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Optimality of nonconservative driving for finite-time processes with discrete states
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An optimal finite-time process drives a given initial distribution to a given final one in a given time at the
lowest cost as quantified by total entropy production. We prove that for a system with discrete states this optimal
process involves nonconservative driving, i.e., a genuine driving affinity, in contrast to the case of a system with
continuous states. In a multicyclic network, the optimal driving affinity is bounded by the number of states within
each cycle. If the driving affects forward and backwards rates nonsymmetrically, the bound additionally depends
on a structural parameter characterizing this asymmetry.
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In thermodynamics, a finite-time process transforms a
given initial state into a given final one in a given finite time.
This process is optimal if it comes at the lowest cost, i.e., at
the lowest entropy production. The condition of a finite time
is crucial since quasistatic processes, which require infinitely
slow driving, do not generate entropy at all. For macroscopic
systems, such processes have been studied under the label of
finite-time thermodynamics [1]. For small systems in contact
with a thermal environment and, thus, following a stochastic
dynamics, optimal finite-time processes were shown to have
aninevitable thermodynamic cost that scales asymptotically,
such as the inverse of the allocated time [2,3]. This scaling
was later shown to be the exact minimal entropy production
for any finite time for an underlying Langevin dynamics [4,5],
see also Ref. [6]. For a system with discrete state space
undergoing a master equation dynamics, this scaling holds
asymptotically as several case studies have shown [7–9]. In
the linear response regime, an appealing systematic theory
for the optimal driving involves geometric concepts, such as
the thermodynamic length [10–15]; see Ref. [16] for a brief
review. A complementary aspect of this optimization concerns
the derivation of speed limits for transformations between an
initial and final distribution [17]. For an effective two-state
system, a prominent experimental application of optimal pro-
tocols is the minimal cost of erasing a bit in a finite-time
extension of the Landauer bound [18–22].

A fundamental distinction for any nonequilibrium process
is whether or not the driving is conservative, i.e., whether or
not it arises from a time-dependent potential. The former case
applies inter alia to single molecules manipulated with optical
tweezers [23,24], to colloidal particles in time-dependent har-
monic or anharmonic traps [25], and to stochastic pumps for
which the energy of each state (and potentially the barriers in
between) are driven [26–28]. Paradigms for nonconservative
driving are colloidal particles driven along static periodic po-
tentials and colloidal particles in shear flow. Biophysical and
biochemical processes that are driven by unbalanced chemical
reactions, such as the hydrolysis of nucleic acids fall in this
class as well [29,30].

Emphasizing this distinction leads to the question whether
conservative or nonconservative driving leads to a lower cost
for a given initial and final state. In a more technical for-
mulation, the question is whether a time-dependent dynamics
whose instantaneous stationary state is Boltzmann-Gibbs-like
achieves already minimal entropy production or whether an
additional nonconservative contribution, which at a fixed con-
trol parameter would lead to a genuine nonequilibrium steady
state, can further decrease the cost. For systems with a contin-
uous state space, i.e., for Langevin dynamics, it is known that
the optimal protocol involves only conservative forces [5,31–
33]. Coming back to the example of a colloidal particle on a
ring with periodic boundary conditions this result implies that
there is nothing gained by allowing a nonconservative force to
act on top of a time-dependent potential.

In this Letter, we address this question for systems with
discrete states, i.e., for a master equation dynamics with
time-dependent rates. We can build on the work of Muratore-
Ginanneschi et al. [34] who formulated this optimization
problem in terms of control theory without addressing the
specific question we are interested in. Since they show that the
optimization reduces to the Langevin problem in the contin-
uum limit, one might even expect that the optimal protocol for
a discrete state space can be achieved with conservative driv-
ing as well. In contrast to the continuous case, however, we
will prove that the optimal driving is in fact nonconservative.
Furthermore, we will show that for a broad class of systems
all cycle affinities, defined precisely below as a quantitative
measure of the “nonconservativeness” of the dynamics, re-
main bounded as a function of the number of states in a cycle
during the whole process independent of its duration.

We consider a discrete set of states {i} of total number N .
A transition between two states (i, j) occurs at a rate ki j (t ),
which is, in general, time dependent. The probability pi(t ) to
find the system at time t in state i evolves according to the
master equation,

∂t pi(t ) =
∑
j �=i

[k ji(t )p j (t ) − ki j (t )pi(t )] ≡ −
∑
j �=i

ji j (t ), (1)
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with the net probability current ji j (t ) through link (i, j). We
parametrize the transition rates as [34]

ki j (t ) = κi je
Ai j (t )/2, (2)

with constant symmetric part κi j = κ ji, which sets the char-
acteristic timescale for the transition from state i to j and
time-dependent antisymmetric Ai j (t ) = −Aji(t ). Throughout
the Letter, we measure energies in units of a thermal energy
and entropy in units of Boltzmann’s constant.

Conservative driving implies that the ratio of forward and
backward rates is given by the difference of time-dependent
free energies Fi(t ) leading to

Ai j (t ) = Fi(t ) − Fj (t ). (3)

In contrast, for nonconservative driving Ai j (t ) cannot be writ-
ten as a difference of state functions.

It will be convenient to transform the state densities as
φi(t ) ≡ √

pi(t ) and to introduce the nonequilibrium driving
function [34],

ϕi j (t ) ≡ Ai j (t ) + 2[ln φi(t ) − ln φ j (t )], (4)

which becomes for conservative driving,

ϕi j (t ) = Bi(t ) − Bj (t ) with Bi(t ) ≡ Fi(t ) + 2 ln φi(t ).
(5)

In this representation, the current along link (i, j)
transforms to

ji j (t ) = 2κi jφi(t )φ j (t ) sinh
ϕi j (t )

2
, (6)

and the master equation (1) becomes

∂tφi(t ) = −
∑
j �=i

κi jφ j (t ) sinh
ϕi j (t )

2
. (7)

The process that transforms the given initial density {φi(0)} to
a given final one {φi(T )} in time T is optimal if it generates
the least overall entropy production,

�Stot ≡
∫ T

0
dt σ (t ), (8)

with the entropy production rate [35],

σ (t ) =
∑
i �= j

pi(t )ki j (t ) ln
pi(t )ki j (t )

p j (t )k ji(t )

= 2
∑
i< j

κi jφi(t )φ j (t )ϕi j (t ) sinh
ϕi j (t )

2
. (9)

We first show that conservative driving does not lead to
minimal entropy production. Assume that within this parame-
ter space (5) we have found the optimal protocol F ∗

i (t ) leading
to p∗

i (t ) with currents j∗i j (t ). For a unicyclic system, it is
then clear that adding a time-dependent �(t ) to the clockwise
current will still satisfy the master equation (1) and the bound-
ary conditions of a fixed initial and final density. Under the

transformation,

ji j (t ) ≡ j∗i j (t ) + εi j�(t ), (10)

with εi j = 1 = −ε ji for i < j the entropy production rates
σ ∗(t ), respectively, σ (t ), become by a Taylor expansion,

σ (t ) − σ ∗(t ) = �(t )2
∑
i< j

tanh
B∗

i (t ) − B∗
j (t )

2
+ O[�(t )2].

(11)
Since, in general, the linear term will not vanish, see the
Supplemental Material [36], we get that the total entropy
production found within conservative driving can be further
decreased by adding a nonconservative term accounting for
such a �(t ). Specifically, we can choose �(t ) = const �= 0
such that

2�

∫ T

0
dt

∑
i< j

tanh
B∗

i (t ) − B∗
j (t )

2
< 0. (12)

This constitutes our first main result: In contrast to the con-
tinuous case, optimal protocols for Markov jump processes
involve nonconservative driving, i.e., a genuine cycle affinity,

Ac(t ) ≡
∑

(i, j)∈C
Ai j (t ) =

∑
(i, j)∈C

ϕi j (t ) (13)

for each cycle C in the network. The above proof can indeed be
extended trivially to multicyclic networks since a correspond-
ing �(t ) can be added to an arbitrary cycle in which case the
summation in (11) is only over the directed links of this cycle.

We next show that all cycle affinities Ac(t ) are bounded
by the number of states in each cycle for all times. To do so,
we have to derive the Euler-Lagrange equations for the vari-
ational problem posed by minimizing the entropy production
(8) under the constraints (7) which we add with Langrangean
multipliers {ηi(t )} that ensure that the densities {φi(t )} satisfy
the master equation. Thus, we minimize

�S ≡
∫ T

0
dt L[{φ(t ), ϕ(t ), η(t )}] (14)

for given {φi(0)} and {φi(T )} with the Lagrange function,

L(t ) ≡ σ (t ) +
∑

i

ηi(t )

[
∂tφi(t ) +

∑
j �=i

κi jφ j (t ) sinh
ϕi j (t )

2

]
.

(15)

From δL/δφi(t ) = 0, we get the equations of motion for the
Lagrange multiplier,

∂tηi(t ) =
∑
j �=i

κi j sinh
ϕi j (t )

2
[2φ j (t )ϕi j (t ) − η j (t )]. (16)

Variation with respect to the protocol ϕi j (t ) leads to

ηi(t )φ j (t ) − η j (t )φi(t ) = −4φi(t )φ j (t )

[
tanh

ϕi j (t )

2
+ ϕi j (t )

2

]
.

(17)
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By summing (17) over an arbitrary cycle with Nc states
we get

0 =
Nc∑

i=1

[ηi(t )/φi(t ) − ηi+1(t )/φi+1(t )]

= −4
Nc∑

i=1

[
tanh

ϕi,i+1(t )

2
+ ϕi,i+1(t )

2

]
, (18)

where we relabeled the neighboring links (i, j) ∈ C as
(i, i + 1). We now use this relation to find for the affinity,

Ac(t ) =
Nc∑

i=1

ϕi,i+1(t ) = −2
Nc∑

i=1

tanh
ϕi,i+1(t )

2
, (19)

and finally use | tanh(x)| � 1 to obtain

|Ac(t )| � 2Nc. (20)

Thus, for each cycle, the time-dependent affinity is bounded
by the number of states within that cycle.

In fact, we can sharpen this bound further to

|Ac(t )| � 2(Nc − 2), (21)

which is our second main result. Although the formal deriva-
tion of this improved bound as shown in the Supplemental
Material [36] is somewhat technical, its origin can be un-
derstood by the following consideration. Equations (19) and
(20) require the affinity and, hence, the sum of the driving
functions to be finite, thus, not all {ϕi j (t )} are allowed to
tend to, e.g., positive infinity at the same time which was
the rational behind the weaker bound, Eq. (20). At least, one
driving function has to compensate this putative divergence by
approaching negative infinity. The asymptotic behavior of the
affinity is determined by Eq. (18), thus, for all ϕi j (t ) → ±∞
except one that tends to ϕkl (t ) → ∓∞, the affinity approaches
Ac(t ) → ∓2(Nc − 2).

We now turn to numerics in order to explore how signifi-
cant the improvement through nonconservative driving is and
to check how strong the improved bound (21) is. For a three
state system, i.e., Nc = 3, we sample arbitrary initial and final
distributions and calculate for each pair of them the optimal
protocol first for conservative and then for nonconservative
drivings. We fix a basic timescale by setting all symmetric
prefactors κi j = κ ji = 1. We find that the nonconservative
driving leads to an only minute improvement. For a process
transforming the state of the system within a time that is
comparable to the intrinsic timescale, i.e., for T = 1, the
advantage of nonconservative driving is, on average, only on
the order of 10−5 with a maximal improvement of order 10−4.
Even for processes that are ten times faster, i.e., T = 0.1, on
average, this advantage raises only to 10−3, respectively, 10−2

for the maximum value.
The faster the process is, the larger is the maximum affinity

applied in the optimal process as shown in Fig. 1. This reflects
the fact that a nonequilibrium quantity, such as the cycle affin-
ity, should vanish as the quasistatic limit is approached, i.e.,
T → ∞. Although Amax ≡ max0�t�T |A(t )| remains below
the value of 2 as it should, there are combinations of initial
and final densities for which the optimal affinity seems to
reach this bound within about 2%. In Fig. 2, we show that

FIG. 1. Influence of the allocated time T on the maximal affinity
Amax for arbitrary sampled initial and final distributions. The edges
of the boxes represent the first Q1 (left) and third quartile Q3 (right
site). The whisker on the left represents the minimum value and on
the right the maximum of the data. The thick green line displays the
median of the data.

the largest affinities are generated by those initial and final
distributions that require to transport either the largest density,
i.e., for which �pi = pi(0) − pi(T ) is approximately ±1 for
one pair of states or for which �pi 
 0 for one state.

Comparing the configurations displayed in Fig. 2, we find
that it becomes more difficult to obtain numerically con-
vergent solutions the lower we set the allocated time T .
Particularly, we find configurations which tend to transport
the largest densities �pi → ±1 to be numerically unstable
(black crosses). At present, it is unclear whether this is due
to the numerical scheme, see the Supplemental Material [36]
or whether there is a generic problem in the mathematical
formulation, e.g., due to diverging derivatives of the driving
functions or vanishing probabilities. Another question that
remains open is whether there always exist a set of initial and
final densities that saturate the bound of the affinity Eq. (21)
for a given time T . From our numerical findings we expect
that this is the case for configurations that transport the max-
imal densities, i.e., for �pi 
 ±1. The longer the allocated
time T , the closer the transported densities need to be to ±1
in order to saturate the bound.

So far, with the parametrization (2), we have focused on
a symmetric splitting of the driving over each forward and
backward rate. In a more general setting, we now allow for
a splitting that may be different for each link. We can then
parametrize the rates as

ki j = κi j exp(αi jAi j )

k ji = κ ji exp[(1 − αi j )Aji], (22)

with κi j = κ ji and one structural parameter for each link given
by 0 < αi j = α ji < 1. Following the derivation in the sym-
metric case from above, it is straightforward to show that the
bound (20) becomes, see the Supplemental Material [36],

−
Nc∑

i=1

1

αi,i+1
� Ac �

Nc∑
i=1

1

1 − αi,i+1
. (23)

If αi = 1/2 for all i, we reproduce Eq. (20).
The more states a cycle has, the larger become our bounds.

Naively extrapolating to a cycle with infinitely many states,
one might conclude that in such a continuum limit the affinity
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FIG. 2. Influence of the system parameters on the maximal affinity Amax ≡ maxt∈[0,T ] |A(t )| of arbitrary sampled configurations for
different speeds T. �pi = pi(0) − pi(T ) displays the change in the state densities. The color bar represents Amax. The dashed line is defined
by �pi = ±1 for one i. The dotted line represents �pi = 0 for an i. Black crosses stand for configurations that failed to converge with our
algorithm.

could diverge. Such an expectation would be in contrast with
the established result that for a Langevin dynamics conser-
vative driving, i.e., zero affinity achieves optimality [5,31].
We finally show that our approach reproduces this continuum
limit correctly. Let dx denote a lattice spacing along a cycle.
We relabel the driving function of adjacent states in a cycle
from ϕi,i+1 to ϕx,x+dx. For small lattice spacing, the affinity
becomes

Ac(t ) =
∑
x∈C

ϕx,x+dx(t ) ≈
∑
x∈C

ϕ′
x,x(t )dx ≈

∮
C

ϕ′
x,x(t )dx,

(24)

where the prime denotes a derivative with respect to x. Here,
we have used that ϕx,x(t ) = 0 due to the antisymmetry of
ϕi j (t ). Thus, the affinity approaches the contour integral over
the spatial derivative of the driving function ϕ′

x,x(t ) along the
cycle. We can calculate the limiting value of this integral by
dividing Eq. (18) by −2 and a Taylor expansion, according to

0 =
∑
x∈C

[
ϕx,x+dx(t ) + 2 tanh

ϕx,x+dx(t )

2

]

≈ 2
∑
x∈C

ϕ′
x,x(t )dx ≈ 2

∮
C

ϕ′
x,x(t )dx. (25)

Thus, the cycle affinity indeed has to vanish in the continuum
limit. This finding also generalizes to the nonsymmetrical

splitting of the rates Eq. (22), see the Supplemental Material
[36].

In conclusion, we have proven that for discrete systems,
optimal finite-time processes require nonconservative driving
in marked contrast to the case of systems with continuous
degrees of freedom. This result implies that with an optimal
protocol for the Langevin dynamics, discretizing this solution
will, in general, not guarantee optimality over the coarse-
grained state space. Furthermore, driving a process, e.g., with
unbalanced biochemical reactions, which necessarily imply
nonvanishing affinity, can yield lower entropy production than
by pumping the system through time-dependent modulations
of energies and barriers, which amounts to conservative driv-
ing. For each cycle in a multicyclic network, the maximum
affinity remains bounded throughout the process, even if the
allocated time approaches zero. For driving that affects for-
ward and backward rates symmetrically, the bound depends
only on the number of states of a cycle. For a nonsymmet-
ric splitting, a structural parameter enters the bound. Open
theoretical problems include a proof of the tightness of the
improved bound Eq. (21) for all T and a generalization of
this improved bound to asymmetric splitting. For experiments,
it remains a challenge to set up a system for which both
types of driving, conservative, and nonconservative one, can
be implemented and quantitatively be compared with another
at the same time.

We thank J. van der Meer and T. Koyuk for stimulating
discussions.
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