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The kinetic uncertainty relation (KUR) is a trade-off relation between the precision of an observable and the
mean dynamical activity in a fixed time interval for a time-homogeneous and continuous-time Markov chain.
In this Letter, we derive the KUR on the first passage time for the time-integrated current from the information
inequality at stopping times. The relation shows that the precision of the first passage time is bounded from
above by the mean number of jumps up to that time. We apply our result to simple systems and demonstrate that
the activity constraint gives a tighter bound than the thermodynamic uncertainty relation in the regime far from
equilibrium.
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Introduction. The universal feature of dynamical fluctua-
tions in systems far from equilibrium has been one of the
main topics of nonequilibrium statistical physics over the past
decades. A remarkable achievement in the field is the discov-
ery of the fluctuation relations governing the fluctuation of the
entropy production in generic stochastic systems, which are
expressed as the equalities in contrast to the inequalities of the
second law of thermodynamics. Recently, a novel inequality
called the thermodynamic uncertainty relation (TUR) [1] has
been studied; it provides an upper bound on the precision
of the time-integrated current in terms of the mean entropy
production. As well as the fluctuation relations, this type of
inequality is universally valid for various stochastic systems
under various situations [2–10]. See also Ref. [11].

In a typical situation of these studies, we observe a
stochastic system in a certain observation time interval and
investigate the statistics of an observable at the fixed time. In
this Letter, we address a complementary problem in which
we exchange the roles of the observable and time, and
study the statistics of the random time at which the ob-
servable first reaches a fixed threshold. Such random times
are called first passage times (FPTs). The distributions of
first passage times, or more generally stopping times, are
extensively studied in various fields, such as the theory of
stochastic processes [12,13], reaction rate theory [14], bi-
ology [15,16], statistical estimations [17], and finance [18].
Moreover, in nonequilibrium physics, the universal natures
of the first-passage-time statistics for thermodynamically
relevant quantities were found recently, including the fluc-
tuation relations at stopping times [19,20], the universality
of the asymptotic behavior of the first-passage-time distribu-
tions [21–23], and several trade-off relations concerning the
first passage time [24–26]. In particular, the thermodynamic
constraint on the precision of the FPT, which is analogous
to the TUR on the precision of an accumulated current at a
fixed time, may be useful in measuring the efficiency of the
biological clocks beyond merely theoretical interests [27] (see
also Refs. [1,28,29]).

In this Letter, we focus on the kinetic uncertainty relations
(KURs) on the first passage times for time-integrated currents.
Whereas the TUR gives a bound on the precision of an ob-
servable in terms of entropy production, the KUR [30] gives a
bound in terms of the time-symmetric dynamical activity [31].
Garrahan [25] obtained a kinetic bound on the FPT for a
stationary continuous-time Markov chain,

E[τ ]2

Var[τ ]
� nE[τ ], (1)

in the large threshold limit. Here E[τ ] denotes the mean time
at which the time-integrated current first reaches a threshold,
Var[τ ] is the variance of τ , and n is the mean number of jumps
per time in the stationary state. This trade-off relation implies
that the smaller the activity of the stochastic system, the larger
the uncertainty of the time to reach the threshold. The inequal-
ity (1) was derived via the large deviation theory and verified
only in the large threshold limit. The main purpose of the Let-
ter is to derive the KUR on the first passage time that is valid
for any finite threshold and to simplify the derivation based
on the technique recently developed in Refs. [10,30]. The key
ingredient of the derivation is the information inequality at
stopping times.

Setup and main result. We consider a time-homogeneous
and continuous-time Markov chain on a directed multigraph
G = (S, E ). Here S is a discrete state space, and E is the
set of directed edges between two states. Let ke(x, y) be
the transition rate from state x to y via the edge e ∈ E and
λ(x) := ∑

e

∑
y( �=x) ke(x, y) be the escape rate from x where

the summation is taken over edges starting from x. For a
fixed time t � 0, X[0,t] = (Xs)s∈[0,t] denotes a single trajec-
tory of the system and is characterized by the discrete-time
sequence (x0, t0 = 0; x1, t1, e1; . . . ; xNt , tNt , eNt ), which indi-
cates that the total number of jumps for trajectory X[0,t] over
[0, t] is Nt , and the transition from xi−1 to xi( �= xi−1) occurs
via the edge ei at times ti for i = 1, . . . , Nt . We focus on a
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time-integrated current Jt := J (X[0,t] ) defined as

J (X[0,t] ) =
Nt∑

i=1

gei (xi−1, xi ), (2)

where ge(x, y) weights the contribution of the transition from
x to y via edge e. The class of observables of this form includes
many important physical quantities. Here we address two
significant examples, the number of jumps and the fluctuating
entropy production. The total number of jumps via edge f
is obtained by taking ge = δe, f . This quantity measures how
active the system is on edge f and is called dynamical activity.
Next, we consider two edges, f connecting from x to y and b
connecting from y to x with k f (x, y) �= 0 and kb(y, x) �= 0. We
assume that these edges are in contact with the same heat bath
and require that the entropy per the Boltzmann constant kB

produced in the heat bath during the transition x → y is given
by ln[k f (x, y)/kb(y, x)]. The fluctuating entropy production
associated with the paired edges ( f , b) is then obtained by
taking ge = ln[k f (x, y)/kb(y, x)][δe, f − δe,b]. The requirement
we impose here is called the local detailed balance condition.
However, in this Letter, we do not impose any requirements
on the weight function ge, such as non-negativity, symmetry,
and antisymmetry.

The FPT τ for the time-integrated current Jt is defined
as τ := inf{t � 0: Jt > Jth}, where Jth denotes the threshold
value. The FPT is obviously a stochastic variable and ac-
companies fluctuations. The first time for the system to reach
specific state z can be represented in this form by taking
ge(x, y) = δy,z and Jth ∈ (0, 1). Methods to analyze the statis-
tics of the FPTs in the class are well established [12,13]. Our
concern here is the precision of the FPT quantified by the
ratio of the squared mean FPT to the variance E[τ ]2/Var[τ ].
Throughout this Letter, we use E[ f ] to denote the expectation
value of f with respect to the underlying stochastic process
and Var[ f ] = E[( f − E[ f ])2] the variance.

We suppose that the mean and variance of τ are finite. We
find that the precision of the FPT is bounded from above by
the mean dynamical activity, which is quantified by the mean
number of jumps,

Ex0 [τ ]2

Varx0 [τ ]
� Ex0 [Nτ ], (3)

where Nτ is the total number of jumps up to the first passage
time τ and Ex0 [·] denotes the expectation value conditioned
on the initial configuration X0 = x0. This activity bound (3) is
the main result of this Letter. The inequality (3) implies that
the reduction in the number of jumps up to the time for the
system to passage the threshold inevitably accompanies the
worsening of the optimal precision of the FPT. We note that
the inequality (3) is still valid if we replace the conditional
expectation 〈·〉x0 by the expectation value 〈·〉ρ with respect to
the arbitrary initial distribution ρ.

We make several remarks on our result. First, our result
holds for any finite threshold Jth in contrast to the inequal-
ity (1) in Ref. [25]. For a sufficiently large threshold Jth and
ergodic Markov process, we expect that E[Nτ ] nearly equals
nE[τ ] because in that situation the jump number per time
is well approximated over a sufficiently long time interval
by the stationary value n. Hence, the inequality (1) is re-

covered in this asymptotic limit from our result. Although
the precision of the FPT for the integrated current is also
bounded from above by the mean entropy production, the
thermodynamic bound of the form in Ref. [24] is guaranteed
only in this asymptotic limit. We illustrate the violation of
the TUR with examples in the next section. Second, the ther-
modynamic bound is tighter than the activity bound around
equilibrium because in the regime close to equilibrium the
mean entropy production tends to zero, but the mean number
of jumps remains finite. In contrast, even when the mean
entropy production goes to infinity in the regime far from
equilibrium, the mean activity up to the first passage time may
be finite due to a nonequilibrium force driving the system
to the threshold. In that case, the KUR provides a tighter
bound than the TUR. Third, the KUR is applicable even if the
Markov chain is not ergodic or does not satisfy the reversibil-
ity condition, i.e., k(x, y) �= 0 iff k(y, x) �= 0. Examples of
stochastic processes violating the reversibility condition are
models including absorbing states in the population dynamics
and stochastic resetting systems [32]. Our final remark is
that the mean and variance of the FPT may diverge; in such
circumstances, the KUR (3) may be violated. For instance,
when the accumulated current has a positive drift, the FPT
for a negative threshold takes an infinite value with positive
probability. However, the modified KUR still holds in the
following form see the Supplemental Material [33]:

Ẽx0 [τ ]2

Ṽarx0 [τ ]
� Ẽx0 [Nτ ]. (4)

Here Ẽ[ f ] := Ex0 [ f 1{τ<∞}] is the integration of f over the re-
stricted region {τ < ∞} and Ṽarx0 [ f ] := Ẽ[( f − Ẽ[ f ])2] the
corresponding variance. We note that if the probability that the
first passage time is infinite is positive, the modified probabil-
ity distribution is unnormalized Ẽ[1] = Prob(τ < ∞) < 1.

Applications. We examine the KUR (3) in two paradig-
matic examples. The first example is the biased random
walk Xt on Z starting from X0 = 0. The transition rates be-
tween neighboring sites are set to k± := k(x, x ± 1) = ae±ε/2,
and other transitions do not occur. Here a > 0 and ε > 0
are positive constants. Suppose that this system describes a
colloid under an external driving force f in a channel hav-
ing a periodic structure of length l and filled with water
in equilibrium at temperature T [Fig. 1(a)]. According to
the local detailed balance condition ε = f l/kBT = ln(k+/k−)
is the entropy per kB produced in the water by the one
forward jump. We consider the random time τx = inf{t �
0: Xt = x} at which the colloid first reaches the site x > 0.
The entropy production along the path X[0,t] is given by
�t := εXt and, therefore, the stationary entropy production is
σ := E[�t ]/t = 2ε sinh(ε/2). We easily find that the preci-
sion of τx is given by E[τx]2/Var[τx] = x tanh(ε/2) and the
TUR [24], E[τx]2/Var[τx] � σE[τx]/2 is directly verified for
any thresholds [34]. In addition, the mean dynamical activity
is given by E[Nτx ] = x coth(ε/2) and is in agreement with
the KUR E[τx]2/Var[τx] � E[Nτx ] see the Supplemental Ma-
terial [33]. In Fig. 1(b), we see that whereas the TUR is tighter
near the equilibrium ε � 1, the KUR becomes relevant as the
nonequilibrium driving force increases. We remark that the
TUR may be violated, in general, for finite thresholds. As
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FIG. 1. (a) Schematics of a colloid being driven by an external
force f in a periodic channel filled with water at temperature T
and one dimensional biased random walk describing the dynamics
of the colloid. (b) Plots showing the precision E[τx]2/(xVar[τx])
(blue solid line), the TUR bound σE[τx]/(2x) (red dashed line), and
the KUR bound E[Nτx ]/x (green dashed-dot line) as functions of ε.
The dimensionless parameter ε = f l/kBT measures a distance from
equilibrium in this model.

an example, we consider a random walk with a reflecting
boundary condition at the origin, i.e., k(0,−1) = 0 and a
precision of the FPT for the threshold x = 1. The distribution
of τ1 is the exponential distribution with the decay rate k+ and,
therefore, E[τ1]2/Var[τ1] = 1 = E[Nτ1 ] for any ε, whereas
the upper bound of the TUR σE[τ1] = ε/2 becomes less than
1 for sufficiently small ε.

The second example is a two-level system in contact with
two heat baths at different temperatures [Fig. 2(a)]. The lower
(respectively, higher) energy level is coded by 0 (respectively,
1), and the energy gap is set to 	 > 0. The transition rate from
x ∈ {0, 1} to y( �= x) associated with the heat bath at the inverse
temperature βe is given by ke(x, y) > 0 for e ∈ {h, c}. We
assume that βh < βc and define β := (βc + βh)/2. The local
detailed balance condition imposes ke(1, 0)/ke(0, 1) = eβe	

for each bath e. We observe the heat produced in the cold
bath e = c and measure the accumulated heat current per βc	

from the system into the cold bath Jt := ∑Nt
i=1[δxi−1,1δxi,0 −

δxi−1,0δxi,1]δei,c. Our interest is the variation in precision of
the first-passage-time τm = inf{t � 0: Jt = m} (m ∈ Z) along
with the temperature difference, which quantifies a distance
from equilibrium in this model. To measure the degree by
which temperatures differ, we introduce a dimensionless pa-
rameter ε := (βc − βh)/β ∈ [0, 2]. We define the efficiencies

FIG. 2. (a) Schematic of a two-level system. (b) Efficiencies
associated with the TUR (red circles) and KUR (blue diamonds)
obtained from the Monte Carlo simulations for 107 samples for
various temperature differences. We set X0 = 0, kc(0, 1) = 1,

kc(1, 0) = eβc	, kh(0, 1) = 1, kh(1, 0) = eβh	, β	 = 10, m = 1
in our simulation.

associated with the TUR and KUR as

ηTUR := 2

σ

E[τm]

Var[τm]
, ηKUR := 1

E[Nτm ]

E[τm]2

Var[τm]
� 1, (5)

respectively. From the plot of the efficiencies obtained by
Monte Carlo simulations [Fig. 2(b)], we see that, although
they are actually reversed as the temperature difference in-
creases, the efficiency associated with the KUR is always far
from optimal.

Sketch of the derivation of (3). We sketch a derivation
of (3) via the information inequality at stopping times see
the Supplemental Material [33]. Let us consider a family
of stochastic processes with path probability distributions Pθ

smoothly parametrized by a real parameter θ . We use pt
θ

:=
dPt

θ /dPt
0 to denote the likelihood ratio function up to time t

with respect to the reference process θ = 0. A stopping time
τ is defined informally as a [0,∞]-valued random time that
does not depend on the trajectory in the future X(τ,∞). Typical
examples of stopping times are first passage times. Under sev-
eral regularity conditions, the information inequality [35,36]
claims that for a general nonanticipating observable At , which
depends only on X[0,t], and a stopping time τ with Pθ {0 < τ <

∞} = 1, the following inequality holds:

(∂θEθ [Aτ ])2

Varθ [Aτ ]
� Iτ (θ ). (6)

Here Eθ [·] denotes the expectation with respect to Pθ and
Iτ (θ ) = Eθ [−∂2

θ ln pτ
θ ] the Fisher information at the stopping

time τ . We apply this inequality to the first passage time for
a time-integrated current Jt and a family of continuous-time
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Markov chains with the transition rates ke,θ = (1 + θ )ke start-
ing from the initial condition X0 = x0. The transformation of
the transition rates k �→ (1 + θ )k corresponds to a rescaling of
the timescale of the stochastic evolution. Therefore, the expec-
tation of the FPT for the observable of the form (2) transforms
as Eθ,x0 [τ ] = (1 + θ )−1Ex0 [τ ]. The logarithm-likelihood ratio
function is given by

ln pt
θ = Nt ln(1 + θ ) − θ

∫ t

0
λ(Xs)ds, (7)

from the Girsanov formula [37]. The Fisher information for
this family is, thus, obtained as Iτ (θ ) = (1 + θ )−2Ex0 [Nτ ].
By substituting these results into Eq. (6) and setting θ = 0,
we have the KUR (3). It is straightforward to include initial
distributions in the derivation.

We make a remark on the derivation of the thermody-
namic uncertainty relation from the information inequality.
In Ref. [10], Dechant and Sasa derived the finite-time TUR
on a time-integrated current from the information inequality.
Specifically, they found a family of stationary continuous-
time Markov chains {Pθ } for which Eθ [Jt ] = (1 + θ )E[Jt ]
and It (θ ) � E[�t ]/2, where �t is the total entropy produc-
tion over [0, t]. Although one may expect that the mean
first passage time for Jt has rescaling property Eθ [τ ] = (1 +
θ )−1E[τ ] for this family and the finite-threshold TUR on the
FPT can be derived from (6), it is not true. This is because the
statistics of the first passage time depends on the transition

probability. Although the perturbation considered in Ref. [10]
corresponds to the time rescaling of the single-time probabil-
ity distribution and current, it does not have the same property
at the level of the transition probability.

Discussion. We have derived the kinetic bound (3) on the
first passage time for the time-integrated current that is valid
for any finite threshold. In contrast to the TURs, the KUR may
be relevant for a system far from equilibrium. An interesting
challenge is to apply our result to biological systems, such as
circadian clocks and molecular motors, and measure the effi-
ciency of these systems from the perspective of the precision
of the first passage time.

References [24,25] use the connection between the rate
functions for current statistics and first-passage-time statistics
to derive the same type of inequality. Nevertheless, our deriva-
tion is based on the idea given in Refs. [10,30] that finite-time
TUR and KUR are obtained from the information inequali-
ties for virtually perturbed systems. This method significantly
simplifies the derivation and extends the range of applicability.

Our result is widely applicable to generic continuous-time
and time-homogeneous Markov chains including nonthermo-
dynamic systems. Extending the KUR on the FPT to diffusion
processes and quantum systems under continuous measure-
ment [38] remains an open problem.
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