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Kinetic instability in inductively oscillatory plasma equilibrium
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A uniform in space, oscillatory in time plasma equilibrium sustained by a time-dependent current density is
analytically and numerically studied resorting to particle-in-cell simulations. The dispersion relation is derived
from the Vlasov equation for oscillating equilibrium distribution functions, and used to demonstrate that the
plasma has an infinite number of unstable kinetic modes. This instability represents a kinetic mechanism for the
decay of the initial mode of infinite wavelength (or equivalently null wave number), for which no classical wave
breaking or Landau damping exists. The relativistic generalization of the instability is discussed. In this regime,
the growth rate of the fastest growing unstable modes scales with γ

−1/2
T , where γT is the largest Lorentz factor of

the plasma distribution. This result hints that this instability is not as severely suppressed for large Lorentz factor
flows as purely streaming instabilities. The relevance of this instability in inductive electric field oscillations
driven in pulsar magnetospheres is discussed.
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Plasma equilibria are usually found as solutions to a com-
bination of kinetic or fluid equations and Maxwell’s equations
in the stationary limit. Remarkably, time-dependent equilib-
rium conditions can also be determined for certain systems
consisting of a plasma and one or more waves. Such systems
are often unstable to parametric instabilities [1], determined
by the properties of the waves supporting the equilibrium.
Parametric mode excitation can be generally understood as the
excitation of two or more plasma waves from a pump wave
of finite amplitude E0, frequency ω0, and wave number k0.
The pump can be purely electromagnetic, e.g., a laser [2–9],
of Alfvènic nature [10–13], or even electrostatic [14,15]. The
scope of application of parametric decay is vast, as unsta-
ble parametric modes have been explored in the context of
laser-plasma interactions [7,8], inertial [2,3] and magnetic [9]
confinement fusion, laser beam amplification schemes [16], as
well as of space and astrophysical plasmas [10,17–19].

In this Letter, we address the stability of a uniform in
space, oscillatory in time plasma equilibrium. In this equi-
librium, (ω0, k0 = 0) electric field oscillations are inductively
supported by repeated reversals of the plasma current. This
configuration is similar to the oscillating two-stream instabil-
ity [20], that has been historically addressed as a parametric
instability, but with a time-dependent relative drift velocity
[21]. This is a regime of interest in pulsar magnetospheres,
where inductive oscillations are excited [22,23] following
electron-positron pair cascades in strong fields [24,25]. In this
regime, a fundamental analytical description of the instability
is difficult to obtain because different ω0 harmonics are cou-
pled. Here, we present a theoretical analysis of this instability,
and show that it acts as a fundamental plasma process for the
transfer of energy from the inductive pump wave to smaller
and smaller plasma kinetic scales.
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This Letter is organized as follows: First, we describe
the plasma equilibrium supporting these oscillations. We
then present the dispersion relation of electrostatic plasma
waves developed in this equilibrium for an initial water-bag
distribution function, and analyze it both theoretically and
numerically resorting to particle-in-cell (PIC) simulations.
Finally, the conclusions of this Letter are outlined, and their
relevance in pulsar magnetospheres is discussed.

We consider a uniform unmagnetized pair plasma [26]
in the presence of a uniform electric field E = E x̂ = E0x̂
which we assume, without loss of generality, to be posi-
tive. In the presence of this field, electrons and positrons are
accelerated in opposite directions, driving a current j = jx̂
that inductively reduces E . The plasma current is maximum
when E vanishes, thus reversing the electric field. Electrons
and positrons are decelerated and j decreases in magnitude
until it is reversed. The inverse process occurs and the sys-
tem reestablishes the initial conditions. Since all dynamics is
one-dimensional in space, we hereafter restrict our analysis to
the x̂ components of fields, currents, and particle trajectories.
To determine the evolution of the E , we first take the time
derivative of Ampère’s law,

∂2E

∂t2
= −4πe

∂ j

∂t
= −8πe

∫
d pv

∂ f +
0

∂t
, (1)

where we have assumed that the plasma current is driven
by counterpropagating positrons and electrons with uniform
density n0 and average velocity ±〈v+〉, respectively, i.e., j =
2en0〈v+〉 (e is the elementary charge). We have also used
the definition of average velocity 〈v+〉 = ∫

d pv f +
0 /

∫
d p f +

0 ,
where f +

0 = f +
0 (p, t ) is the positron momentum distribution

function, normalized as
∫

d p f +
0 (p, t ) = n0 (the same applies

for the electron distribution function f −
0 ). From the Vlasov

equation describing this equilibrium, we can write ∂ f +
0 /∂t =

−eE∂ f +
0 /∂ p, and perform the integral in Eq. (1) by parts to
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obtain

∂2E

∂t2
= −8πe2

me
E

∫
d p

f +
0 (t, p)

γ 3
≡ −

〈
8πe2n0

meγ 3

〉
E , (2)

where we have used the relationship between momentum and
velocity, p = γ mev, where me is the electron mass and γ =
1/

√
1 − v2/c2. The natural oscillation frequency of the elec-

tric field is then ω0 =
√

〈8πe2n0/meγ 3〉. In the nonrelativistic
limit, ω0 is a constant in time and E is purely harmonic. If the
electric field amplitude is large enough to accelerate particles
to relativistic velocities, the oscillation may be, in general,
more complex, with the field changing purely linearly in time
between crests and troughs (i.e., with a triangular shape) [22].
For simplicity, we present here an analytical description of
these waves in a nonrelativistic regime, and then discuss the
generalization to the relativistic regime. In the nonrelativistic
limit, the momentum conservation equation of positrons or
electrons in the equilibrium defined in Eq. (2) can be inte-
grated, and their unperturbed orbits are

v±(t ) = v0 ± δv cos(ω0t + θ ) ≡ v0 ± δv cos φ, (3)

where δv = eE0/meω0 and θ is a phase factor such that
v± = v0 at a reference time t = t0. We may look for unstable
plasma modes k = kex, with k �= 0, that can develop and grow
exponentially, by integrating the linearized Vlasov equation
along the unperturbed orbits in Eq. (3). This is an approach
similar to the derivation of Bernstein waves [27], extensively
documented in the literature [28,29]. In this Letter, we discuss
the final dispersion relation, and present all the details of the
derivation in the Supplemental Material [30].

We consider a plasma where the equilibrium distribution
function of both electrons and positrons is a water-bag,
f ±
0 (v, t ) = n0/	v(H (v + vT ∓ δv cos φ) − H (v − vT ∓

δv cos φ)), where 	v = 2vT and H (x) is the Heaviside
function. The dispersion relation is

1 −
+∞∑

n=−∞
J2

n

(
kδv

ω0

)
ω2

0

(ω − nω0)2 − k2v2
T

= 0, (4)

where Jn(x) are Bessel functions of the first kind and order
n. The dispersion relation in Eq. (4) readily indicates that
an infinite number of branches ω(k) exists. These branches
correspond to regions in the (ω, k) space where each term (in
n) on the right-hand side of Eq. (4) dominates the series.

Given the complex form of Eq. (4), general analytical
calculations of the unstable modes and their growth rates
are difficult to obtain. Solving Eq. (4) with each series
term individually yields purely real branches, ωn± = nω0 ±√

ω2
0J2

n + k2v2
T , where Jn ≡ Jn(kδv/ω0). The branches with

|n| � 2, relevant for kvT /ω0 � 1 at frequencies near small
multiples of ω0, are plotted in Fig. 1(a) as a function of
k. An infinite number of crossings between branches exists,
with those between consecutive branches (n, n + 1) occurring
at lower wave numbers. Symmetric branches (n,−n) cross
roughly at k 	 nω0/vT and ωr ≡ Re(ω) = 0 (as expected
from symmetry). Writing ω = ωr + i
 and assuming that

 
 ω0, we can show that the terms of the series in Eq. (4)
decrease with n, and thus we can keep only the small n
terms of the series to solve the dispersion relation. Here, we
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FIG. 1. Theoretical prediction of real and imaginary components
of wave frequencies excited with δv/c = 0.14 and 	v/c = 0.1:
(a) shows the purely real solutions obtained from individual branches
of the full dispersion relation in Eq. (4). Lines labeled with n±

correspond to solutions where only term n was kept in the series
and where ∂ωr/∂k ≷ 0 for k � 1, respectively; (b) illustrates the
growth rate of unstable modes obtained by combining the symmetric
branches of Eq. (4).

present two analytical solutions of Eq. (4) yielding unstable
modes, corresponding to the interaction between branches (i)
n = 0,±1 at small k, and (ii) n = ±1 at kvT /ω0 	 1. The
latter mode only exists for finite vT , whereas the former exists
even when vT = 0. For this reason, we hereafter refer to these
modes as thermal and fluid, respectively.

To determine the properties of the thermal mode, we look
for solutions to Eq. (4) with ωr = 0 with only terms ±n, and
then take the particular case n = 1. Taking advantage of the
Bessel functions’ symmetry J−n = (−1)nJn, we obtain

ω2
n = n2ω2

0 + F (k) ±
√

ω4
0J4

n + 4n2ω2
0F (k), (5)

where F (k) = ω2
0J2

n + k2v2
T . The solutions in Eq. (5) are un-

stable (ω2
n < 0) if 2ω2

0J2
n > n2ω2

0 − k2v2
T , which is satisfied

for wave numbers kvT /ω0 ∈ (
√

n2 − J2
n , n). For n = 1 in par-

ticular, the symmetric branches cross at kvT /ω0 = 1, and

1,max ≡ max[Im(ω1)] 	 ω0J2

1 /2. If kδv/ω0 > 1, the large
argument asymptotic expansion of the Bessel functions ap-
plies, and we find 
1,max/ω0 	 meω0vT /πeE0 	 vT /πδv. In
Fig. 1(b), we plot the imaginary component of ωn as a function
of k for n = 1, 2, showing that unstable modes indeed occur

L051201-2



KINETIC INSTABILITY IN INDUCTIVELY … PHYSICAL REVIEW E 103, L051201 (2021)

0 20 40 60

xω0/c

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

eE
/m

e
cω

0,
v
/c

(a)

tω0 = 0

0 100 200
No. electrons [arb. units]

E

0 20 40 60

xω0/c

(b)

tω0 = 85

0 20 40 60

xω0/c

(c)

tω0 = 170

FIG. 2. Temporal evolution of electron phase space (in color) and electric field (in black lines) for a simulation with E0/(mecω0/e) =
δv/c = 0.14 and 	v/c = 0.1: (a) Initial plasma configuration, (b) linear stage of the instability, showing electric field perturbations grown on
top of its uniform oscillatory component, and (c) final plasma state, after the instability has saturated.

close to crossings between the corresponding branches, and
that their growth rate decays with n.

The fluid mode couples branches n = 0,±1 at small k. For
vT = 0 and kδv/ω0 
 1, the dispersion relation reduces to

(� − 1)3

3� − 1
= K, (6)

where � = (ω/ω0)2 and K = (1/2)(kδv/ω0)2. Equation (6)
has unstable solutions with ωr/ω0 	 ±1 ∓ (1/4)(kδv/ω0)2/3

and growth rate 
/ω0 	 (
√

3/4)(kδv/ω0)2/3.
To confirm our theoretical findings, we have performed

a set of one-dimensional (1D) PIC simulations with OSIRIS

[31,32] considering a uniform pair plasma of density n0 and a
water-bag distribution function in momentum with 	v/c =
0.05–0.3. The plasma is subject to an initial electric field
E0/(mecωp/e) = 0.2, where ω2

p = 4πe2n0/me = ω2
0/2. The

simulation domain has a length L/(c/ω0) 	 70, and is dis-
cretized in N = 5000 cells, with 500 particles per cell per
species. The simulation time step is 	tωp = 0.005. When
the simulations start, the plasma undergoes the oscillations
described by Eq. (2). Unstable modes grow on top of the k = 0
oscillations. These oscillations remain initially stable, but are
then damped as energy is transferred to unstable modes and
into particle kinetic energy.

Figure 2 shows the electric field profile and the electron
phase space at the beginning of the simulation [Fig. 2(a)],
during the linear stage of the instability [Fig. 2(b)], and at
a time when the instability has saturated [Fig. 2(c)] for a
simulation with 	v/c = 0.1. In Fig. 2(b), we observe that
small perturbations start growing on top of the oscillating
electric field, modifying the initial water-bag velocity distri-
bution. The initial electromagnetic energy density E0

2/8π is
converted into unstable modes until they saturate. The initial
particle distribution is then strongly distorted, extending well
beyond the initial thermal spread vT /c = 0.05 for long times
[see Fig. 2(c)].

The time evolution of the electric field Fourier spectrum
is presented in Fig. 3(a), showing that well-defined unstable
modes grow exponentially during the linear stage of the in-
stability. We observe multiple unstable thermal modes: The

mode with the lowest k is the first to grow (region R2),
followed by higher k modes (regions R3–R4). We conjecture
that these unstable modes are coupled, as discussed in the
Supplemental Material [30]. The overall growth rate and total
energy stored in unstable modes is dominated by the lowest k
thermal mode, as shown in Fig. 3(b), illustrating the electric
field energy stored in regions R1–R4 of the k space identified
in Fig. 3(a). It is also possible to observe in Fig. 3(b) that
the energy in R1, corresponding to k ∼ 0, decreases with
time at the expense of the growth of all the other modes.
Both the bandwidth and maximum growth rate of the most
unstable modes are in good agreement with the solutions of
Eq. (5). We observe fluid modes grow at kδv/ω0 
 1 but
only weakly at early times, saturating at levels that do not
play any dynamic role on the evolution of the system. When
the unstable thermal modes reach a finite amplitude, particle
acceleration occurs and causes a saturation of the instability.
This is followed by electrostatic turbulence, which causes a
strong distortion of the distribution [see Fig. 2(c)]. The nu-
merical dispersion relation of the plasma in this simulation is
presented in Fig. 3(c), which was obtained by Fourier trans-
forming the data in Fig. 3(a) in time during the linear stage of
the instability. The numerical dispersion relation shows that
the inductive mode is present at ω = ω0 for low k and that,
in general, unstable modes have a real frequency component
multiple of ω0.

For all simulations performed with δv/vT � 1, the growth
rate of the fastest growing modes is 
max/ω0 ∼ 0.1 and
decreases with increasing δv/vT . For δv/vT � 1, we have
verified that the growth rate decreases with increasing vT . This
is also verified for pair plasmas with Maxwellian distributions
with thermal velocities vth/c = 0.05–0.2. A detailed discus-
sion of the scaling of the growth rate with δv/vT is presented
in the Supplemental Material [30]. We have found that the
fastest growing modes in all simulations with δv/vT � 1 have
kvT /ω0 	 0.5, slightly lower than that predicted from linear
theory, k/(ω0/vT ) 	 0.6–1. We attribute this difference to (i)
an average performed in the derivation to obtain a disper-
sion relation independent of time (see Supplemental Material
[30]) and to (ii) the weakly nonlinear regime in which the
thermal modes develop. Regarding (ii), we note that fluid
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FIG. 3. Fourier analysis of unstable modes in the simulation il-
lustrated in Fig. 2: (a) and (b) show respectively the time evolution
of the electric field Fourier transform and of the energy in k bands
corresponding to the main oscillatory mode (R1) and to the three
unstable modes with lowest k (R2–R4); (c) illustrates the numerical
plasma dispersion relation, obtained by taking the Fourier transform
of (a) in time during the linear stage of the instability.

modes develop from early times, with which the distribution
may interact and broaden slightly, modifying the properties
of the thermal mode. For δv/vT < 1, simulations show that
the fastest growing modes have kvT /ω0 ∼ δv/vT , a result that
the dispersion relation presented in this Letter fails to explain.
Surprisingly, however, the growth rate of these modes is well
described by linear theory.

We now discuss the generalization to relativistic con-
ditions, i.e., E0/(mecω0/e) � 1. In general, under these
conditions, the unperturbed orbits in velocity space become
nearly perfect square waves, oscillating between ±c, i.e., the

trajectories x(t ) are triangular waves. It is well known that
these can be described as a series of sinusoidal functions
that is well approximated by the lowest-order term. The same
approximation can be applied to the electric field profile in
regimes where δp/pT � 1, where δp = eE0/ω0 and pT =
γT mevT is the momentum thermal spread. In this regime,
we find that 〈1/γ 3〉 is not constant, and the electric field
oscillation is instead well described by a triangular shape [22].
We also performed simulations in the relativistic regime [con-
sidering E0/(mecω0/e) 	 14 and 	p/mec = 2–800], where
all conclusions outlined in this Letter for the nonrelativistic
regime hold qualitatively and quantitatively.

In the relativistic regime, we find also that 
max/ω0 ∼ 0.1,
where ω0 ∝ 〈1/γ 3〉1/2, according to Eq. (2). For water-bag
and exponential distributions of the type exp(−γ /γT ), we
can show that 〈1/γ 3〉 = γ −1

T and (2γT )−1, respectively, and
thus ω0 ∝ γ

−1/2
T . Hence, the unstable modes studied in this

Letter are not as severely suppressed for large γT as streaming
instabilities, for which 
max ∝ γ

−3/2
T , and may be more easily

excited in extreme astrophysical settings where the Lorentz
factor of the plasma flows is very large. In particular, we
find for typical pulsar parameters (surface field B 	 1012 G,
period 0.1 s) that ω0 ∼ 1–10 GHz [23,33], such that the in-
stability develops on a typical time 1/
 ∼ 10 (pT /δp)2/ω0 ∼
10 (pT /δp)2 ns for the pT /δp < 1 regime expected in these
scenarios (see Supplemental Material [30]). This should be
compared to the lifetime of the inductive plasma waves, which
is well approximated by the time between pair production
bursts, Tb ∼ 1 μs [34]. We find that 1/
 < Tb for pT /δp <

10, which may be achieved in the plasma trail behind pair pro-
duction fronts, where the electric field oscillates inductively,
but at an amplitude that is not enough to trigger a considerable
number of pair production events [33]. This instability may
also perturb particle trajectories in inductive waves, previ-
ously identified as a source of linear acceleration emission
[35,36]. We note that the strong longitudinal magnetic field
typical of these environments is not expected to play a signif-
icant role in the development of this instability (contrary to,
e.g., filamentation modes), as particle trajectories are purely
one dimensional.

In conclusion, we have studied the plasma waves para-
metrically excited in an inductively oscillatory plasma equi-
librium. Our results show that the energy in the inductive
pump wave is transferred to other plasma modes via an os-
cillating two-stream instability. Since the pump wave has
infinite wavelength, other fundamental wave depletion mech-
anisms such as wave breaking or Landau damping do not
operate, regardless of the value of its amplitude E0. We
have presented the dispersion relation of these waves for a
water-bag equilibrium distribution function, which captures
thermal effects and is analytically tractable. In general, infinite
branches ω(k) exist, each branch being a purely real mode
when far from other branches in the (ω, k) space. However,
coupling between different branches yields unstable modes,
with the maximum growth rate 
max/ω0 ∼ 0.1. All analytical
results have been confirmed using PIC simulations. We have
also investigated the relevance of this instability in pulsar
magnetospheres, and determined that it may be excited over
short distances following pair production bursts in strong
fields. Furthermore, we speculate that it may be relevant in
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other astrophysical scenarios, e.g., black hole magnetospheres
[37–39], where strong rotation-powered electric fields are also
self-consistently screened by plasma currents.
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