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In a supercooled liquid, the crossover temperature Tc separates a high-temperature region of diffusive dynam-
ics from a low-temperature region of activated dynamics. A molecular-dynamics simulation of all-atom, flexible
o-terphenyl [Eastwood et al., J. Phys. Chem. B 117, 12898 (2013)] is analyzed with advanced statistical methods
to reveal the molecular features associated with this crossover. The simulations extend to an α-relaxation time
of 14 μs (272.5 K), two orders of magnitude slower than at Tc (290 K). At Tc and below, a distinct state emerges
that immediately precedes an orientational jump. Compared to the initial, tightly caged state, this jump-precursor
state has a looser cage, with solid-angular excursions of 0.054–0.0125 × 4π sr. At Tc (290 K), rate heterogeneity
is already the dominant cause of stretched relaxation. Exchange within the distribution of rates is faster than α

relaxation at Tc, but becomes equal to it at the lowest temperature simulated (272.5 K). The results trend toward
a recent experimental observation near the glass transition (243 K) [Kaur et al., Phys. Rev. E 98, 040603(R)
(2018)], which saw exchange substantially slower than α relaxation. Overall, the dynamic crossover comprises
multiple phenomena: the development of heterogeneity, an increasing jump size, an emerging jump-precursor
state, and a lengthening exchange time. The crossover is neither sharp, nor a simple superposition of the high-
and low-temperature regimes; it is a broad region that contains unique and complex phenomena.

DOI: 10.1103/PhysRevE.103.L050601

It is widely believed that a dynamical crossover occurs in
the middle of the supercooled-liquid region [1] at a tempera-
ture Tc where the α-relaxation time is near Tα ∼ 10−7 s [2].
This crossover is broadly described as a switch from diffusive
dynamics dominated by saddle points on the potential-energy
landscape to activated dynamics dominated by barrier cross-
ings [3–5]. Two popular theories, mode-coupling theory
(MCT) [6,7] and random first-order transition (RFOT) the-
ory [8–10], provide negative predictions of this crossover.
Each theory succeeds away from Tc—MCT above and RFOT
below—but both fail at a singularity near Tc. In experiments,
the crossover is often identified by a switch from Arrhenius
to super-Arrhenius relaxation times [11,12]. Alternatively,
high-temperature data are extrapolated to identify the MCT
singularity [2]. In both theory and experiment, detail about
molecular behavior in the crossover region is missing.

Simulations could provide this detail, but due to the
long times involved, they remain challenging on the low-
temperature side of Tc, even for atomic systems [13,14]. In this
letter, molecular-dynamics simulations of o-terphenyl (OTP)
[15] that reach temperatures well below Tc [16] are exam-
ined with advanced statistical methods [17–19] that provide
increased molecular detail. By looking at a molecular system,
rotational dynamics can be studied. They are directly related
to many important experiments, such as dielectric relaxation
[20–22], depolarized light scattering [23], nuclear magnetic
resonance (NMR) [24,25], electron spin resonance (ESR)
[26], optical-probe [27], and single-molecule spectroscopies
[28–30].

*berg@sc.edu

One universal feature of supercooled liquids is rate dis-
persion: nonexponential or “stretched” relaxation. Below Tc,
rate dispersion is caused by spatial domains with different
rates, that is, by rate heterogeneity [31]. Rate heterogeneity
is predicted by the low-temperature, RFOT theory [32]. Rate
dispersion above Tc is also predicted by the high-temperature
MCT [6,7], but without spatial domains or rate heterogeneity.
Due to its use of Gaussian factorization, MCT is a homoge-
neous theory (although heterogeneous effects can be added
[33]). Thus, there must be a change in the mechanism causing
rate dispersion from homogeneous to heterogeneous as the
temperature drops. Does this change coincide with Tc?

Such a dramatic change in mechanism seems to conflict
with time-temperature superposition, which holds that the
magnitude of the rate dispersion is invariant with temper-
ature. In different studies and with different experiments,
time-temperature superposition across Tc either holds very
well [12,34], has a small discontinuity [23], or has a large
discontinuity [35]. Simulation of OTP rotation shows a large
increase in rate dispersion upon dropping below Tc [16]. This
letter addresses the causes of that increase.

If rate dispersion is caused by domains, then the lifetime
of those domains Tex becomes important. Recent single-
molecule studies in OTP show that the lifetime of rate
domains substantially exceeds the α-relaxation time (Tex =
22Tα) very near the glass-transition temperature Tg (243 K)
[30]. Time-temperature superposition holds from Tg up to Tc

[20]. Does this imply that the domain lifetime remains long
over this range?

Another universal feature of low-temperature liquids is
relaxation by large jumps [36]. In contrast, high-temperature
liquids relax by small-step diffusion. We will see that this
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FIG. 1. (a), (d) 1D correlation functions C�(τ ) for � = 1 to 20. (b), (e) The Green’s function G(X, τ ) (solid line) and fits to the three-
population model (points). Slices are shown at delays τ where C1(τ ) equals the values shown in the legend. The same times are marked by
vertical bars in (a), (d). (c), (f) Magnified view of the Green’s function after removing a constant (c) or a straight-line (f) component. Top row:
below Tc (272.5 K). Bottom row: at Tc (290 K).

change is intertwined with changes in the domain lifetime.
Moreover, the change is not monotonic: A jump-precursor
state appears as the step size increases.

All these issues are addressed using a simulation of an all-
atom, flexible model of 800 OTP molecules (see Ref. [16] and
the Supplemental Material (SM) [37]). The model reproduces
a variety of standard thermodynamic and dynamic properties
of the real system [16]. We focus on two temperatures: at Tc =
290 K (the mode-coupling temperature [38]), where Tα =
1.11 × 10−7 s, and below Tc (272.5 K), where α relaxation is
slower by two orders of magnitude, Tα = 1.46 × 10−5 s. The
α-relaxation time Tα is taken to be the geometric-mean time
(SM [37]) of C1(τ ) [Eq. (1) below], which is similar to the
half-life of dielectric α-relaxation. Anton, a special-purpose
machine for molecular dynamics [39], extended the simula-
tions to 225Tα (25 μs) at Tc and to 190Tα (2.77 ms) at the
lower temperature.

We treat the OTP molecule as an isotropic rotor and define
its orientation through the angles of its symmetry axis, θ and
ϕ (SM [37]). The rotational dynamics are measured by cor-
relation functions of the spherical harmonics of these angles
Y �

m (θ, ϕ),

C�(τ ) =
∑

m

am
〈
Y �

−m[θ (t1), ϕ(t1)]Y �
m[θ (t0), ϕ(t0)]

〉

= 〈G�(τ )〉. (1)

The am are the inverses of the equal-time values of each aver-
age. The decay of the �th eigenfunction of rotational motion is
G�(τ ). In Eq. (1), the spherical-harmonic correlation function
at two times, t1 and t0, is reexpressed as the average eigende-
cay over a single time interval, τ = t1 − t0. Later in the paper,
these ideas are extended to a multidimensional (multiple time

interval) correlation function,

C101(τ3, τ2, τ1)

=
∑

m′,m

am′,m
〈
Y 1

m′[θ (t3), ϕ(t3)]Y 1
−m′ [θ (t2), ϕ(t2)]

× Y 1
−m[θ (t1), ϕ(t1)]Y 1

m [θ (t0), ϕ(t0)]
〉

= 〈G1(τ3)G0(τ2)G1(τ1)〉. (2)

The am′,m are chosen to select the eigendecays shown in the
second equality (to be published).

In the left column of Fig. 1, the correlation functions C�(τ )
for � = 1−20 are shown below Tc (top) and at Tc (bottom).
The functions are all one at τ = 0, but this point is not visible
on the log-time scale. The first plotted point is smaller due to
rapid libration of the molecules within their local cages and
early β relaxation of that cage. We only discuss the later α

relaxation.
None of these functions is single exponential. Nonexpo-

nential decays are conventionally characterized with empirical
functions [40,41]. We use a method that is independent of
specific functional forms ([17] and SM [37]). The deviation
from exponential is measured by the excess rate dispersion
dexc, which is the variance of the apparent distribution of rates
on a log scale.

The behavior of rate dispersion changes dramatically with
�. For � = 1, which approximates dielectric relaxation, dexc =
0.7 at Tc, and dexc = 2.0 below Tc. Rate dispersion increases
rapidly near Tc, as reported before [16,20]. However, with
� = 20, dexc = 5.1 at Tc, and dexc = 5.8 below Tc. Rate dis-
persion is stronger and more continuous across Tc at higher
�. Because measurements at larger � probe motion at smaller
angles, the nature of the rotational motion must change during
the crossover.
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FIG. 2. (a) Occupancies of the three populations (solid curves: A black, B orange, D green) derived from fits to the Green’s functions
[Figs. 1(b) and 1(e)] along with fits to the three-population model (A dots, B triangles, D squares) at Tc (290 K, left) and below Tc (272.5 K,
right). (b) The 3D correlation function C101(τ3, τ2, τ1) below Tc (272.5 K) shown as 2D decay spectra Ĉ101(T3, τ2, T1) at various values of τ2.
(c) Comparison of the domain lifetime [ fhet (τ2), red solid line], α relaxation [C1(τ ), blue dash-dotted line], and the precursor-state formation
[A(τ ), black dashed line] at Tc (290 K, left), below Tc (272.5 K, middle), and near Tg (244.5 K, right, from Ref. [30]).

A more detailed picture of this change comes from con-
verting the set of C�(τ ) to the rotational Green’s function.
Using rotational symmetry, the original problem in θ and ϕ

can be reduced to a single variable, X (t ) = cosθ (t ) with aver-
aging over ϕ. The equilibrium distribution for this variable is
Peq(X ) = 1

2 , and the domain is −1 < X < 1. In general, the
Green’s function takes the form G(X1, t1|X0, t0), the proba-
bility that a molecule that starts at X0 at time t0 will evolve
to X1 at time t1. Due to rotational symmetry and stationary
dynamics, it is only necessary to monitor one slice of the full
function, G(X, τ ) = G(X, τ |1, 0). The general conversion of
sets of correlation functions to a Green’s function is derived
in Ref. [19]; the specialization to rotation is made in the SM
[37].

The Green’s function for each temperature is shown as
a set of solid curves in the middle column of Fig. 1. This
function always starts as a delta function at X = 1 and decays
to a constant value of 0.5. The curves have a constant area
(population); the missing area is due to the off-scale peak
at X = 1. Small oscillations are artifacts from using a finite
number of � values.

Below Tc [Fig. 1(b)], a population that has moved a large
angle (−1 � X � 0.75) is distinct from one that has not
(0.75 � X � 1). Molecules move between these populations
in a discontinuous jump. The population that has made one
or more jumps since τ = 0 will be labeled D. It appears as a
constant in the Green’s function: The D population has the dis-
tribution PD(X ) = 1

2 = Peq(X ). The jump carries a molecule
to a random position within the equilibrium distribution.

This constant was subtracted from the Green’s function,
and the remainder was renormalized to unit area [Fig. 1(c)].
An isosbestic point appears near X = 0.98, suggesting that
the small-angle dynamics can also be described as a transition
between two distinct populations: A, whose molecules have

moved only slightly (0.98 � X � 1), and B, whose molecules
move more freely, but are still confined to a small range of
angles (0.75 � X � 1).

The angles accessible in each population, PA(X ) and
PB(X ), were modeled as Fisher distributions on a sphere [42],

PA/B(X ) = σ−1
A/B exp [(X − 1)/σA/B]. (3)

We then fit the Green’s functions in Fig. 1(b) with a three-
population model,

G(X, τ ) = A(τ )PA(X ) + B(τ )PB(X ) + D(τ )PD(X ). (4)

The fits are shown as points in Fig. 1(b). Good fits were
found for σB = 0.107, which corresponds to an angular range
of θB = 0◦–27◦ or a solid angle of 
B = 4π/19, and σA =
0.015, which corresponds to θA = 0◦–10◦ and 
A = 4π/130.

The occupancies of the three states A(τ ), B(τ ), and D(τ )
are shown as solid curves in Fig. 2(a). The B population is
seen to be a short-lived intermediate between the A and D
populations. A nonexponential kinetic model for transitions
between these populations (SM [37]) was fit to their occupan-
cies [Fig. 2(a)]. The observed B population is only matched if
all of the A molecules make a transition to the B population:
There are no direct A to D transitions.

We interpret the A, B, and D populations as follows. There
are two configurations for the molecule’s cage: a restrictive
cage R and a loose cage L. Molecules spend most of their
time in an R cage, but there is an equilibrium with a small
population of L cages. A molecule that starts in state R at t0
and remains so at a later time t1 is part of the A population.
If the molecule changes to an L cage before t1, but does
not make an orientational jump, it is in the B population.
Although the A to B transition appears to involve a small jump
in orientation, it is really a change to a softer cage with the
same mean orientation. Molecules that have made one or more
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orientational jumps since t0, regardless of their cage, consti-
tute the D population. From the fitting, orientational jumps
only occur out of an L cage; it is a necessary precursor to a
jump.

The loose cage may appear to be related to β relaxation or
the excess wing seen in dielectric experiments [43]. However,
each of our curves can be fit with a stretched exponential,
whereas the defining characteristic of the excess wing is a
deviation from simple fits. In addition, the ratios of R to L
lifetimes are small (4.0 at 272.5 K, 2.9 at 290 K), whereas the
excess wing extends many orders of magnitude shorter than α

relaxation.
At Tc (290 K), there is a similar, though not identical,

pattern. In Fig. 1(e), molecules again jump from a small-angle
population (0.75 � X � 1) to a large-angle population (−1 <

X < 0.75). At this temperature, the jumps are not quite large
enough to fully randomize the orientation. The D population
can be described by an empirical function, PD(X ) = mX + 1

2 .
Repeated jumps do randomize the orientation and decrease the
slope m to zero. Subtracting PD(X ) from the Green’s function
and renormalizing gives Fig. 1(f). Again, an isosbestic point
occurs between the A and B populations, although it is not as
well defined as at the lower temperature. Using Eq. (3) with
σA = 0.025 (θ = 13◦, 
 = 4π/80) and σB = 0.15 (θ = 32◦,

 = 4π/13) in Eq. (4) gives the fits in Fig. 1(e). The resulting
occupancies and their fits to the kinetic model (SM [37]) are
shown in Fig. 2(a). Again, the direct A to D transition must
be set to zero to match the observed occupancy of B. All
molecules go through the precursor state before making an
orientational jump.

The jump-precursor state appears to be unique to the
crossover region. Above Tc (� 310 K, Tα � 4.6 × 10−9 s), the
Green’s function can no longer be fit by a three-population
model (to be published). The jump-precursor state no longer
stands out as a distinct stage of relaxation. Below Tc, the peak
occupancy of B drops [Fig. 2(a)]. If this trend continues, the
precursor state will become irrelevant in the deeply super-
cooled region.

The nature of rate dispersion over this temperature range
must also be considered. Below Tc, there is rate dispersion
in both in the A to B (dexc = 3.9) and the B to D (dexc =
0.8) transitions. At Tc, rate dispersion is small in the B to
D transition, but it is present in the faster A to B transition
(dexc = 1.5). The three-dimensional (3D) correlation func-
tion C101(τ3, τ2, τ1) [Eq. (2)] can determine whether these
dispersions are caused by rate heterogeneity [18,44]. The
decay of the � = 1 eigenfunction of a single molecule is
measured twice: once over τ1 and again over τ3. For the
moment, take τ2 = 0 and imagine that the rate dispersions
during τ1 and τ3 [Eq. (2)] are each decomposed into a spec-
trum of rates. In principle, the results could be plotted as a
2D rate-correlation spectrum. If a molecule decays with a
single rate and that rate is the same during both τ1 and τ3,
it will only contribute to a diagonal point of the spectrum.
If different molecules have different rates, the ensemble will
have points spread along the diagonal. In contrast, if the sam-
ple is homogeneous, every molecule relaxes with the same
spectrum of rates. The same set of rates will occur during
τ1 and τ3; there will be correlations at each combination of
rates, including off-diagonal points. Thus, comparing the sizes

of diagonal and off-diagonal elements measures the relative
importance of homogeneous and heterogeneous causes of rate
dispersion.

In practice, extracting a rate spectrum from a time decay
is an ill-posed problem: There are many different, but equally
valid, rate spectra for any given decay. A more stable spec-
trum, which we call the decay spectrum Ĉ101(T3, τ2, T1), can
be constructed from the appropriate derivative of the decay
[17]. (For convenience, it uses time constants Ti, rather than
rates.) The decay and rate spectra are related by a convolu-
tion. The decay spectrum has low resolution, but obtaining
a high-resolution rate spectrum requires an unstable decon-
volution. Despite the lower resolution, a decay spectrum can
be interpreted the same way: The spread along the diagonal
indicates the total extent of rate dispersion; the spread along
the antidiagonal indicates the importance of homogeneous
rate dispersion.

Figure 2(b) shows an example at 272.5 K. (For 290 K,
see SM [37].) At τ2 = 0, the width along the antidiagonal
is narrow relative to the width along the diagonal, implying
that heterogeneity is important. This result is quantified by
integrating along the diagonal, measuring the variance of the
resulting projection, and subtracting the variance expected
in the case of a purely heterogeneous system (SM [37] and
Ref. [17]). The final value dhom measures the dispersion due
to homogeneous causes. In the case of slow-exchange het-
erogeneity in a two-state system, dhet = dexc − dhom is the
variance of the distribution of heterogeneous rates on a log
scale, and fhet = dhet/dexc is a quantitative measure of the
fraction of the rate dispersion caused by heterogeneity. In the
multistate system occurring here, we use fhet as an empirical
measure of the importance of rate heterogeneity. Still focusing
on τ2 = 0, fhet = 0.89 below Tc (273.5 K) and fhet = 0.83
at Tc (290 K). We conclude that the sharp increase in total
rate dispersion over this region is not the transition from
homogeneous, MCT-based rate dispersion to heterogeneous,
domain-based rate dispersion. That transition must take place
at a higher temperature.

More can be learned from nonzero values of τ2. Rotational
motion during τ2 has no effect on C101(τ3, τ2, τ1), because
the � = 0 eigenfunction G0(τ2) is insensitive to orientation.
However, a rate domain can still evolve during τ2. If rate
exchange occurs, its rate during τ3 becomes uncorrelated to
its rate during τ1, and off-diagonal intensity in the spectrum
will rise. This effect can be seen in Fig. 2(b).

Rate exchange causes the spectrum to appear more ho-
mogeneous and causes fhet(τ2) to decay. This function is a
quantitative measure of rate exchange in a slow-exchange,
two-state system [17]. It is used here empirically for the
same purpose. Results are shown in Fig. 2(c) in red (solid
line). For comparison, the α relaxation [taken to be C1(τ )] is
shown in black (dashed line), and the formation of the jump-
precursor state (R cage decay) is shown in blue (dash-dotted
line).

Figure 2(c) also shows rate exchange measured by single-
molecule experiments on OTP very near the glass transition,
where α relaxation is another six orders of magnitude slower
[30]. In a single-molecule experiment, dynamics are mea-
sured from an equilibrium time series, just as they are in
this simulation. Because very similar methods were used in
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both studies, the results can be directly compared. (However,
in the experiments, the rotation of a probe molecule was
measured, rather than rotation of an OTP molecule, and the
measurement was for � = 2, not � = 1. Also note that re-
sults from two temperatures, which show time-temperature
superposition, were averaged to give the single-molecule
result.)

Rate exchange measures the lifetime of the domains in the
liquid. Figure 2(c) shows that the domain lifetime is faster
than α relaxation at Tc and becomes slower than α relax-
ation as the temperature is lowered. These changes could be
associated with a change from stringlike, one-dimensional
(1D) domains and to compact, 3D domains, as suggested by
previous simulations [45–47], experiments [48], and theory
[49,50]. Starting at 272.5 K, domains maintain their identity
even after molecules within it have fully rotated. Below this
temperature, the domain lifetime continues to increase. This
result is consistent with the idea of a separate mobility field
emerging at low temperature [51,52]. Conventional experi-
ments show time-temperature superposition over this range
(284–248 K) [20] and do not hint at the evolution occurring
in the relaxation mechanism.

Between 290 and 272.5 K, α relaxation is slower than rate
exchange. Heterogeneity will not cause rate dispersion in a
process that is much slower than rate exchange. Thus, it is the
lengthening of the domain lifetime past Tα that is responsible
for the rise in rate dispersion seen in α relaxation near Tc.
Although the domain lifetime is shorter than the jump time
and its effect on C1(τ ) is reduced in this temperature range, the
domains still control the rate of entering the jump-precursor
state. Their effect on this fast, small-angle process remains
strong at higher values of �. Further decreases in the domain

lifetime will eventually make the domains unobservable at
even higher temperatures.

Overall, the results show that the dynamic crossover con-
sists of intertwined changes in multiple phenomena over a
significant temperature range. As the temperature drops, the
switch from homogeneous to heterogeneous rate dispersion
and the formation of domains is complete before Tc. The size
of rotational jumps also increases across the entire crossover
region, becoming complete only when Tα is 100 times slower
than at Tc. The increasing jump size is accompanied by the
appearance of a jump-precursor state. Rate-domain lifetimes
also increase over the crossover region, reaching Tex = Tα

at the same temperature where the switch to large jumps
is complete. Domain lifetimes continues to lengthen as the
temperature drops toward Tg.

These phenomena cannot be disentangled by measuring
mean-relaxation times or rate dispersions alone. More ad-
vanced, Green’s-function and multidimensional methods are
needed. It is also clear that the evolution of these phenomena
is not complete before relaxation times exceed the reach of
simulations. Fortunately, the quantities measured here can
also be pursued in experiments such as NMR [24,25,53], ESR
[26], single-molecule [29,30], and time-resolved [44,54] spec-
troscopies. The conclusions of this letter can be verified and
extended to other temperature regions by such experiments.

We thank D. E. Shaw and his colleagues for sharing
their simulation data. Based upon work supported by the
National Science Foundation—Chemical Measurement and
Imaging program under Grants No. CHE-1707813 and No.
CHE-2003619 (with partial cofunding from the Chemical
Structures, Dynamics, and Mechanisms program).
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