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Hierarchical Onsager symmetries in adiabatically driven linear irreversible heat engines
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In existing linear response theories for adiabatically driven cyclic heat engines, Onsager symmetry is identified
only phenomenologically, and a relation between global and local Onsager coefficients, defined over one cycle
and at any instant of a cycle, respectively, is not derived. To address this limitation, we develop a linear response
theory for the speed of adiabatically changing parameters and temperature differences in generic Gaussian heat
engines obeying Fokker-Planck dynamics. We establish a hierarchical relationship between the global linear
response relations, defined over one cycle of the heat engines, and the local ones, defined at any instant of
the cycle. This yields a detailed expression for the global Onsager coefficients in terms of the local Onsager
coefficients. Moreover, we derive an efficiency bound, which is tighter than the Carnot bound, for adiabatically
driven linear irreversible heat engines based on the detailed global Onsager coefficients. Finally, we demonstrate
the application of the theory using the simplest stochastic Brownian heat engine model.
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Introduction. The Carnot efficiency is the fundamental
bound for the efficiency of heat engines, and it is universally
imposed by equilibrium thermodynamics [1]. Particularly, the
Carnot efficiency is attained in an idealized reversible limit;
however, the operation of actual powerful heat engines is
accompanied by irreversible flows, and thus, should obey
the constraints entailed by nonequilibrium thermodynamics.
The recent developments in understanding the constraints
on nonequilibrium heat engines, including the finite-time
thermodynamics [2–4], the universality of efficiency at maxi-
mum power [5–13], the trade-off relation between power and
efficiency [14–22], and geometrical formulations [23–27], un-
covered the universal features governing nonequilibrium heat
engines beyond the Carnot efficiency.

Linear irreversible thermodynamics is a universal frame-
work that systematically describes the response of equilibrium
systems under weak nonequilibrium perturbations [28,29].
Despite its importance, the application of linear irreversible
thermodynamics to heat engines operating under small tem-
perature differences has been limited, until recently [30–38].
This is because the identification of thermodynamic fluxes
and forces is highly complex for heat engines undergoing
cyclic changes. Nevertheless, such an identification is es-
sential because the performance of heat engines depends on
the response coefficients, that is, Onsager coefficients, in
the linear response regime [6,11]. In particular, the linear
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irreversible thermodynamics for the temperature difference
and the speed of adiabatically changing parameters [39] of
cyclic heat engines is limited to a few specific examples
[30–32]. Adiabatically driven cyclic heat engines can expe-
rience continuous equilibrium change along a cycle and be
substantially perturbed from a reference equilibrium point.
This makes the application of the linear response theory,
which is usually defined for a response from a one-equilibrium
point, difficult and obscure. Notably, the identified Onsager
symmetry for these models is derived only phenomenologi-
cally, by adopting intuitive global fluxes and forces per cycle,
without deriving a relation to the local thermodynamic fluxes
and forces defined at any instant of a cycle.

By contrast, in recent studies on quantum thermoelectrics,
such a linear response for adiabatically changing parameters
has been investigated as an effect of adiabatic ac driving
applied to a system [40,41]. Remarkably, the Onsager coef-
ficients defined globally for a one-cycle period of ac driving,
which determine the overall performance of the thermo-
electrics, are expressed in terms of locally defined Onsager
coefficients at any instant during driving [40,41]. The key
of this formulation is to apply the standard linear response
theory to instantaneous equilibrium states specified by the
adiabatically changing parameters that are regarded to have
“frozen,” fixed values. Considering the universal nature of lin-
ear irreversible thermodynamics, we are motivated to uncover
a similar hierarchical structure for adiabatically driven linear
irreversible heat engines. To this end, we focus on the simplest
heat engine model. We establish a hierarchical relationship
between global and local Onsager coefficients for a generic
Gaussian heat engine model obeying Fokker-Planck dynam-
ics. The adiabatic dynamics can be easily obtained based on
the idea of timescale separation [42], which is one of the
advantages of this model. Moreover, based on the detailed
structure of the Onsager coefficients, we derive an efficiency
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bound, tighter than the Carnot efficiency, under a given speed
of adiabatic change.

Model. The heat engine consists of a working substance
(system) and thermal bath. The state of the system x =
(x1, . . . , xn) at time t is specified by a probability distri-
bution P(x, t ). The system is periodically operated based
on p external parameters λ(t ) = (λ1(t ), . . . , λp(t )) and the
bath temperature T (t ) with period τcyc; λ(t + τcyc) = λ(t )
and T (t + τcyc) = T (t ). The energy of the system is given
by H (x, t ), which is a function of λ(t ). Specifically, the ex-
ternal parameters are expressed as λ(t ) = λ0 + gw(εt ) using
the time-independent part λ0 and the time-dependent part gw.
Here, ε ≡ 1/τcyc denotes a small parameter corresponding
to the speed of the process. Thus, a long period of time,
t = O(1/ε), is required for a finite increment of gw. The bath
temperature T (t ) is given by T (t ) = ThTc

Th−�T (t ) , where �T (t ) ≡
γq(εt )�T , and �T ≡ Th − Tc and γq(εt ) are the temperature
difference and periodic function satisfying 0 � γq(εt ) � 1,
respectively [33].

We define the average entropy production rate per cycle σ̇

for the system and thermal bath. Hereafter, we denote by the
overdot a quantity per unit time or a quantity being time differ-
entiated. The energy change rate becomes Ė ≡ d

dt 〈H (x, t )〉 =
d
dt

∫
dxnH (x, t )P(x, t ), where 〈·〉 refers to an ensemble aver-

age with respect to P(x, t ). We decompose Ė into the sum of
the heat and work fluxes Q̇ and Ẇ ; Ė = ∫

dxnH (x, t ) ∂P(x,t )
∂t +∫

dxn ∂H (x,t )
∂t P(x, t ) ≡ Q̇ − Ẇ . Then, we can define σ̇ as

σ̇ ≡ − 1

τcyc

∫ τcyc

0

Q̇(t )

T (t )
dt

= ε

Tc

1

τcyc

∫ τcyc

0
dt

∫
dnxg′

w(εt ) · ∂H (x, t )

∂λ
P(x, t )

+
(

1

Tc
− 1

Th

)
1

τcyc

∫ τcyc

0
dt

∫
dnxγq(εt )H (x, t )Ṗ(x, t )

= JwFw + JqFq, (1)

where the prime symbol denotes the time derivative with
respect to the slow time T ≡ εt and ġw(εt ) = dgw (εt )

dt =
εg′

w(εt ). The dot between symbols denotes an inner product.
Here, we have defined the following work and heat fluxes per
cycle as thermodynamic fluxes:

Jw ≡ 1

τcyc

∫ τcyc

0
dt

∫
dnxg′

w(εt ) · ∂H (x, t )

∂λ
P(x, t ), (2)

Jq ≡ 1

τcyc

∫ τcyc

0
dt

∫
dnxγq(εt )H (x, t )Ṗ(x, t ). (3)

The corresponding thermodynamic forces are defined as

Fw ≡ ε/Tc, Fq ≡ 1/Tc − 1/Th. (4)

We assume the global linear response relations J = LF be-
tween J ≡ (Jw, Jq )T and F ≡ (Fw, Fq )T defined over one cycle
of the heat engine in the limit of ε → 0 and �T → 0:

Jw = LwwFw + LwqFq, (5)

Jq = LqwFw + LqqFq, (6)

where L corresponds to the global Onsager coefficients. Our
goal is to find a detailed expression of L in terms of its
local counterpart defined at any instant of the cycle, thereby
establishing a hierarchical relationship between the two.

Fokker-Planck dynamics. For further calculation of J, we
need to specify the dynamics of P(x, t ). In what follows,
we consider generic Gaussian heat engines described based
on multivariate Ornstein-Uhlenbeck processes as the simplest
models. The energy of the system, which serves as a potential
function, thus takes the following quadratic form:

H (x, t ) = 1
2 xTH(t )x = 1

2 Hi j (t )xix j, (7)

where H(t ) is a positive-definite symmetric matrix (i, j =
1, . . . , n). We assume that x is even variables under time rever-
sal. The probability distribution of the system P(x, t ) obeys
the Fokker-Planck (FP) equation with the time-dependent drift
matrix A and diffusion matrix B [43,44],

∂P(x, t )

∂t
= − ∂

∂xi

[
Ai j (t )x jP(x, t ) − 1

2
Bi j (t )

∂P(x, t )

∂x j

]

= −∂Ji(x, t )

∂xi
, (8)

where Ji(x, t ) is a probability current. A is a symmetric
matrix and B is a positive-definite symmetric matrix. B is
further assumed to be invertible. The probability distribution
is assumed to be the zero-mean Gaussian distribution,

P(x, t ) = 1

(2π )n/2

1√
det 
(t )

e− 1
2 xT
−1(t )x, (9)

where the symmetric covariance matrix 
i j ≡ 〈xix j〉 −
〈xi〉〈x j〉 = 〈xix j〉 obeys [43]

∂t
 = 2A
 + B. (10)

Note that we assume that A and 
 are commutative for
simplicity. The equation to be solved is replaced with the
dynamical equations in Eq. (10), instead of the FP equation
in Eq. (8): Note that A, B, and H are not independent. For
the time-independent energy H (x, t ) = H0(x) and tempera-
ture T (t ) = Tc, we have A(t ) = A0 and B(t ) = B0. Then, the
stationary solution 
0 obtained as the solution of ∂t
0 = 0 in
Eq. (10) satisfies

2A0 = −B0

−1
0 . (11)

For the stationary distribution to agree with a Boltzmann
distribution at temperature Tc, the following detailed balance
condition is usually imposed [44]:

2A0 = −B0
H0

kBTc
, (12)

which together with Eq. (11) yields 
−1
0 = H0/kBTc, with kB

being Boltzmann constant. Here, as a natural generalization of
Eq. (12), we impose the detailed balance condition, including
the time-dependent part,

2A(t ) = −B(t )
H(t )

kBT (t )
, (13)

whose validation will be clarified below.
We decompose A(t ), B(t ), and 
(t ) into time-independent

and time-dependent parts as A(t ) = A0 + δA(t ), B(t ) = B0 +
δB(t ), and 
(t ) = 
0 + δ
(t ). Then, Eq. (10) is replaced
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with
∂tδ
 = 2A(t )δ
 + 2δA(t )
0 + δB(t ). (14)

We solve Eq. (14) perturbatively with respect to ε. Because a
regular perturbation yields a secular term, we use a two-timing
method based on timescale separation [42]. As a result, we
obtain 
(t ) as (see Supplemental Material [45])


(t ) = 
0 + δ
(t ) = 
ad(t ) + δ
nad(t ) + O(ε2), (15)

where 
ad(t ) and δ
nad(t ) are the adiabatic solution and the
lowest nonadiabatic correction to it, respectively, as


ad(t ) ≡ − 1
2 A−1(t )B(t ), (16)

δ
nad(t ) ≡ −
adB−1(t )
∂
ad

∂T
ε. (17)

From Eqs. (13) and (16), we have


−1
ad (t ) = H(t )

kBT (t )
. (18)

Thus, the probability distribution P(x, t ) in the adiabatic limit
ε → 0 agrees with an instantaneous equilibrium distribution
with energy H (x, t ) and temperature T (t ), which validates the
condition given by Eq. (13).

Local and global linear response relations for speed
and temperature differences. We can now evaluate
the thermodynamic fluxes in Eqs. (2) and (3) using
Eqs. (15)–(17). Note that we can rewrite Eq. (3) as
Jq = 1

τcyc

∫ τcyc

0 dtγq(εt )
∫

dxn ∂H (x,t )
∂xi
Ji(x, t ) using Eq. (8),

and we can express Eqs. (2) and (3) as the time average of the
local thermodynamic fluxes as

Jw = 1

τcyc

∫ τcyc

0
dtg′

w(εt ) · jw(t ), (19)

Jq = 1

τcyc

∫ τcyc

0
dtγq(εt ) jq(t ), (20)

respectively, where we define the response vectors j =
( jw, jq)T ≡ (〈 ∂H (x,t )

∂λ
〉, ∫ dxn ∂H (x,t )

∂xi
Ji(x, t ))

T
as the local

thermodynamic fluxes. We also introduce the conjugate
local nonequilibrium perturbation vector f = ( f w, fq)T ≡
(λ̇,�T (t )/Tc)T = (εg′

w, γq�T/Tc)T. The perturbations are
the speed of adiabatically changing parameters and tempera-
ture difference, and the responses are the generalized pressure
and instantaneous heat flux. The relationship between the per-
turbations and responses can be written as a local flux-force
form [40,41], namely, j = jad + �f to the linear order of f ,
where jad is an adiabatic response that remains in the limit of
ε → 0 and �T → 0, and � is the local Onsager matrix given
by

� =
(

�ww �wq

�qw �qq

)
. (21)

We can expand jw and jq with respect to f as (see Supplemen-
tal Material [45])

jw � −kBT (t )

2

−1

ad · ∂
ad

∂λ
+ kBTc

2

∂
ad

∂λ

−1

ad · B−1
0

∂
ad

∂λ

· εg′
w, (22)

jq � kBTc

2

−1

ad · ∂
ad

∂λ
· εg′

w, (23)

to the linear order of f . We thus identify jad and � as

jad =
(− kBTc

2 
−1
ad

∂
ad
∂λ

0

)
, (24)

� =
(

kBTc
2

∂
ad
∂λ


−1
ad · B−1

0
∂
ad
∂λ

− kBTc
2 
−1

ad · ∂
ad
∂λ

kBTc
2 
−1

ad · ∂
ad
∂λ

0

)
, (25)

respectively. We can confirm the Onsager symmetry
�ww,mm′ = �ww,m′m and antisymmetry �wq,m = −�qw,m

(m, m′ = 1, . . . , p) at the local level. The former symmetry
relates to the dissipation, while the latter antisymmetry relates
to the dissipationless cross coupling between the heat flux and
the work flux (heat engine–refrigerator symmetry).

Subsequently, we consider the global linear response rela-
tions J = LF in Eqs. (5) and (6). The global thermodynamic
fluxes in Eqs. (19) and (20) can be rewritten as Jw =∫ 1

0 dT g′
w(T ) · jw and Jq = ∫ 1

0 dT γq(T ) jq in terms of the
slow time T = εt . We note that the contribution from jad

vanishes upon cycle averaging. Note that Fw = ε/Tc and Fq �
�T/T 2

c in the linear response regime and, using Eqs. (22) and
(23), we immediately arrive at the following expression for
the global Onsager matrix L:

L =
(

Tc
∫ 1

0 dT g′
w · �ww · g′

w Tc
∫ 1

0 dT γq�wq · g′
w

Tc
∫ 1

0 dT γq�qw · g′
w 0

)
. (26)

The local and global Onsager matrices in Eqs. (25) and (26)
constitute the first main results of this study. The global On-
sager coefficients L are given as the integration over one cycle
of the local Onsager coefficients � in Eq. (25). This yields a
hierarchical relationship between L and �, thereby relating
the different levels of symmetries. In particular, L shows
Onsager antisymmetry Lwq = −Lqw, reflecting the Onsager
antisymmetry �wq,m = −�qw,m for �.

In the linear response regime, the average entropy pro-
duction rate per cycle, σ̇ = JwFw + JqFq, in Eq. (1) takes
the quadratic form σ̇ = LwwF 2

w + (Lwq + Lqw )FwFq + LqqF 2
q ,

where we have used Eqs. (5) and (6). The second law of
thermodynamics σ̇ � 0 imposes constraints on L:

Lww � 0, Lqq � 0, LwwLqq − (Lwq + Lqw )2/4 � 0. (27)

For the present system, we find

σ̇ = LwwF 2
w , (28)

by using the explicit form of L in Eq. (26). Remarkably, we
readily observe Lww � 0, and thus σ̇ � 0 from the positive-
definite quadratic form of Lww in Eq. (26). The antisymmetric
coefficients do not contribute to σ̇ because they represent a
reversible, adiabatic change in entropy. The vanishing Lqq

also reduces σ̇ , which arises from nonsimultaneous contact
with the thermal baths at different temperatures. This property
is essentially the same as that known as the tight-coupling
condition [6]. Note that we have the optional thermodynamic
fluxes and forces. By switching the roles of Jw and Fw, that
is J̃w = Fw and F̃w = Jw, while maintaining J̃q = Jq and Fq =
F̃q, we obtain another global Onsager matrix L̃:

L̃ =
(

1
Lww

− Lwq

Lww

Lqw

Lww
− LqwLwq

Lww

)
, (29)
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assuming that Lww is nonvanishing and using Lqq = 0. Thus,
we can confirm the symmetric nondiagonal elements and the
vanishing determinant, where the latter corresponds to the
tight-coupling condition. Such a choice of fluxes and forces
was adopted to identify Onsager coefficients of the finite-time
Carnot cycle in [30–32]. As we will see below, the vanishing
Lqq, equivalently, the tight-coupling condition, implies the
attainability of the Carnot efficiency in the adiabatic limit
ε → 0 [40].

Thermodynamic efficiency. Using the global linear re-
sponse relations in Eqs. (5) and (6) together with Eq. (26),
we formulate the power P and efficiency η of our Gaussian
heat engines,

P ≡ −JwFwTc = −(LwwFw + LwqFq)FwTc, (30)

η ≡ P

Jq
= −JwFwTc

Jq
= ηC − Lww

Lqw

FwTc, (31)

where ηC ≡ �T/Th � �T/Tc is the Carnot efficiency. In the
adiabatic limit Fw → 0, we recover η = ηC. For small ε,
the power behaves as P = −Lwq�T ε/T 2

c + O(ε2). It should
agree with �T �Sε, where �S denotes an adiabatic entropy
change of the system and �T �S is an adiabatic work per
cycle. Thus, we identify Lwq = −Lqw = −T 2

c �S, which clar-
ifies the vanishing contribution of these antisymmetric parts
to the irreversible average entropy production rate σ̇ . The
efficiency under a given Fw, that is, the speed ε, is bounded
by the upper side as

η � ηC − L2

Tc�S
ε, (32)

where TcL2 is the minimum value of Lww. Reparameterizing
from T to θ (0 � θ � 1), we have

∫ 1
0 dT g′

w · �ww · g′
w =∫ 1

0 dT dgw

dθ
· �ww · dgw

dθ
|θ ′(T )|2. Using the Cauchy-Schwartz

inequality, we obtain Lww � Tc|
∫ 1

0

√
dgw

dθ
· �ww · dgw

dθ
dθ |

2

≡
TcL2 [46]. Equation (32) constitutes our second main result.
It yields a tighter bound than the Carnot efficiency imposed
by the conventional second law of thermodynamics and is at-
tained for an optimal protocol under a given cycle speed. Such
a bound was obtained by virtue of the detailed structure of the
global Onsager coefficients [Eq. (26)]. L is equivalent to the
thermodynamic length, which constrains the minimum dissi-
pation along finite-time transformations close to equilibrium
states [46–53]. An expression similar to Eq. (32) including
an effect of temperature-variation speed was recently derived
based on a geometric formulation of quantum heat engines
[23]. Here, we derived the similar form in terms of the global
linear response relations between the speed of adiabatically
changing parameters and temperature difference.

Example: Brownian heat engine. We demonstrate our
results by using the simplest illustrative case of a one-
dimensional stochastic Brownian heat engine model (n=p=1)
[8,16,46]. Let x1 = x be the position of a Brownian particle
immersed in a thermal bath. The probability P(x, t ) obeys the

following FP equation [54,55]:

∂P(x, t )

∂t
= − ∂

∂x

[
− 1

γ

∂U (x, t )

∂x
P(x, t ) − kBT (t )

γ

∂P(x, t )

∂x

]
,

(33)

where γ is viscous friction coefficient, and H (x, t ) =
U (x, t ) = λ(t )

2 x2 with λ(t ) = λ0 + gw(εt ) is a harmonic po-
tential. We identify A and B as A = A11 = − λ(t )

γ
and B =

B11 = 2kBT (t )
γ

. Because the Boltzmann distribution with Tc and

λ0 is p0(x) =
√

λ0
2πkBTc

e− λ0x2

2kBTc , the variance at equilibrium is

0,11 = kBTc/λ0.

The adiabatic solution is given by 
ad,11(t ) = kBT (t )/λ(t ).
The local linear response relations j = jad + �f are then ob-
tained from Eqs. (24) and (25) as

jw = kBT (t )

2λ(εt )
+ γ kBTc

4λ3(εt )
εg′

w(εt ), jq = − kBTc

2λ(εt )
εg′

w(εt ),

(34)

up to O(f ), which determines the local and global Onsager
matrices � and L as

� =
( γ kBTc

4λ3(εt )
kBTc

2λ(εt )

− kBTc
2λ(εt ) 0

)
, (35)

L =
⎛
⎝ γ kBT 2

c

∫ 1
0 dT g′

w (T )2

4λ3(T )
kBT 2

c
2

∫ 1
0 dT g′

w (T )γq (T )
λ(T )

− kBT 2
c

2

∫ 1
0 dT g′

w (T )γq (T )
λ(T ) 0

⎞
⎠,

(36)

respectively. We can confirm the Onsager antisymmetry in �

and L, as expected. For a Carnot-like cycle with γq(T ) = 1 for
0 � T < Th (0 < Th < 1) and γq(T ) = 0 for Th � T � 1

[33], we have Lwq = −Lqw = −T 2
c �S = kBT 2

c
2 ln(λ1/λ0),

where λ1 ≡ λ(Th) and λ0 = λ(0) = λ(1) are the minimum
and maximum values of λ along the cycle, respectively. We
can obtain

L2 = γ kBTc

Th(1 − Th)

[
1√
λ1

− 1√
λ0

]2

(37)

using the optimal protocol λ∗(T ) for a given λ0 and λ1 [46]:

λ∗(T ) =
{[ T
Th

√
λ1

+ Th−T
Th

√
λ0

]−2
(0 � T < Th),[ T−Th

(1−Th )
√

λ0
+ 1−T

(1−Th )
√

λ1

]−2
(Th � T � 1).

(38)

The efficiency bound in Eq. (32) for the present case thus
becomes

ηC −
2γ

∣∣ 1√
λ1

− 1√
λ0

∣∣2

Th(1 − Th) ln
(

λ0
λ1

)ε. (39)

A comparison of the bound given by Eq. (39) with that,

for example, using Lww = γ kBT 2
c (λ0−λ1 )

8Th (1−Th ) ( 1
λ2

1
− 1

λ2
0
) for a linear

protocol connecting λ0 and λ1 highlights the importance of
protocol optimization as a design principle.

Concluding perspective. We developed a linear response
theory for generic Gaussian heat engines as the simplest
model of adiabatically driven linear irreversible heat engines.
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We established the hierarchical relationship between the lo-
cal and global Onsager coefficients. Further, we derived the
efficiency bound under a given rate of adiabatic change; the
derived bound is tighter than the Carnot efficiency imposed
by the second law of thermodynamics. We expect that the
present results will contribute to a deeper understanding of
the physical principles and optimal control of nonequilibrium
heat engines.

We note complementary approaches for the formulation of
the linear irreversible thermodynamics to periodically driven
heat engines in Refs. [33–38]. In these approaches, the other

thermodynamic force (that is, in addition to the temperature
difference) is the strength of periodic forcing, and not its
speed, as in the present approach. Interestingly, the Onsager
coefficients in these cases were found to be decomposed into
adiabatic and nonadiabatic contributions. The existence of
different types of linear irreversible thermodynamics implies
the rich and versatile structures of periodically driven heat
engines, and this deserves further investigation.
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