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We show an amazing complexity of the chimeras in small networks of coupled phase oscillators with inertia.
The network behavior is characterized by heteroclinic switching between multiple saddle chimera states and
riddling basins of attractions, causing an extreme sensitivity to initial conditions and parameters. Additional
uncertainty is induced by the presumable coexistence of stable phase-locked states or other stable chimeras as
the switching trajectories can eventually tend to them. The system dynamics becomes hardly predictable, while
its complexity represents a challenge in the network sciences.
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Chimera states represent a fast growing research branch of
nonlinear science, which aims to understand how a network of
identical oscillators can split into groups with essentially dif-
ferent behavior, such as one group being regular and the other
chaotic [1,2]. Currently, we observe a tremendous activity in
this area leading to a number of theoretical and experimental
studies (see the review papers [3–6] and references therein).
In real-world systems, chimera states may play a role in the
understanding of peculiar complex behaviors in biological
[7–10], engineering [11–16], and social [17] systems.

In 2015, Ashwin and Burylko defined a new type of
chimera behavior, called the weak chimera state, which al-
lowed to derive chimeras in small networks of coupled phase
oscillators. According to the definition, in a weak chimera
state at least one oscillator should rotate with a different
average frequency (Poincaré winding number) in compari-
son to at least two others which are frequency synchronized.
First, the weak chimera states were reported for four phase
oscillators with the Hansel-Mato-Meunier (HMM) coupling,
i.e., coupled through the first two harmonics [18–20], and
for three Kutamoto-Sakaguchi equations with inertia [21].
Experimentally, they have been obtained in small networks of
coupled semiconductor lasers [22] and optoelectronic oscilla-
tors [23], and in coupled mechanical oscillators (metronomes)
[24]. So-called solitary states develop when only one or a
few oscillators split up from the main synchronized clus-
ter and start to rotate in a different manner. Representing a
subclass of weak chimeras, solitary states are qualitatively
different from the “classical” chimeras discovered in [1,2],
typically arising not only in small but also in fine-sized net-
works [25], in the mean-field limit [26], and in adaptive
systems [27].

Heteroclinic switching between chimera states was first re-
ported in [21] for N = 3 mean-field coupled phase oscillators

with inertia [28] of the general form

mθ̈i + εθ̇i = ω + μ

N

N∑
j=1

sin(θ j − θi − α). (1)

Here θi (i = 1, . . . , N) are phase variables, α is a phase lag,
and μ is a coupling strength. Other parameters m, ε, and
ω are mass, damping, and natural frequency of a single os-
cillator (pendulum). We put m = 1.0, ε = 0.1, and ω = 0.
The switching is obtained as a result of a loss of stability
of chimera states transforming thus into the chaotic saddles.
For the N = 3 case, it develops in narrow layers close to
the boundaries of the chimera regions (see Chap. S4 of the
Supplemental Material [29] for details). In [30], the hete-
roclinic switching between chimeras was reported for small
networks, beginning from N = 6 phase oscillators with the
HMM coupling. In [31] an example of this kind of behavior
was analyzed for the N = 7 case of model (1), and in [32] for
a model of coupled logistic maps. The importance of riddled
[33] and intermingled [34] basins of attraction in the context
of chimera states was pointed out in [32,35].

In this Letter, we discuss the chaotic chimera switching
phenomenon in model (1) with N = 4 and N = 5. The com-
plexity of the system behavior is illustrated in Fig. 1, where
basins of attraction of the chimera states are shown manifest-
ing a microscopic, visually riddled basin structure. Typical
switching trajectories are shown in the upper panel, where
chimeras with one and two splitted oscillators participating
in the switching can be recognized. The system dynamics is
characterized by an extreme sensitivity to the initial conditions
and the parameters, with precise trajectory behavior becoming
hardly predictable. Additional uncertainty for the N = 4 case
is induced by stable phase-locked states, always coexisting
with the chimera states (see Chap. S2 of the Supplemental
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FIG. 1. Heteroclinic switching between chimera states (a),(b)
and basins of attraction (c),(d) for network (1) with N = 4 (left
panel) and N = 5 (right panel). The basins are built in the grid plane
(θ (0)

1 , θ̇
(0)
1 ) by fixing the initial conditions of the remaining oscillators

(see detail in [36]). Color gamma indicates different chimera states
(colored), phase-locked states (gray), and the switching behavior
(black). The insets in (c) and (d) show zooms of the small grid square
to confirm the microscopic basin structure. Parameters: μ = 0.3,
α = 1.59 (N = 4) and μ = 0.054, α = 1.67 (N = 5).

Material [29] for details); then the switching dynamics is
mostly transient. The situation is different for model (1) with
N = 5: There is no stable phase-locked state in the region
of interest, and the switching behavior is perpetual. We ex-
pect that this kind of intricate collective dynamics in small
dimensions may be a precursor to spatial chaos [37] for bigger
networks of this type discussed recently in [25].

To clarify the mechanism of the chaotic switching phe-
nomenon, consider first Eq. (1) with N = 4. Results of direct
numerical simulation in the two-parameter plane of the phase
lag α and coupling strength μ are presented in Fig. 2. This
figure reveals the appearance of three principal chimera re-
gions for in-phase, antiphase, and rotating wave chimera states

FIG. 2. Regions of chimera states for model (1) with N = 4
in the (α,μ) parameter plane with winding numbers (1;0;0;0),
(1;1;0;0), and (1;1;1;0). Typical frequency plots are shown in the in-
sets. Gray shaded regions correspond to transient switching behavior.
The parameter point (μ = 0.3, α = 1.59) for Figs. 1(a) and 1(c) lies
between the yellow and blue regions above the range shown.

symbolically denoted as (1;0;0;0), (1;1;0;0), and (1;1;1;0).
The regions resemble Arnold tongues issued from a singu-
lar parameter point A(α = π/2, μ ≈ 0.01406) in which a
transcritical-pitchfork bifurcation of the synchronous state
meets with a homoclinic bifurcation at the lower edge curve
of the in-phase chimera region (see Chap. S1 of the Sup-
plemental Material [29] for details). Note that two chimera
regions, in phase (1:0:0:0) and antiphase, (1:1:0:0), intersect
through the dashed subregion, where four chimeras of the first
type (1;0;0;0) and six of the second (1;1;0;0) coexist. Chimera
basins can gain in this case an involved fine-grained structure
illustrated in Fig. 1(c), which is despite the Lyapunov stability
of each of the ten existing chimera states.

An additional complexity of the dynamics is induced by
the so-called antipodal points which are stable equilibria of
Eq. (1) with N = 4 coexisting with the chimeras at any α >

π/2 [gray basins in Fig. 1(c)]. The antipodal phase configura-
tion means that two oscillator pairs stay in the antiphase and
are shifted by an arbitrary angle β with respect to each other,
i.e.,

θ1 = γ , θ2 = γ + β, θ3 = γ + π, θ4 = γ + β + π. (2)

The antiphase pairs coincide at β = 0 and split up for β > 0
reaching eventually the symmetric splay state at β = π/2. To
explore the stability of the phase-locked states in Eq. (1) with
N = 4, let us rewrite it in an equivalent form of only three
equations in phase differences ηi = θi − θ4, i ∈ {1, 2, 3}:

mη̈i + εη̇i = μ

4
(sin(ηi+1 − ηi − α) + sin(−ηi − α)

+ sin(ηi+1 − ηi − α) −
1∑

j=−1

sin(ηi+ j − α)).

(3)

The in-phase synchronous state (θ1 = θ2 = θ3 = θ4) turns into
the trivial fixed point O(ηi = η̇i ≡ 0). Its eigenvalues are
λ1−6 = (−ε ±

√
ε2 − 4μ cos α)/2, which implies that O is

stable at any α < π/2 and unstable at any α > π/2, valid
for any μ > 0. For model (1), O represents the synchronous
in-phase state of a constant velocity θ̇1−4 = −μ/ε sin α.

The antipodal fixed points (2) create a one-
dimensional manifold in the phase space of Eq. (3):
M ≡ {η1 = β, η2 = π, η3 = π + β; β ∈ [0; π/2]} with
the eigenvalues λ1 = −ε, λ2 = 0, and λ3−6 = −(ε ±√

ε2 + 2μ cos α ± 2μ
√

cos2 α − sin2 β )/2. It implies that the
antipodal states are stable for α < π/2 under the condition
μ < 2ε2 cos α/(cos2 α − sin2 β ) at α ∈ (π/2, π/2 + β ) and
for any μ > 0 at α ∈ (π/2 + β, π ), and they are unstable at
α < π/2. The state with β = 0 (two antiphase pairs coincide)
is stable for any α > π/2 and μ > 0; stability regions of the
others shrink gradually with an increase of β (see Chap. S2
of the Supplemental Material [29] for details).

We conclude that stable phase-locked states are unavoid-
able in model (1) for the N = 4 case, no matter what
parameters are chosen. They are the in-phase synchronous
state at α < π/2 and a continuum of the antipodal states
at α > π/2. Because of that, the switching behavior has a
transient character, observed in the so-called riddling shad-
ows surrounding the chimera regions, shown in gray. More
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FIG. 3. Basin switching transition in model (1) with N = 4 for fixed coupling strength μ = 0.04 (black dots in Fig. 2). For each value of
the phase lag parameter α (increasing from left to right, α = 1.43, 1.6, 1.775, 1.78, and 2.15, respectively), basins (bottom panel) and typical
solutions (top panel) are shown (see [36,40] for details).

saturated areas correspond to the longer lifetime for a typical
switching trajectory before it collapses in an antipodal state.
Our simulations confirm that the chimera switching can be
terminated in any unpredictable moment of time, after a short
or long transient, with a sensitive dependence on the initial
conditions, system, and simulation parameters. The global co-
existence of stable trivial states causes even more puzzling in
the chaotic switching dynamics of model (1). It is imposed by
an additional symmetry of the networks with even N [which
is not the case for Eq. (1) with N = 5 as below].

To finalize the N = 4 case, we present a typical scenario
for the multistable basin transition, illustrated in Fig. 3. We
fix the coupling strength μ = 0.04 and increase the phase
lag parameter α along the horizontal line with dots in Fig. 2.
First, in Fig. 3(a), the basin structure is relatively simple for
α = 1.43. Thus, the parameter point lies inside the (1;0;0;0)-
chimera region such that the basin contains four shades of
blue corresponding to four permutationally different chimeras
of this type. Additional tiny blank areas mark full synchro-
nization. With an increase of α, new red, yellow, and green
shades appear, manifesting the (1;1;0;0)-type chimeras, ten
in total [Fig. 3(b), α = 1.6]. Soon after, (1;0;0;0)-type stable
chimeras become saddles, and the basin acquires a clear sign
of fractality [Fig. 3(c), α = 1.775]. Slightly beyond, the basin
is microscopic and visually riddled [Fig. 3(d), α = 1.78], al-
though the (1:1:0:0) chimeras are still stable. They transform
in saddles with further increase of α, while the basin becomes
totally riddled with the antipodal states described above. The
system behavior typically develops then in the form of hete-
roclinic switching between all existing saddle chimera states.
This is valid with further increase of α until the next, rotating
chimera region shown in brick red color (Fig. 2). After, the
switching lifetime decreases, and all initial points result in
antipodal states of different configurations, as illustrated in
Fig. 3(e) (α = 2.15).

In model (1) with N = 5, on the contrary, there are no
stable phase-locked states in the parameter region of interest at
α > π/2. The chimera switching behavior becomes then per-
sistent, unavoidable under perturbations. Figure 4 illustrates
how the switching arises in the parameter gap between the
two chimera regions: one to the left (shown in light blue) is
for chaotic chimeras of the type (1:1:0:0:0), and the second
to the right (shown in light red) for the so-called antipodal
chimera states of the type (1:1:1:1:0).

The mechanism of the switching transition in this case
includes riddling and blowout bifurcations [41]. Consider
a chaotic chimera trajectory for parameters inside the
(1:1:0:0:0) region. Its behavior is characterized by three iden-
tically equal oscillators [see inset in Fig. 4(a)]; i.e., it is
reduced to an invariant manifold of the form M ≡ {θ1 = θ2 =
θ3}. In the manifold, the dynamics is governed by a chaotic
attractor A ⊂ M with one positive Lyapunov exponent λin > 0
[see graph in Fig. 4(b)]. The switchings arise in a riddling
bifurcation, when an unstable periodic orbit Q embedded in
the in-manifold attractor A loses transverse stability, while the
attractor itself remains transversely stable on average [given
by the condition λtr (A) < 0]. Fixing μ = 0.1, we find that
this happens at αr ≈ 1.6236 [cf. dashed line in Fig. 4(b)].
Beyond the riddling bifurcation, small errors in the solution
behavior (due to the algorithm precision) can induce sudden
jumps of the trajectory out of the manifold M. This occurs
when the trajectory passes close to the unstable periodic orbit
Q, shown in Fig. 4(c), and lingers there for a time sufficient
for getting a required amount of transverse repelling from
M. After a relatively short transient motion from the mani-
fold, the trajectory comes again close to one of the chimera
manifolds [in total, there are (5

2) = 10 permutationally identi-
cal copies of them]. The situation is repeated, producing the
switching events one after another. Our simulations show [see
Fig. 4(d)] that the average switching period T follows then the
superexponential law

T ∼ exp[K (α − αr )−2/3], (4)

and K > 0 is a constant. It is similar to the asymptotic prop-
erties of riddling bifurcation in terms of a symmetry-breaking
control parameter [42].

The blowout bifurcation occurs when two coinciding trans-
verse Lyapunov exponents λtr (A) of the attractor A become
positive; for the parameters in Figs. 4(b)–4(e) it happens at
αb ≈ 1.6425. A transforms into a Milnor attractor [43], which
means that it attracts only a positive (but not the full) measure
set of points from any of its neighborhood in the whole phase
space. Beyond the blowout bifurcation the average switch-
ing period T decreases more slowly; note a break point in
Fig. 4(d) in the blowout moment.

The next change for the chimera switching transition
occurs at αQ ≈ 1.6471, when the periodic orbit Q ∈ A (re-
sponsible for the onset of switching in the riddling bifurcation)
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FIG. 4. (a) Chimera regions for model (1) with N = 5 in the (α,μ) parameter plane; (b)–(e) parameters belong to the dashed line shown
at μ = 0.1. (b) Five largest Lyapunov exponents and transverse Lyapunov exponent λtr (Q) of the in-manifold cycle Q (dashed line). (c) The
in-manifold M dynamics, including chaotic attractor A (gray) and unstable periodic orbit Q (red) in the phase difference variables at α = 1.645.
(d) Averaged switching period T versus α in logarithmic scale; blue and red dots stand for α before and after the blowout bifurcation,
respectively; the superexponential scaling law for T versus α is confirmed by a plot in the inset. (e) T versus noise intensity ξ in log-log
scale for five chosen values of α between riddling and blowout bifurcations; the numbers indicate scaling exponents of the power law obtained.

inherits the in-manifold M stability. The attractor A ⊂ M
transforms into a chaotic saddle, and the in-manifold behavior
represents then a chaotic transient ending eventually in Q. The
full system trajectories cannot, however, reach the orbit Q as
it is strongly repelling transversely. After approaching Q at a
some distance, they go away in the transverse direction and
fall down into a switching event. With the further increase of
α, the average switching period T gradually decreases, from a
few thousandths to a few hundredths until the parameter point
meets the antipodal chimera region [see Fig. 4(a)].

A peculiarity of the switching behavior at the final stage of
the transition at α > 1.65 consists of a gradual swelling of the
transitional time intervals, and then the trajectory wanders in a
chaotic manner away from the chimera manifolds. The transi-
tional switching intervals (practically infinitesimal soon after
the riddling bifurcation) become now comparable in length
with the chimeric laps. The solution behavior manifests in this
case the so-called laminar-turbulent dynamics. Quantitatively,
it is characterized by the turbulent fraction F as the relative
part of the transitional behavior. We observe that F grows with
α reaching eventually the values greater than 0.5 at α ≈ 1.78,
when the parameter point enters the antipodal chimera region.
For larger α the switching behavior becomes transient, and
ceases to exist with further increase of α (see Chap. S3 of the
Supplemental Material [29] for details).

The important characteristic of the considered net-
work dynamics consists of the presumable coexistence
of the switching behavior reported with the other stable
chimera states, which makes the system behavior even more
mysterious.

To illustrate this, note that the considered parameter inter-
val of the switching transition at μ = 0.1, shown in Fig. 4(a),
intersects the region of the in-phase chimera state up to α ≈
1.67 and alternatively, with the stable antipodal chimera state
beginning from α ≈ 1.78. These stable chimera states play the
role of traps, which can capture the switching solutions after
some transient time. Our simulations up to 3 × 107 time units
reveal that this takes place for about 10% of the switching
solutions, when simulated at the α interval between the rid-
dling and blowout bifurcations. On the other hand, we find that
the nontransient, never-ending switching behavior is generic
for 1.67 < α < 1.78, where no other stable states exist in the
system phase space [44].

Our last comment concerns the influence of noise on the
switching dynamics reported. Results of direct numerical sim-
ulations with uniform additive noise incorporated into model
(1) with N = 5 are presented in Fig. 4(e). It reveals that the
average switching period T decreases in a power law with
an increase of the noise intensity ξ . The power law obtained
confirms the results from [32], which were obtained for an-
other type of system of two-group coupled logistic maps. A
difference from our case is that for the maps the average
switching period T grows up to minimal noise intensities
of the order 10−15. In our case, the values of T saturate at
the noise intensities ∼10−10 (not shown in the figure), due
to the simulation errors when integrating Eq. (1) (see Chap.
S5 of the Supplemental Material [29] for details). It has also
to be noticed that the noise applied affects essentially the
onset of switching. Without noise the first switching event
was detected at α = 1.6351 (μ = 0.1 as in Fig. 4; repetitive
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simulations with random initial conditions up to t = 2 × 107

time units), which is quite far from the precise riddling bi-
furcation value αr ≈ 1.6236. With increase of noise, however,
the onset of switching shifted to the riddling bifurcation value,
reaching it at ξ ∼ 10−5.

In conclusion, we have identified a mechanism for the
chimera switching transition in networks of coupled oscilla-
tors with inertia. The switching has a heteroclinic character
and arises when the chimera states lose stability, transform-
ing into saddle states. Onset of the switching is determined
by the riddling bifurcation and the noise applied. Chimera
basins become riddled and, moreover, intermingled, causing
the extreme sensitivity and unpredictability of the system
dynamics. Any small uncertainties, either in the initial con-
ditions or system parameters, or even the integration step or
algorithm can throw the trajectory into another, totally differ-
ent itinerary. The pronounced switching has, furthermore, a
form of laminar-turbulent behavior, where the chaotic transi-

tional intervals swell to compete with the switching chimera
laps. The switching dynamics becomes even more tangled
due to its possible coexistence with other stable chimeras or
phase-locked states. In the even N = 4 case, they are antipo-
dal equilibria causing therefore the transient character of the
switching solutions at α > π/2. In the odd case, N = 5, as
no such states exist, the switching becomes persistent and
never terminating in rather extended regions of the system
parameters. It is also robust when incorporating the noise.
We expect that the amazing chimera complexity uncovered
indicates a common, probably universal phenomenon in the
networks of coupled oscillators of very different nature, due
to the influence of inertia.
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