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Scarring in classical chaotic dynamics with noise
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We report the numerical observation of scarring, which is enhancement of probability density around unstable
periodic orbits of a chaotic system, in the eigenfunctions of the classical Perron-Frobenius operator of noisy
Anosov (“perturbed cat”) maps, as well as in the noisy Bunimovich stadium. A parallel is drawn between
classical and quantum scars, based on the unitarity or nonunitarity of the respective propagators. For uniformly
hyperbolic systems such as the cat map, we provide a mechanistic explanation for the classical phase-space
localization detected, based on the distribution of finite-time Lyapunov exponents, and the interplay of noise
with deterministic dynamics. Classical scarring can be measured by studying autocorrelation functions and their

power spectra.
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Introduction. In the realm of classical- and quantum chaos,
phase-space densities tend to mix, due to the stretching and
folding action of the dynamics. As a result, every form of
localization is an anomaly to the expected “random” behavior
of Hamiltonians, propagators, wave functions, and various
observables.

Examples in quantum mechanics include dynamical local-
ization for a kicked rotor [1], which can be related to the
Anderson localization of a tight-binding model [2], opening-
induced phase-space localization [3], and probability-density
enhancement around unstable periodic orbits of the underly-
ing classical system. The latter is known as scarring [4], and it
has drawn a fair amount of attention since its first discovery in
the quantum Bunimovich stadium billiard. Scars, the regions
of enhanced probability density, have been ascribed to con-
structive interference around periodic orbits [5]. Dismissed for
a while as transients of no effect on the long-term properties
of a closed chaotic system subject to thermalization [6], scars
were brought back into the spotlight by recent numerical ev-
idence of ergodicity breaking in many-body systems [7-12].
Further theoretical and experimental work has extended the
notion of scarring to regular dynamics [13—15], to integrable
systems with disorder [16—18], of interest in cold atoms and
condensed matter, as well as to relativistic Dirac billiards
[19,20].

In the present paper, we report scarring in the eigenfunc-
tions of the classical Perron-Frobenius evolution operator [21]
with background noise, for two paradigmatic models of chaos.
The observations presented here suggest that quantum local-
ization in chaos does not exclusively arise from interference,
but is also a classical effect.

The noiseless Perron-Frobenius operator

L'p(x) = /dx() 3(x — f'(x0))p(X0), (D

transports an initial phase-space density of trajectories p(x)
through the flow f’(x), that is the solution of the equations
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of motion, to a new density. The Perron-Frobenius operator
is linear, and its spectral properties depend, in general, on
the space of functions it acts upon [22-27]. It is a formal
solution to the Liouville equation d;p + V - (pv) = 0, where
X = v(x) is the dynamical system in examination. In chaotic
Hamiltonian systems with no escape, the Perron-Frobenius
spectrum has an isolated, unitary eigenvalue, whose (“lead-
ing”) eigenfunction is uniform in the phase space, and it is
called natural measure or invariant density [28]. The natural
measure is the weight to every phase-space average, and, as
such, its successful determination enables us to evaluate any
long-term averaged observable under the ergodicity assump-
tion, thus solving the problem of statistical mechanics. Here,
instead, we focus on the other, “subleading” eigenfunctions of
the Perron-Frobenius spectrum, whose eigenvalues yield the
decay rate of any initial density to the natural measure. In a
suitable functional space, we can expand the evolution of a
density as

Lpx) =Y ae " $(x) + Y an(t)m(®),  (2)

n

where ¢y(x) = 1, yp = 0, while the summation over »n is an
expansion over the eigenfunctions, all decaying with rates y,
increasing with n, and the Zm represents Jordan blocs, since
the Perron-Frobenius operator is in general nondiagonalizable
[its spectrum also has a continuous part, neglected in (2)]. In
particular, ¢, (x) is hereafter referred to as second eigenfunc-
tion of the evolution operator.

In reality, every physical system experiences noise in some
form, which is modeled as a random variable & (¢) in the equa-
tions of motion, x = v(x) + &(¢). If the noise is assumed as
Gaussian-distributed and uncorrelated, the Liouville equation
above acquires a diffusion term, say DV?p (D is the noise
amplitude or variance of &), and is known as Fokker-Planck
equation. Its formal solution is a path (“Wiener”) integral [29],
whose kernel can be regarded as an evolution operator analo-
gous to the Perron-Frobenius in Eq. (1), but with a finite-width
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FIG. 1. Magnitude of the second eigenfunction of the noisy
Perron-Frobenius operator, numerically evaluated for: (a) Buni-
movich quarter stadium billiard (in the inset with the bouncing-ball
orbit) with noise of amplitude D = 1072, using the Ulam matrix (3)
with N = 2'%. Here (¢, sin@) are the coordinates of the dynamics
on the boundary of the billiard: ¢ is the polar angle locating the
bounce, and sin @ is the angle of incidence with the normal to the
boundary; (b) perturbed cat map (periodic point at the origin) with
€ =0.1, v = 1, using the scheme (4) with diffusivity A =5 x 1073
and M = 100.

distribution instead of the delta function. Noise smears out
densities, and thus it balances contractions from the determin-
istic, chaotic dynamics. Distributions of trajectories, as well
as eigenfunctions of the noisy Perron-Frobenius operator, are
then expected to be smooth.

Classical scars. Figure 1 illustrates localization of the
subleading eigenfunctions of the noisy Perron-Frobenius
operator near classical periodic orbits, for the Buni-
movich quarter stadium billiard [30], as well as the
cat map perturbed with a nonlinear shear, (x',y') =
(x +y— £ sin(2urry), x + 2y — £ sin(2vrry)) mod 1. In anal-
ogy with the corresponding enhancement of probability
density of quantum eigenstates, we dub the observed phe-
nomenon classical scarring, with the caveat that, to present
knowledge, while some mechanisms behind the formation of
scars are common in classical and in quantum mechanics, oth-
ers may differ between the two. The dynamics of the cat map
is everywhere unstable (“hyperbolic”) [31], and the slowly-
decaying eigenfunctions of the Perron-Frobenius spectrum are
striated along the unstable manifold [32-35]. On the other
hand, the stadium billiard is chaotic, ergodic [36], and has
infinitely many unstable periodic orbits, but it also possesses
a family of marginally stable (“bouncing ball”) orbits that
give rise to corresponding scars in the eigenfunctions of the
quantized system [13,37,38]. An example of their classical
counterpart is shown in Fig. 1(a). As for localization arising
from unstable orbits in the stadium, results in Fig. 2 suggest
that the same scars recur in distinct subleading eigenfunctions,
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and, conversely, that a single eigenfunction often displays
several scars.

Methodology. The noisy Perron-Frobenius operator is
projected onto a finite-dimensional vector space, and thus
implemented as a finite matrix. Previous literature warns us
that the choice of the discretization is crucial and may deeply
affect the eigenspectrum beyond the leading eigenvalue in the
linear map [39]. It has been established, on the other hand,
that both nonlinear perturbations to linear maps on a torus, and
background noise, increase the robustness of the numerically
evaluated spectrum under certain conditions [23].

The simplest discretization scheme is Ulam’s method [40],
that amounts to subdividing the phase space into N intervals
M, of equal area. The evolution operator is thus approximated
with a N x N transfer matrix whose entries L;; are the transi-
tion probabilities from M; to M;;

w(M;i () fe (M)
(M)

in one time step, where f:(x) = f(x) + & is the noisy map-
ping, while p is the Lebesgue measure. We use a known
Monte Carlo method [41] to estimate the nonsymmetric trans-
fer matrix L;;, a (weighted) directed network [42], in today’s
parlance. A thorough study of stability and convergence of
discretization algorithms has been reported elsewhere by the
authors [43].

We implement Ulam’s scheme for the Bunimovich quar-
ter stadium, where more sophisticated discretizations (e.g.,
Markov partitions) appear impractical. On the other hand, the
perturbed cat map also allows for an alternative realization of
the transfer operator, by whose means we rule out the possibil-
ity that the detected scarring be just a numerical artifact. Since
the dynamics of the cat map lives on the unit torus, a basis
of smooth, periodic functions is suitable for the evolution
operator, that can be defined in Fourier space as [44]

L,‘j =

3

M

k-(F- 1 (x)—xn )— AK2
2 :62mk (f7 (x)—x0)—Ak p(xo)dsz. “4)
ke ky

Lap(x) =

Here the diffusivity A is equivalent to the variance D of the
random variable £ defined above in the Langevin picture.
The spectrum of the operator in this basis is robust under
perturbations [43] (e.g., dimension of the transfer matrix,
noise amplitude, nonlinearity of the perturbed cat map), and
classical scarring is consistently detected in the second eigen-
function of the spectrum: the one in Fig. 1(b) is computed
with the Fourier basis of Eq. (4), while, for the same map, the
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FIG. 2. Classical scars of short periodic orbits: (a)—(c) Bunimovich quarter stadium billiard. Here the Ulam matrix (3) has N = 2'4, and
D = 1072. (a) Bowtie orbit (corresponding scar pointed to by an arrow); (b) rectangular orbit; (c) triangular orbit; (d) scar of a period-3 orbit
[marked by (x)] of the perturbed cat map (¢ = 0.1, v = 2) on the unit torus, obtained as the second eigenfunction of the transfer matrix (4),
and M = 50, A = 107>, The fixed point at the origin (4) is “antiscarred”.
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FIG. 3. The perturbed cat map: magnitudes of the (a) left- and
(b) right-second eigenfunctions of the Perron-Frobenius operator,
realized through the Ulam matrix (3), with N = 10*, D = 1072;
Husimi distributions of (c) right- and (d) left-eigenfunctions of
the spectrum of the subunitary quantum propagator coupled to a
single-channel opening (dashed circle). Details of the quantization
in Ref. [46].

second eigenfunction of the Ulam matrix (3) is displayed in
Fig. 3(b).

Analogy with quantum scars. The route to understand
classical scarring begins by comparing it directly with its
quantum counterpart. However, the propagator U’, that reg-
ulates the evolution of quantum cat maps, is unitary [45],
unlike our realizations of the noisy Perron-Frobenius operator
L', and that constitutes a clear asymmetry in our quest for
classical-to-quantum correspondence. Breaking the unitarity
of U' by coupling the quantized cat map to an opening is
the simplest way to restore the symmetry between classical
and quantum evolution. The result is exemplified in Fig. 3,
which features scars around the periodic orbit at the origin
of the phase space, in both noisy classical and quantum cat
maps. In the classical setting, the areas of enhanced proba-
bility density are striated along the stable- (left eigenfunction
of £) or unstable (right eigenfunction of £) manifold, that
emanates from the periodic orbit located at the origin. The
correspondence left/right eigenfunction-stable/unstable man-
ifold is less straightforward for the open quantum map [46],
but still one-to-one.

Conversely, we may assimilate the classical scars to the
original quantum scars of closed chaotic systems, where the
propagation is unitary. Quantum scars of a unitary propaga-
tor are typically concentrated around a periodic orbit with
no elongations on the manifolds, as a result of the unitary
evolution. Using the known technique of eigenfunctions un-
wrapping [47], we map a right eigenfunction of the noisy
L backward in time by means of the adjoint (“Koopman™)
evolution operator, whose noiseless definition reads

£ p(x) = /de 8(x0 — f1(x))p(x0) = p(f'(X)).  (5)
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FIG. 4. (a) Unwrapping: the operator (6) is applied for t =3
iterations to the second eigenfunction of the noisy Perron-Frobenius
operator for the perturbed cat map [parameters as in Fig. 5(a)];
(b) Husimi distribution of a scarred eigenfunction of the unitary
quantum propagator of the same map.

When noise is included and the Fourier representation (4) is
used for L4, the adjoint evolution operator is

M
ik-f _ 2 A
£TAP(X) — Ze2mk f(x)—Ak K, (6)
ke ky

where the pi’s are the Fourier coefficients of the density
p(x). Repeated adjoint mapping rids the eigenfunction of
the striation along the unstable manifold, and regularizes it,
until the outcome of Eq. (6) is almost invariant under both
forward and backward iterations. The so-obtained unwrapped
eigenfunction [Fig. 4(a)] now closely resembles its quantum
analog [Fig. 4(b)].

Origin of classical scars. We now examine the local action
of the classical Perron-Frobenius operator (1) on phase-space
densities, in order to gain some insight on the mechanism be-
hind classical scarring in uniformly hyperbolic systems such
as the cat map:

o(y)
|detJ!(y)|’

(7

£tp = /de S(x — fl(XO)),O(XO) = Z
y=/7"(x)

% is the Jacobian of the flow. Now re-

where Jj;(y) =
strict the analysis to the unstable manifold, where densities
are stretched and squished. If the map is 2D, the unstable
manifold is a locally 1D curve characterized by an arc length
s(y), and we indicate the restricted dynamics with f,(s), the
corresponding evolution operator with £/, and a density on
the manifold with p,(s). The mapping takes the form

t—1

1
Lpu(s) o [ | =——=puls) =2 p,(s),  (8)
g) x|

where A(y, t) is the finite-time Lyapunov exponent [48] of the
map f*(x), that is the rate of exponential divergence of nearby
trajectories within the time f. The last equality in Eq. (8)
stems from the fact that the expanding rate of f,(s) is the
stability multiplier of f(x). On the other hand, assume that
the relaxation of p(y) towards equilibrium is well described
by a truncation of the expansion (2), whose slowest-decaying
term is almost entirely supported on the unstable manifold:

L'p(y) = ap+are " di(y) ~ ap + e 2T p,(s).  (9)
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FIG. 5. (a) The second eigenfunction of the noisy Perron-
Frobenius operator (4), numerically evaluated for a perturbed cat
map with A = 1072 and cutoff M = 100; (b) the phase-space distri-
bution of the finite-time Lyapunov exponents (1 = 5, sampling: 10°
initial points) for the same map.

Since the evolution (8) of a density on the unstable manifold
does not depend on the initial condition p,(s), we infer that
A1, 1) > Aly2, 1) = |$1(y1)] < ¢h1(y2)], and thus in gen-
eral the probability density of the second eigenfunction of the
spectrum along the unstable manifold is ruled by the finite-
time Lyapunov exponent: the lesser instability, the higher the
(magnitude of the) density [49-51]. As it can be inferred
from Eq. (9), the Lyapunov exponent is to be evaluated over
a time t >~ y]_l, thus of the order of the decay time of the
eigenfunction ¢, (x). Densities stretch out along the unstable
manifold, while they are contracted along the stable manifold.
Asymptotically, the compression makes them infinitesimally
thin, but noise counters that effect, and fattens densities along
the unstable manifold. As a result, scarring also becomes
apparent by visual inspection.

Figure 5 supports this hypothesis: The second eigenfunc-
tion of the noisy Perron-Frobenius operator is shown for the
perturbed cat map, and it is localized along the unstable man-
ifold that emanates from the origin. On the other hand, the
numerically computed phase-space distribution of the finite-
time Lyapunov exponent displays a suppression pattern that
nearly overlaps with the scar.

Power spectra. Scarring can be quantified by studying the
power spectrum [52]

T
S(w) = % ZC(t)eZ”i"”/T (10)
t=0

of a Gaussian density (the classical analog of a wave packet),
that gradually decays into a uniform phase-space distribution,
as the evolution operator is applied. Here C(¢) is the autocor-
relation function of the density [defined in Eq. (11)], while T
is the length of the time series.

Figure 6 shows the outcome of the numerical experiment.
A fast decay of C(r) occurs if we place the initial density at
random in the phase space, resulting in a flat power spectrum.
Instead, centering the initial distribution around the scarred
fixed point [Fig. 6(a)] produces a slower decay in the au-
tocorrelation function, and a peaked power spectrum. The
quantum analog of |S(w)| is the local density of states, whose
energy-dependent, peaked envelope is a well-known signature
of scarring [53]. The power spectrum is related to the second
eigenfunction of the transfer operator in the following way.
Truncating the expansion (2) at the first order, the autocorre-
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FIG. 6. (a) An initial Gaussian density centered at the fixed point
of the perturbed cat map is mapped by the Ulam matrix (3); (b) t=1
iterations; (c) t=5; (d) t=20. (e) Magnitude of the power spectrum
of the autocorrelation function minus the steady state: numerics for
(dots) the density in (a)—(d), (diamonds) the same initial density
centered at random in the phase space, (solid line) prediction (12).

lation function is estimated as

(po, L' po)
(00, Po)

for some cp, c¢;. Here (-, -) denotes the inner product. The
discrete Fourier transform (10) of Eq. (11) then yields a delta
function from the asymptotic overlap cy of the evolved density
with the natural measure, plus the actual power spectrum of
the exponential,

Cit) = Ao+ cre M, (11)

35(@) o< - ! (12)

_ eloT2m—yit :
This approximation [solid line in Fig. (6)], with y; determined
from the diagonalization of the transfer matrix (3), shows
close agreement with the direct numerical computation. Using
the results of Eq. (9) and Fig. 5, one could replace y; in
Eq. (12) with the minimum finite-time Lyapunov exponent
evaluated at r >~ yl_l.

Conclusion. We have reported the observation of classical
scars, that is enhancement of probability density near periodic
orbits, in the eigenfunctions of a noisy evolution operator
of chaotic systems. We have detected scars in two model
systems: perturbed cat maps, and the Bunimovich stadium
billiard, both with background noise. For the cat map, the
observed localization is ascribed to the inhomogeneity of in-
stabilities near the periodic orbit of interest, on a time scale
consistent with the decay rate of the second eigenfunction of
the evolution operator, that is also the rate of correlation decay.
In support of this argument, we have compared the second
eigenfunction with the distribution of finite-time Lyapunov
exponents of the dynamical system in exam. The inevitable
presence of noise does not alter this mechanism, but merely
thickens the scars by its smearing action along the unstable
manifolds [cf. Figs. 1(b) and 5(a)]. Although we do not claim
a one-to-one correspondence between classical and quantum
scarring, we have pointed out apparent similarities in their
phase-space patterns (provided the same symmetries) and
power spectra, with the important difference of the time scales
associated to the relevant instabilities. It is then natural to sup-
pose that the mechanism at the origin of classical scars must
also play a role in the formation of their quantum counterparts,
in the same spirit as classical dynamical localization [54], or
phase-space localization in open systems [3,55].
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