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Thickness of a three-sided coin: A molecular dynamics study

Gopinath Subramanian
X-Computational Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Received 30 December 2020; accepted 5 April 2021; published 26 April 2021)

This Letter presents a numerical study across parameter space to calculate the aspect ratio (ratio of length to
diameter) of a fair “three-sided coin”: a cylinder that when tossed, has equal probabilities of landing heads, tails,
or sideways. The results are cast in the context of previous analytical studies, and the various mechanisms that
govern the dynamics of coin tossing are compared and contrasted. After more than 7 × 108 tosses of coins of
various aspect ratios, this study finds the critical aspect ratio to be slightly less than (but not exactly equal to)√

3/2 ≈ 0.866.
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I. INTRODUCTION

In systems whose evolution is governed by deterministic
Newtonian mechanics, slight variations in initial conditions
combined with a long evolution time may render the system
chaotic. The final outcome of such systems is effectively
random and necessitates a probabilistic treatment. The first
studies of problems involving chance can be attributed to
Cardano [1], whose studies of dice, cards, and knucklebones
laid the foundations for the theory of probability. One of the
simplest systems that exhibits effectively random behavior is a
tossed coin, and the first step in incorporating probability into
the physics of a tossed coin (by choosing an initial angular
velocity drawn from a distribution) was taken by Keller [2],
who examined the tossing of a coin of zero thickness. Other
more sophisticated models for a coin with finite thickness
were developed by Vulović and Prange [3], Bondi [4], Kuin-
dersma and Blais [5], and Yong and Mahadevan [6], some
of which have accounted for bouncing of the coin in various
ways, precession of the coin, and for scenarios where the coin
falls on a perfectly inelastic surface.

The problem of tossing a thick coin was recently popu-
larized by Parker and Hunt’s video titled “How thick is a
three-sided coin?” on the popular website YouTube [7]. Parker
and Hunt view coins as cylinders, and seek to determine the
critical value of the aspect ratio that results in a coin having a
probability of landing either heads, tails, or sides, each equal
to 1/3. As with some previous studies, the authors used a
model based on the ratios of areas to calculate a critical aspect
ratio.

As with most complex dynamical systems described by
differential equations, numerical methods can be used to min-
imize the number of assumptions that simpler models adopt.
Numerical methods have the additional advantage that reliable
statistics can be gathered over a range of initial conditions and
parameters. In this study, we report the statistics of tossing a
coin of various aspect ratios obtained using the molecular dy-
namics (MD) method. MD been used for numerous atomistic
and coarse grained studies to examine phenomena as diverse
as ion diffusion [8], radiation damage evolution [9], and the

thermodynamics of DNA and RNA [10]. In the remainder
of the Letter, we briefly describe our protocol for construct-
ing a coin and tossing it, and present our results. We find
Bondi’s model [4] to be the most realistic, as it incorporates
the physics of a coin falling on a surface, losing energy, and
then rolling over.

II. METHODS

We consider coins to be cylinders of diameter D and length
(or thickness) L. As is common in the fluid mechanics [11]
and materials science [12] communities, we use the definition
of aspect ratio of the cylinder φ = L/D. All coins in this
study are then discretized into a set of spheres of diameter d ,
shown schematically in Fig. 1, where hard spheres are placed
along the circumference of the circular faces of the cylinder.
In this schematic, 30 hard spheres are used to discretize the
cylinder. The actual range of the number of spheres used for
the discretization, along with a discussion of roughness, is
presented later in this Letter.

All spheres that make up the coin are constrained to remain
stationary with respect to each other, thereby constraining the
coin to move (translate + rotate) as a rigid body. All spheres
are assigned a mass m, and interact with the x-y plane at z = 0
with a shifted and truncated (purely repulsive) Lennard-Jones
potential,

ULJ (z) =
{
ε + 4ε[(σ/z)12 − (σ/z)6] z � zc

0 z > zc.
(1)

The quantities σ and ε set the length and timescales of
the simulations. The fundamental units of mass, length, and
time are, respectively, m, σ , and τ = σ (m/ε)1/2. The cutoff
distance is chosen as zc = 21/6σ , making the potential purely
repulsive. The addition of ε ensures that ULJ (zc) = 0, and
eliminates the discontinuity at the energy minimum. More-
over, this cutoff distance is also equal to the diameter of
each Lennard-Jones sphere, d . During the discretization, all
spheres are placed such that the center-to-center distance of
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FIG. 1. Schematic of the discretization used in this study. We use the definition of aspect ratio φ = L/D. In this model, the diameter of
each Lennard-Jones sphere is d = 21/6σ , which is also the center-to-center distance (along a straight line, not the circumference) of adjacent
spheres. (a) Discretization of an ideal cylinder into spheres. (b) View along the cylinder axis. Here, h is the height of the cylinder axis above a
horizontal plane when the cylinder is in equilibrium, and is used as a measure of cylinder roughness.

adjacent spheres (along a straight line, not the circumference)
is also equal to d .

As a result of this discretization, the cylinder surface is not
smooth. When the cylinder is in equilibrium on the x-y plane,
the height of the cylinder axis above this plane is h, and is
slightly lower than the ideal height D/2. The quantity h can
be obtained from the geometry shown in Fig. 1(b), and the
ratio 2h/D is used as a measure of deviation from an ideal
cylinder surface.

All spheres in the simulation are also subjected to a grav-
itational potential that mimics an acceleration due to gravity
of g:

Ug(z) = mgz. (2)

Each coin was then “tossed” using the following protocol:
(1) Place the coin with its centroid at the origin. Rotate the

axis of the cylinder about the y axis by an angle θ uniformly

distributed between [0, π/2], and raise the centroid of the coin
to a height H . This method of choosing the initial position is
sufficient to include all possible initial positions due to the
symmetry of the problem.

(2) The spheres that make up the coin are assigned an initial
velocity, such that the coin as a whole has an angular veloc-
ity ω uniformly distributed between [0, ωmax]. This angular
velocity is imparted about an axis of rotation perpendicular
to the cylinder axis and passing through the centroid, thereby
emulating the tossing of a coin. No rotation about the cylinder
axis is imparted, as this would undesirably stabilize the coin.

(3) The equations of motion are then integrated for a ran-
domization time trand . Note that during this (and other) time
integrations, the spheres making up the coin are constrained
to move as a rigid body.

(4) After randomization, a viscous damping force
F = −kv (where v is the velocity of a sphere) is introduced
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TABLE I. Summary of the parameters used in this study. The diameter of a Lennard-Jones sphere in this model is d = 21/6σ .

Parameter Value

Acceleration due to gravity g 2στ−2

Initial height H 10x the largest dimension of the coin
Maximum angular velocity of rotation ωmax 10 × 2π/

√
2gh

Time step 	t 10−3τ

Randomization time trand 105	t
Viscous damping coefficient k 0.1
Smallest external diameter 2.909σ (5 spheres along the circumference)
Largest external diameter 18.987σ (50 spheres along the circumference)
Smallest thickness 2 × d = 2.245σ

Largest thickness 20 × d = 22.449σ

to the equations of motion to slowly drain the kinetic energy
of the coin.

(5) The equations of motion are integrated until the coin’s
velocity becomes negligibly small.

(6) The direction of the cylinder axis is noted and used to
decide whether the coin landed heads, tails, or sideways.

The LAMMPS molecular dynamics package [13] was used
for all simulations. This coin toss experiment was repeated a
large number of times to gather statistics.

III. RESULTS AND DISCUSSION

Table I summarizes the various parameters used in this
study, along with the range of coin sizes. This combination
of parameters, chosen by trial and error, allows the coin to
bounce at least twice during the randomization phase and that
for typical initial conditions, performs ≈5 rotations before the
first bounce. We believe that these choices are sufficient to
allow the coin toss to be effectively random.

The aspect ratio φ of the coin is defined as the ratio of
the length of the cylinder axis to its diameter. For each as-
pect ratio, the coin was tossed 8.74 × 105 times using the
protocol described above. The statistics obtained are plotted
in Fig. 2, which shows the probability of obtaining heads,
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FIG. 2. Results of coin tosses for various aspect ratios. We have
used the definition of aspect ratio as the ratio of the length to diameter
of the cylinder, i.e., φ = L/D.

tails, and sideways (denoted by Ph, Pt , and Ps, respectively)
as a function of the coin’s aspect ratio. In this plot, there is a
fourth set of data obtained from small diameter coins. We have
plotted Ph, Pt , and Ps using a single symbol (open squares) for
these coins, as these data suffer from artifacts arising from the
discretization.

Coins with D � 7.196 (corresponding to 17 or fewer
Lennard-Jones spheres along the circumference of one face, or
34 spheres in total) were categorized as small diameter. This
cutoff corresponds to the ratio 2h/D = 0.996. The choice of
this cutoff, while arbitrary, appears to allow the “good” data
to fall on sigmoidal trendlines. Furthermore, we see that data
from the small diameter coins deviates from the trendlines
only at moderate aspect ratios between, say, 0.8 and 1.5.

Focusing on the data that do not seem to suffer from dis-
cretization artifacts, we see that in the limit that φ → 0, which
represents a very thin coin, we obtain the classically expected
result of Ph = Pt = 0.5, and Ps = 0. As we increase the thick-
ness of the coin, we start to see significant deviations from the
behavior of a fair coin at φ ≈ 0.5, where the probability of
the coin landing on its side is non-negligible. The thick coin
limit seems to be attained at φ ≈ 2.5, where the probability
of obtaining heads or tails is practically zero, and we are
approaching the expected behavior of the limit φ → ∞.

At a critical aspect ratio close to (but not exactly equal
to) φc ≈ √

3/2 ≈ 0.866, we see that the three probabilities
are nearly equal. This critical aspect ratio is markedly differ-
ent from the results of previous, more simplistic studies. We
believe that this is because our numerical study incorporates
many of the dynamical subtleties that can be difficult to in-
corporate in simpler analytical treatments. For example, Yong
and Mahadevan [6] obtained φc = 0.577 with the assumption
that the coins land on a “jellylike” surface, i.e., when a coin
hits the surface, it immediately ceases all motion. Parker and
Hunt, using the ratios of projected areas, calculate φc = 1/

√
3

[7].
Of the many models present in the literature, Bondi’s

model [4], which used energy considerations on a perfectly
inelastic surface to determine that φc = 0.75, comes closest
to the value presented in this work, and is thus discussed in
more detail. Bondi assumes that when the cylinder hits the
ground, it completely loses all kinetic energy. However, since
the centroid of the cylinder is higher than the equilibrium
position, it then continues to roll until the next impact, and
so on until it comes to rest. Since Bondi’s notation is different
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from that used in this Letter, the steps taken to translate the
results from his notation to ours are outlined next. He defines
the length of a “diagonal” 2 f , and an angle σ between the
axis of the cylinder and its diagonal, such that the diameter
of the cylinder is D = 2 f sin σ and the length of the cylinder
is L = 2 f cos σ . He then proceeds to determine that the “side
trap” has a width of f (1 − sin σ ) and the “base trap” has a
width of f (1 − cos σ ), and the ratio of probabilities ending
up on the base (either heads or tails) or on the side is the ratio

of these trap widths. Thus, for Ph = Pt = Ps = 1/3, we obtain
φc = 0.75, which is closer to our value. Bondi then goes on
to describe how his analysis could be extended to imperfectly
inelastic collisions, but does not follow through. The results of
the present study indicate that an extension of Bondi’s model
might yield an analytical solution.
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