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Multiplicative noise can induce a velocity change of propagating dissipative solitons
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We investigate the influence of spatially homogeneous multiplicative noise on propagating dissipative solitons
(DSs) of the cubic complex Ginzburg-Landau equation stabilized by nonlinear gradient terms. Here we focus on
the nonlinear gradient terms, in particular on the influence of the Raman term and the delayed nonlinear gain.
We show that a fairly small amount of multiplicative noise can lead to a change in the mean velocity for such
systems. This effect is exclusively due to the presence of the stabilizing nonlinear gradient terms. For a range
of parameters we find a velocity change proportional to the noise intensity for the Raman term and for delayed
nonlinear gain. We note that the dissipative soliton decreases the modulus of its velocity when only one type of
nonlinear gradient is present. We present a straightforward mean field analysis to capture this simple scaling law.
At sufficiently high noise strength the nonlinear gradient stabilized DSs collapse.
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Stable localized solutions and their interactions in dissipa-
tive driven systems have become the focus of interest due to
experimental investigations in pattern-forming systems such
as binary fluid mixtures near convective onset [1–3], surface
reactions [4–6], and nonlinear optics [7,8], including recent
observations of exploding solitons [9] and bio-inspired sys-
tems [10]. All the stable localized solutions in these systems
fulfill a balance between the driving force and dissipation and
are therefore frequently called dissipative solitons [11].

One of the evolution equations which turned out to be
very useful to model dissipative solitons is the cubic-quintic
complex Ginzburg-Landau (CGL) equation, which is the en-
velope equation associated with a weakly inverted bifurcation
to traveling waves [12]. Following the pioneering work by
Thual and Fauve [13], dissipative solitons and their interaction
associated with the cubic-quintic CGL equations have been
investigated in detail (compare, for example, Refs. [14–16]).
As for nonlinear gradient terms, they have been shown to
change the speed of propagating dissipative solitons (DSs)
deterministically [17,18].

A few years ago a new type of DS, dissipative solitons in
the cubic CGL equation stabilized exclusively by nonlinear
gradient terms, nonlinear gradient stabilized (NLGS) DSs,
and in the absence of a stabilizing quintic term was elucidated
by Facão and Carvalho [19]. This class of DSs was further in-
vestigated in Refs. [20–23]; it was shown that oscillatory DSs
stably exist [20] and that three out of four nonlinear gradient
terms familiar from nonlinear optics can generate such DSs
[21,23]. In addition a mechanical model was proposed [22].

Noise, a phenomenon extensively studied in physics and
chemistry [24] and, more recently, in biology [25], is ubiqui-
tous in nature. While in most studies the effect of noise added
to a deterministic equation is addressed, multiplicative noise
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for which the stochastic force multiplies a function of the
stochastic variables has also attracted a considerable amount
of attention over the years. First, this interest was driven
by experiments on spatially homogeneous systems such as
electronic circuits [26] and optical systems, namely, the dye
laser [27]. This led to theoretical investigations of these zero-
dimensional problems [28,29].

For spatially extended pattern-forming systems early
experimental work focused on the effect of spatially homo-
geneous multiplicative noise on the onset of pattern formation
in electroconvection in nematic liquid crystals. It was shown
that the onset of spatial patterns could be postponed by a sub-
stantial amount by superposing noise on the driving voltage
and that relaxation rates showed a strong linear dependence
on the noise strength [30].

Noise effects on DSs have so far been studied for the
cubic-quintic CGL equation. Weak additive noise can lead
to the partial annihilation of counterpropagating pulses [31],
a phenomenon that was observed before experimentally near
the onset of binary fluid convection [3] and for surface reac-
tions [4,5]. For single DSs weak noise was shown to induce
explosions via various routes [32], while multiplicative noise
can lead to the collapse of dissipative solitons [33].

Here we demonstrate that multiplicative noise can change
the speed of this class of DSs, while no such effects are
obtained for polynomial nonlinearities, for example, for the
cubic-quintic CGL equation. For the Raman effect as well as
for delayed nonlinear gain we find for the cubic CGL equation
with these two nonlinear gradient terms a simple scaling law:
the velocity change in the NLGS DSs is proportional to the
intensity of the multiplicative noise. These results are also
derived using a mean field model.

To motivate our equations we consider a wave packet
moving inside a nonlinear fiber around a frequency ω0 and
wave number k0. W = Re[�(X, T )eik0x−iω0t ] is a wave mov-
ing to the right, where � is the envelope modulating the wave
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packet, which depends on the slow space X and the slow
time T .

Making a formal expansion around k0 : k − k0 =
( ∂k
∂ω

)(ω − ω0) + 1
2 ( ∂2k

∂ω2 )(ω − ω0)2 + · · · , where ∂k
∂ω

evaluated

at ω0 corresponds to 1/vg and ∂2k
∂ω2 ≡ β2 is the group velocity

dispersion (β2 < 0, anomalous dispersion), and setting
k − k0 = K and ω − ω0 = �, we obtain a dispersion
relation for the envelope � : K = 1

vg
� + 1

2β2 �2 + · · · .

The above-mentioned dispersion relation for the envelope �

along with the Kerr effect, fiber losses (δ < 0), nonlinear gain
of energy ε > 0, and the spectral filtering β > 0 results in the
cubic CGL equation [left side of Eq. (1)].

For short pulses and a wide spectrum we should add to the
above equation nonlinear gradient terms: self-steepening Sr

and a delayed Raman response Rr [right side of Eq. (1)]:

i

[
�X + 1

vg
�T

]
− 1

2
β2 �T T + |�|2� − iδ� − iε|�|2�

− iβ�T T = Rr�(|�|2)T − iSr (�|�|2)T . (1)

To obtain spatially homogeneous multiplicative noise in
an amplitude or envelope equation one inspects the physical
origin of the prefactor of the term linear in the amplitude.
For example, in the case of thermal convection in fluids this
is the distance of the applied temperature difference from its
critical value for convective onset, and for electroconvection
in nematic liquid crystals it is the difference in the applied
voltage compared to the critical voltage [30]. Then one can
superpose spatially homogeneous noise on this quantity ex-
perimentally in a controlled way. One can apply this type
of noise most easily to experimental systems showing spa-
tiotemporal pattern formation. This applies to the two systems
just mentioned as well as to concentration noise applied to
the catalytic oxidation of CO under ultrahigh vacuum con-
ditions [34]. In the case of nonlinear optics the analog was
discussed, for example, in Refs. [27–29]. After eliminating
adiabatically the fast variable in favor of the slowest variable,
one obtains an amplitude equation containing a noise term
multiplying the slow variable, which is the subharmonic wave
amplitude for subharmonic generation and the Stokes field
for Raman scattering [28]. Typically, in nonlinear optics the
source of multiplicative noise is fluctuations of the pump
field [27–29].

The stochastic cubic CGL equation with nonlinear gradi-
ent terms and spatially homogeneous multiplicative noise we
investigate here reads, in the moving frame, vg + v0, in which
the DSs are at rest,

At − v0 Ax = μA + (βr + iβi )|A|2A

− i(Rr + iRi )A (|A|2)x

− (Sr + iSi ) (A|A|2)x

+ (Dr + iDi) Axx + Aη ξ, (2)

where v0 is the speed that the pulses acquire due to the
nonlinear gradient terms [19–21]. A(x, t ) is a complex field,
βr is positive, Rr accounts for the delayed Raman response,
and Sr accounts for self-steepening; Ri stands for a de-
layed nonlinear gain, and Si stands for the dispersion of
the nonlinear gain. For the case in which only the Raman

effect is present we showed in Ref. [22] that v0 ∼ 1/Rr . The
stochastic force ξ (t ) denotes white noise with the properties
〈ξ 〉 = 0, and 〈ξ (t ) ξ (t ′)〉 = δ(t − t ′). That means we con-
sider multiplicative noise, which is real and homogeneous in
space.

The parameter values we keep fixed in all runs are μ =
−0.012, βi = 1.0, and Di = 0.5. Positive values of Di corre-
spond to the regime of anomalous linear dispersion and are
necessary to obtain stable NLGS DSs in the present case. We
also note that the chosen value of μ is only weakly subcritical.
The other parameters came in two groups. For studies of the
Raman effect we used Rr = 0.2, βr = 0.3, and Dr = 0.6, and
for the investigations of the influence of the delayed nonlinear
gain Ri = 1.0, βr = 0.2, and Dr = 0.3.

We numerically solved Eq. (2) by implementing a fourth
order Runge-Kutta algorithm, together with a pseudospectral
split-step scheme. All derivatives were computed in Fourier
space, while the nonlinear terms were solved in physical
space.

The numerical code used N = 625 Fourier modes on a pe-
riodic domain of length L = 50; thus, our grid spacing is dx =
0.08. This number was enough to resolve even the smallest
scales, developed from the solutions of Eq. (2). Finally, the
applied time step was dt = 0.005, as this value ensured the
numerical stability of our code.

All simulations were performed from an initial state, gen-
erated by a noiseless solution of Eq. (2) after a total time
of 1250. This long simulation time was used to ensure a
stationary solution as a starting point to study the stochastic
behavior of Eq. (2). Posterior simulations with multiplicative
noise were performed during a total time TMAX = 1250. This
time allowed us to measure the effects of noise on the station-
ary state while keeping the total computation time relatively
low, granting us the execution of several thousand numerical
simulations.

To get a first qualitative overview of the phenomena trig-
gered by spatially homogeneous multiplicative noise we show
in Fig. 1 x-t plots of DS peaks generated by 100 realizations
each for η = 0.03 for a box size L = 50 and a run time
T = 1000. In Fig. 1(a) Rr = 0.2, βr = 0.3, Dr = 0.6, and
v0 = 0.904; in Fig. 1(b) Ri = 1.0, βr = 0.2, and Dr = 0.3.
We note that for delayed nonlinear gain Ri the dispersion of
the trajectories is significantly larger than for the Raman effect
Rr .

In Fig. 2 we present x-t plots of |A| for three values of
the multiplicative noise strength η, η = 0.01, 0.03, and 0.05,
for Rr = 0.2, βr = 0.3, Dr = 0.6, and v0 = 0.904. The box
size is L = 50, and the run time plotted is T = 350. Inspect-
ing Fig. 2, we see immediately that there is a noise-induced
velocity change which grows more strongly than linear as a
function of the noise strength η.

In the inset in Fig. 3 the time series for the area of the pulse,
I (t ) = ∫ |A(x, t )|dx, is plotted for noise strength η = 0.03,
reflecting the influence of the multiplicative noise. In Fig. 3
we plot the Fourier spectrum for the area of the pulse for noise
strength η = 0.03, clearly revealing a broad spectrum due to
the effects of the multiplicative noise containing many Fourier
components.

In the top panel of Fig. 4 we plot the velocity change �v′
as a function of the noise strength η for 100 realizations for
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FIG. 1. x-t plots for the DS peaks of 100 realizations for η =
0.03, a box size L = 50, and a run time T = 1000. In (a) Rr = 0.2,
βr = 0.3, Dr = 0.6, and v0 = 0.904, and in (b) Ri = 1.0, βr = 0.2,
and Dr = 0.3. The color indicates the peak of the pulse.

each value of η in the range η = 0 → η = 0.05 for the Raman
effect (Rr = 0.2). The black dots denote the average value. In
the bottom panel of Fig. 4 the velocity change |�v′| is shown
as a function of noise strength η for the case of delayed non-
linear gain, Ri = 1.0; the other parameter values are βr = 0.2
and Dr = 0.3. As for the case of the Raman effect, we obtain
an effective exponent γ with the value γ = 2.068 when an
exponential fit is made using the black dots for the average
value. For self-steepening (Sr �= 0) we find no net effect on the
effective velocity. This is due to the fact that only the bound-
ary values enter when averaging deterministically in this
case.
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FIG. 2. x-t plots of |A| for three values of the multiplicative noise
strength η: η = 0.01, 0.03, and 0.05. The parameters are Rr = 0.2,
βr = 0, 3, Dr = 0.6, and v0 = 0.904. The colors indicate the values
of the modulus of the pulse.

Our mean field analysis proceeds as follows. The cubic
CGL equation with delayed Raman response Rr reads

At = v0Ax + μA + (βr + iβi )|A|2A − iRr (|A|2)xA

+ (Dr + iDi )Axx. (3)

Introducing spatially homogeneous multiplicative noise
into Eq. (3), we get

Ãt = v0Ãx + [μ + η ξ (t )]Ã + (βr + iβi )|Ã|2Ã

− iRr (|Ã|2)xÃ + (Dr + iDi )Ãxx. (4)

The stochastic force ξ (t ) is a white noise obeying 〈ξ 〉 = 0 and
〈ξ (t ) ξ (t ′)〉 = δ(t − t ′).
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FIG. 3. Inset: The time series for the area of the pulse is plotted
for η = 0.03. The Fourier spectrum for the area of the pulse is plotted
as a function of the angular frequency ω for η = 0.03. The other
parameters are Rr = 0.2, βr = 0.3, and Dr = 0.6.
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FIG. 4. The velocity change �v′ is shown as a function of the
noise strength η for 100 realizations for each value of η in the range
η = 0 → η = 0.05 for the Raman effect with parameters Rr = 0.2,
βr = 0.3, and Dr = 0.6 (top) and for delayed nonlinear gain with
Ri = 1.0, βr = 0.2, and Dr = 0.3 (bottom). The black dots denote
the average value and give rise to exponent γ = 2.066 (for Raman)
and γ = 2.068 (for delayed nonlinear gain) when they are fitted to
〈|�v′|〉 ∼ ηγ .

To study the dynamics of the resulting stochastic pulse we
make the following approximate ansatz:

Ã = A(x + v′t, t )[1 + B(t )η ξ (t )], (5)

where v′ is the small velocity of the stochastic pulse and
B(t ) is a function varying slowly in time. To check the va-
lidity of this ansatz, we plot in Fig. 5(a) B(t )ηξ (t ) and in
Fig. 5(b) ηξ (t ): the timescale of the noise is much shorter
than that of B(t ). From Eq. (5) we obtain B(t )η ξ (t ) =
(
∫

Ã dx)/(
∫

A dx) − 1. In addition we checked numerically
the 〈B2η2ξ 2〉 → const and that the average size of the stochas-
tic pulses 〈∫ Ã dx〉 increases linearly with the noise strength η.

We introduce the following change in variables in order
to study the pulse in its moving frame: X = x + v′t , T = t .
Then Eq. (4) takes the form

AT = (v0 − v′)AX +
(

μ + η ξ (t ) − [B η ξ (t )]T

[1 + Bη ξ (t )]

)
A

+ (βr + iβi )|A|2A [1 + B η ξ (t )]2

− iRr (|A|2)X A [1 + B η ξ (t )]2 + (Dr + iDi )AXX . (6)
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FIG. 5. The quantities (a) B(t )ηξ (t ) and (b) ηξ (t ) are plotted
as a function of t in the asymptotic regime, demonstrating that the
timescale of the noise is much shorter than the timescale associated
with B(t ).

However, what we solve numerically is the discrete equation.
Thus, A → Ai, and η ξ (t ) → η ζ/

√
dt , where ζ is a random

number obeying a distribution N (0, 1). In a mean field spirit
we seek an “average equation” containing an “average veloc-
ity.” Therefore, we have 〈(1 + B η ζ√

dt
)2〉 → 1 + 〈B2〉η2

dt .

By comparing Eqs. (3) and (6) we see that Rr →
Rr (1 + 〈B2〉η2

dt ). Then v0 − 〈v′〉 ∼ 1
Rr

(1 + 〈B2〉η2

dt )
−1 ∼

1
Rr

(1 − 〈B2〉η2

dt + · · · ), and we obtain 〈v′〉 = v0( 〈B2〉η2

dt + · · · ) >

0 because v0 > 0 since v0 ∼ 1
Rr

. Thus, for Rr > 0 and Ri = 0
we see that the homogeneous multiplicative noise decreases
the velocity of the pulses, as shown in Fig. 1(a). The variance
increases with noise strength, as the distributions in Fig. 6
show. Each histogram was generated using 500 realizations.

For Rr = 0 and Ri > 0 we replace −iRr by Ri in
Eq. (4). The following procedure is analogous, and we get
Ri → Ri(1 + 〈B2〉η2

dt ) and obtain the same scaling law 〈v′〉 =
v0( 〈B2〉η2

dt + · · · ) < 0 because v0 < 0 since v0 ∼ − 1
Ri

. Thus,
for Rr = 0 and Ri > 0 we see that the homogeneous multi-
plicative noise also decreases the modulus of the velocity of
the pulses, as shown in Fig. 1(b).

In conclusion, we have investigated the influence of spa-
tially homogeneous multiplicative noise on DSs in the cubic
CGL equation stabilized by nonlinear gradient terms. The
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FIG. 6. Histograms showing the variance as a function of 〈v′〉 for
three noise strengths: η = 0.03, η = 0.04, and η = 0.05. We clearly
see that the variance increases as a function of noise strength.

main result in this Letter is that the dissipative soliton due
to homogeneous multiplicative noise decreases the modulus
of its velocity when only one type of nonlinear gradient is
present. We demonstrated that this velocity change is propor-
tional to the noise intensity of the multiplicative noise for both

parameters: the Raman effect and delayed nonlinear gain. To
elucidate this scaling law we presented a simple mean field
analysis.

Comparing this result with the DSs familiar from the cubic-
quintic CGL equation without nonlinear gradient terms, we
note that such a velocity shift does not arise in this case, show-
ing that nonlinear gradient terms play a key role in this effect
that is unknown from other nonlinear evolution equations,
allowing for the stable existence of DSs. We note that for
large enough noise strength of the multiplicative noise the DSs
collapse. The present study opens the door for several other
areas of investigation. Perhaps the most clear-cut candidate
to study the effects predicted here experimentally is from
nonlinear optics, where, frequently, Raman-type effects and
delayed nonlinear gain play an important role. Candidates for
other experimental systems are easily controllable chemical
reactions for which solitonlike structures and their collisions
have been observed [4,5]. This expectation is based on two
features: (a) for nearly all weakly inverted bifurcations to
traveling waves in these systems nonlinear gradient terms in
the associated envelope equations [12] arise, and (b) how to
superpose multiplicative noise on surface reactions experi-
mentally has been shown [35].
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