimal distances between the ions’ centers and
solid surface zi the first-order theory is sufficient to reproduce
nontrivial contribution of roughness to differential capacity.

We consider the binary mixture of the hard sphere
molecules with the opposite charges Z1 = −Z2 = 1 and
nonequal diameters d1 �= d2. In the absence of applied volt-
age, the mixture is electrically neutral and composition bulk
densities are equal ρ0 = ρ0

i . The following dimensionless
variables are introduced: U ∗ = eU/kBT , z∗ = z/dm, H∗ =
H/dm, Q∗ = Q/eρ0dm, λ∗

B = λBd2
mρ0, where dm = min(d1, d2)

is the molecular diameter of the smallest component.
First, we investigate the case of a flat pore wall surface

δ = 0. The minimal distances between the flat surface and the
center of ion are equal to ions’ radii z0

i = di/2. Figure 2(a)
shows the dimensionless DC Cd = ∂Q∗/∂U ∗ as a function of
the potential U ∗ for the case of cations larger than anions.
Similarly to the model [25], the high potential limit of the
DC is Cd ∼ 1/

√
γ2|U | and Cd ∼ 1/

√
γ1|U | for positive and

negative U , respectively. Since composition bulk densities
ρ0 = ρ0

i are equal for Z1 = −Z2 = 1, the ratio of right and
left wings of Cd shown in Fig. 2(a) is defined by the ions sizes
as (γ1/γ2)1/2 = (d1/d2)3/2. As one can see from Fig. 2(a) the
DC at negative potential, where a contribution of the larger
cations to charge dominates, is lower than at a positive one.
Such asymmetric behavior agrees with published data of MD
simulations [42] shown in Fig. 2(a). Also, Fig. 2(a) demon-
strates that the number of capacitance maxima depends on the
bulk density ρ0. The curves corresponding to sufficiently low
γi exhibit two maximum points, the sharp and diffuse peaks at
regions of small and large ions prevailing contribution to the
total charge, respectively.

The roughness induces more striking changes in the ca-
pacitance properties. To isolate the impact from the surface
geometry, we considered a slightly asymmetrical electrolyte
with the molecular diameter ratio d2 = 4/3d1. The character-
istic examples of the calculated electrostatic fields and ion
distributions as functions of the coordinate z are shown in
Fig. 2(b). As one can see, the considered parameters allow
us to apply our approach for pores larger than six molecular
diameters, that for ionic liquids corresponds to mesopores
H > 2 nm. The rough surface allows molecules to reach the
surface region (z < δ), where the electrostatic field is defined
by (3). Inside the surface region, the absolute value of electro-
static field |ψ∗(z)| locally increases [see Fig. 2(b)] due to the
sharp decrease of the permitted surface S(z). Such potential
behavior crucially influences the ion distributions improving
the spatial separations of the co- and counterions. Figure 2(b)
shows that the counterion cumulative effect from the surface
region becomes overwhelming as the applied potential in-
creases, while the electrolyte behavior in the volume domain
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(a) (b) (c)

FIG. 2. (a) Flat electrode DC of ions mixtures with d1 = 2d2 (solid lines) and d1 = 1.5d2 (dashed lines). MD simulations results [42] also
shown for reference (disks). (b) The relative electrostatic potential ψ∗/U ∗ (black), cations ρ1v1 (red), and anions ρ2v2 (blue) packing density
distributions at two applied potentials U ∗ = 4 (solid lines) and U ∗ = 8 (dashed lines). Molecular diameter ratio d1 = 4/3d2, γ1 = 0.014,
γ2 = 0.006, λ∗

B = 0.25. Surface parameters (δ∗ = 0.33, λ∗ = 1.66, z∗
1 = −0.17, z∗

2 = −0.31) correspond to the surface S3 shown in Fig. 2(c).
Inset shows the detailed distribution inside the inner region using normalized density ρ∗

i = ρi/ρ0. (c) The DC for the a binary mixture with
d1 = 4/3d2 with γ1 = 0.014, γ2 = 0.006, λ∗

B = 0.25 near the various surface geometries: from flat S0 to significantly rough S3 (the surface
parameters can be found in the Supplemental Material [40], Sec. 2). Inset shows the larger scale of DC for flat S0 and slightly rough S1 surfaces.

(z > δ) remains almost unperturbed. The contribution of Qs

to the total charge is notable and significantly improves the
capacity properties. Therefore, the surface roughness induces
the enhancement of the integral capacity that is in agreement
with published simulations, for example, [16,22] and recent
experiment [21]. Moreover, in [16] the capacitance enhance-
ment also has been attributed to the local increase of the
electrostatic field near a rough surface and its influence on the
co- and counterion distribution inside the electrode-electrolyte
interface (cumulative density).

To describe the total charge dependency on the applied
potential, we calculated the DC Cd for the rough electrodes.
Figure 2(c) shows our results for various surface morphology
varying from flat to significantly rough. As one can see from
Fig. 2(c) the roughness notably increases the capacitance and,
in particular, the values of Cd (U ) maxima. Indeed, the quan-
titative comparison of the results from Fig. 2(c) shows that
the flat DC is almost constant, while the surfaces with the
higher roughness exhibit larger Cd values and extremely sharp
peaks. Such DC behavior agrees with the observations from
MD simulations [15,16] for ionic liquids inside rough elec-
trodes. The calculated DC curves from Fig. 2(c) conserve the
number of peaks, while the MD simulations [15,16] predict
the roughness-induced appearance and disappearance of the
DC curves maxima. The results of [16] allow us to explain
this discrepancy. The authors of [16] demonstrated that the
cumulative center-of-mass ion densities describe the DC curve
at a finite range of the potential containing only two peaks, and
the formation of the additional peaks is related to the steric
effect of the ions spatial orientations. Therefore, our model’s
application is limited by the influences of the electrostatic
potential and ion distributions of center of mass near rough
electrodes. However, the roughness-induced transition from
a two-peak to one-peak DC curve simulated in [15] can be
qualitatively described in terms of our model considering the
suppressed maximum instead of full extinction. Let us com-
pare the ideal flat geometry and the surface with the lowest

roughness, which are noted as S0 and S1 in Fig. 2(c). The
surface region of S1 is filled by the smallest ions mainly,
leaving the other component at the volume region. Such asym-
metry promotes only one enhanced peak corresponding to the
situation when the smallest-size component is counterions.
Thus, as one can see from inset in Fig. 2(c) the increase of
the surface roughness transforms two comparable peaks S0 of
DC to one dominating peak S1.

The quantitative predictions for the concentrated ionic liq-
uids presented above are limited by the simple mean-field
approach used in the chemical potentials calculations. This
model omits the effects from both electrostatic correlations
[41] and an accurate hard-sphere equation of state depending
on the weighted densities [43]. However, it is possible to
address these shortcomings extending the proposed approach
for the more sophisticated models beyond the mean-field ones,
for example, the Bazant-Storey-Kornyshev (BSK) theory [32]
accounting for the electrostatic correlations, and very recent
work [33] showing the spatial oscillations of the ion den-
sity. Since in the BSK theory [32] the calculation of the ion
chemical potentials is very similar to the model considered
here [25], the rough surface results from the current work are
applicable to BSK theory as well. A more recent model [33]
is formulated in terms of the weighted charge densities that
results in the Helmholtz free energy functional similar to FMT
[43]. The random surface extension of the FMT-based func-
tional was already investigated in the problem of uncharged
molecules adsorptions [44,45]. Therefore, our approach ap-
plied to both models [32,33] can provide equations for the ion
density distributions near rough surfaces, which will depend
on the averaged electrostatic fields. The electrostatic proper-
ties can be defined separately, considering the corresponding
differential equations with the boundary conditions on the
rough (random) surfaces. In one model [33] the electrostatic
field is defined by the Poisson equation with the weighted
charged density in the right-hand side. Therefore, the applica-
tion of the perturbation theory [35] will result in expressions
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similar to those in the current work. Also, the perturbation
technique [35] could be used for the modified Poisson equa-
tion from [32], that potentially will demand a higher order
expansion. Thus, similarly to current work, separated rough
surface modifications for the ions distribution densities and
electrostatic fields will provide the self-consistent equations
for models [32,33].

In future works, besides models [32,33] we will implement
the rough surface approach into classical Density Func-
tional Theory (c-DFT), which successfully describes static
[41] and dynamic [46] properties of the supercapacitors. De-
spite several versions of c-DFT describing the adsorption
of the neutral molecules on the rough uncharged surfaces
[34,44,45] the electrostatic c-DFT has been previously applied
to flat electrodes only. Detailed theoretical investigation of the
electrolyte behavior near a rough surface could explain the
difference of the roughness impact on the ionic liquids and
the solutions described in [20] accounting for the the solvent
molecule compatible adsorption which effectively decreases
the surface roughness.

One of the interesting features of our theory is the rela-
tive character of the roughness influence. Indeed, as one can
see from the model description shown here and in [44,47],
the averaged properties are defined by the dimensionless pa-
rameters (δ/di, λ/di ). Therefore, it is possible to investigate
the roughness-induced effects considering only one surface
sample and a set of cations and anions with various diam-
eters. This scheme is similar with Parsons-Zobel plot [48]
showing the dependence of the inverse value of the ex-
perimentally measured capacity 1/Cexp on the theoretically
predicted one 1/Cth for the different electrolytes. Regarding
the process of the experimental measurements, the impedance
data of nonideal capacitors is often interpreted in terms of

a constant phase element [49]. This approach provides the
power-law dependence of the capacitance on the frequency
ω in the form C ∼ (ωi)α−1, where α is the system param-
eter 0 < α � 1. The experiments show that α → 1 as more
smoother and cleaner electrodes are considered [49]. The
connection between the frequency dependence of the capacity
and roughness was identified long ago in [50]. Since the
porous materials roughness is the multiscale characteristic,
it is a complicated problem to identify the explicit origin of
the observed frequency dependence. Studies [51,52] revealed
that it is the atomic scale surface heterogeneities which in-
duce the dispersion behavior. Our model accounts for such
scale of the heterogeneity, which can be used to develop the
rough surface dynamics model describing the ions adsorption
at time-dependent potentials U = U0 cos ωt . For example, the
impedance for flat electrodes can be calculated using the dy-
namic density functional theory [53]. Thus, a random surface
extension of the electrolyte c-DFT approach could be useful
for the investigation of the capacitance dispersion.

In conclusion, we developed a theory describing the ion
distribution structure and accounting for the realistic rough-
ness of the porous electrodes. Our model predicts the signif-
icant capacitance increase induced by ions-scale roughness.
Moreover, we observed that the shape of the DC depen-
dency on applied potential changes notably with a variation
of roughness and becomes sharper as the roughness increases.
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