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Wrinkling of liquid-crystal elastomer disks caused by light-driven dynamic contraction
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The trigger time of light-driven wrinkling is very critical for accurate active control in photo-powered ma-
chines. In this paper, the wrinkling of liquid-crystal elastomer disks caused by light-driven dynamic contraction
is theoretically studied, and the critical times for appearance and disappearance of the wrinkles are numerically
calculated. The light-driven prebuckling stress can be significantly adjusted by changing the contraction coeffi-
cient, while controlled within a certain limit by tuning the light intensity and illumination time. There exists a
critical contraction coefficient for triggering the wrinkling of the disk, and the second-order mode of wrinkling is
the most unstable mode, which is most easily induced for the illumination radius ratio 0.69. The critical times for
the appearance and disappearance of wrinkling can be significantly changed by the contraction coefficient, while
regulated only within a certain range by the light intensity and the illumination radius ratio. These results have
potential applications for accurate active control in the fields of soft robotics, active microlens, smart windows,
and tunable surface patterns.
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I. INTRODUCTION

Liquid-crystal elastomers (LCEs) are synthesized by
anisotropic rodlike liquid-crystal molecules and the stretch-
able long-chain polymers, which have unique characteristics
including big actuation stress of 300 kPa [1] and big actuation
strain of 400% [2]. Nematic elastomers are the widespread
thermotropic elastomers, which shrink along and stretch per-
pendicular to the nematic director in respond to heat [3],
electric field [4], light [5,6], magnetic field [7], and chemicals
[8], etc. This large, anisotropic, spontaneous, and reversible
deformation has been widely used in the fields of artificial
muscles [9,10], motors [11,12], soft actuators and sensors
[13–15], tunable optical and tactile devices [16], and stretch-
able optical devices [17].

Light is widespread and easily available in nature.
Furthermore, light has many unique advantages, which
make it have great application value. For example, its
characteristic parameters such as wavelength, intensity,
and polarization provide broad design space for practical
application requirements, and can realize the precise control
of light in the equipment [18]. In recent years, more and
more attention has been paid to the light-driven deformation
of LCE. Yu et al. experimentally realized the reversible
photoinduced bending of azobenzene chromophore for the
first time [19]. By designing defects and structures reasonably,
the photoinduced patterns can be accurately controlled
[20,21]. Recently, a variety of light-powered robots which
can “walk” [22–24] and “swim” [25,26] have been realized
by using LCE materials. In addition, many scholars have
established theoretical models to describe the photo-driven
bending of LCE beams [27,28] and LCE plates [29–31].
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Recently, light-driven morphological wrinkles of LCEs
have attracted many scholars’ attention [32–38]. It is very
important to understand the wrinkling of LCEs, for it
can be used to design and manufacture new devices [11],
and sometimes should be inhibited for the stability of the
structures [21]. Yang and He analytically obtained the critical
buckling load and buckling mode of glassy nematic films
[32], and numerically achieved the accurate wrinkling patterns
[33]. Fu et al. theoretically and numerically investigated the
appearance and evolution of wrinkling patterns of LCE films
under various distributed light illumination [34]. Agrawal
et al. fabricated a bilayer made of LCEs and polystyrene,
and the bilayer can reversibly buckle into regular patterns
[35,36]. Sun et al. used light as a viable controlling approach
to buckle thin films and obtain various spatial morphologies
of buckling [37].

In the above-mentioned works on light-induced wrinkling,
it is assumed that the light-driven deformation is time in-
dependent. In fact, the light-driven deformation is always
time dependent. Recently, the light-driven dynamic defor-
mation has attracted extensive attention [27,29,38]. To our
knowledge, how the light-driven dynamic contraction affects
wrinkling of LCE has rarely been investigated, which has
potential applications for accurate active control in the fields
of soft robotics, active microlens, smart windows, and tun-
able surface patterns. In this paper, we theoretically explore
the wrinkling of LCE disks caused by light-driven dynamic
contraction, and calculate the critical times for appearance and
disappearance of wrinkling. First, we combine the nonlinear
von Kármán plate theory and dynamic LCE model to establish
an LCE plate model. Then, we calculate the prebuckling stress
distribution and several wrinkling modes of the LCE disk
under a certain illumination radius ratio. Finally, we conduct
linear stability analysis to obtain the critical material contrac-
tion coefficient for the wrinkling and the critical times for the
appearance and disappearance of wrinkling.
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FIG. 1. Schematic model of a thin, freestanding LCE disk, with
radius b and the thickness h. The disk is homogeneously illuminated
vertically by light in a circular core area of radius a. The azoben-
zene liquid-crystal molecules are planar anchored and randomly
distributed in the thin LCE disk.

II. DYNAMIC OF PHOTOELASTOMERS

Figure 1 sketches a thin, freestanding LCE disk with ra-
dius b, which is homogeneously illuminated vertically in a
circular core area of radius a. According to Yu et al., the UV
light with wavelength less than 400 nm or laser can induce
trans-to-cis-isomerization [19]. Under the UV light excita-
tion, light-driven cis-to-trans-isomerization can be neglected
[39,40]. Therefore, the number fraction of cis-isomers φ(z, t )
depends on thermal excitation from trans- to cis-, thermally
driven relaxation from cis- to trans-, and light-driven trans-
to-cis-isomerization. Considering that thermal excitation from
trans- to cis- is often negligible relative to the light-driven ex-
citation [41,42], evolution of φ(z, t ) can be usually described
by the governing equation [41,42]

∂φ

∂t
= η0I (1 − φ) − T −1

0 φ, (1)

where T0 is the thermal relaxation time from the cis- to
trans-state and η0 is a light-absorption constant. In general,
the ratio between the cis-to-trans- and trans-to-cis-absorption
coefficients defines the light penetration depth [39,40]. For
simplicity, we assume the thickness is much smaller than the
penetration depth, and the light intensity I decays slightly with
the depth of the disk [32]. Therefore, φ(z, t ) is independent of
z, i.e., φ(z, t ) = φ(t ).

We assume that the azobenzene liquid-crystal molecules
are planar anchored and randomly distributed in the LCE
disk. Although it is very challenging to fabricate this sample
for the experiment, one could create a thin polydomain film
with small, randomly oriented nematic domains by using a
photoalignment technique actually [43]. When under the UV-
light excitation, the irradiated area contracts uniformly in the
plane and expands in the direction of thickness. For simplicity,
we assume that the fraction of azobenzene is far less than 1.
Therefore, by carrying out Taylor expansion and keeping only
the linear order term, the light-driven contraction strain ε0(t )
is proportional to the small cis-isomer number fraction φ(t ),
i.e., ε0(t ) = −C0φ(t ), with C0 being the phenomenological
contraction coefficient and relating the light-driven contrac-
tion with cis-isomer number fraction. The solution to Eq. (1)
can be easily obtained, and the light-driven contraction strain

is calculated as

ε0(t̄ ) = − C0 Ī

Ī + 1
− C0

(
φ0 − Ī

Ī + 1

)
exp [−t̄ (Ī + 1)], (2)

where Ī = η0T0I , t̄ = t/T0, and φ0 is the cis-number fraction
of the photochromic molecules at t = 0. It can be seen from
Eq. (2), for given C0, with the increase of light intensity or
illumination time, the light-driven strain has upper limit. Con-
versely, for given light intensity and illumination time, with
the increase of C0, the light-driven strain increases linearly,
and there is no upper limit.

The radial and hoop stresses in the disk caused by the light-
driven contraction strain can be easily given by Ref. [44].

σ (0)
rr = Eε0

2

[
λ2 − 1 −

(
λ2

ρ2
− 1

)
H (ρ − λ)

]
,

σ
(0)
θθ = Eε0

2

[
λ2 − 1 +

(
λ2

ρ2
+ 1

)
H (ρ − λ)

]
, (3)

where ρ = r/b, λ = a/b, E is Young’s modulus, and H (ρ−λ)
is the unit step function.

III. LINEAR STABILITY ANALYSIS

We represent out-of-plane deflection of the disk as W =
W (r, θ ). According to the von Kármán equation, the linearized
bifurcation equation governing the wrinkling of the disk can
be given as [45]

D∇4W − h

[
σ (0)

rr

∂2W

∂r2
+ σ

(0)
θθ

1

r

(
∂W

∂r
+ 1

r

∂2W

∂θ2

)]
= 0,

(4)

where D = Eh3/12(1 − ν2) is the bending stiffness, ν is the
Poisson ratio, and h is the thickness of the disk. Here, ∇2 =
∂2/∂r2 + ∂/r∂r + ∂2/r2∂θ2 is the Laplacian operator in po-
lar coordinates, and ∇4(•) ≡ ∇2(∇2(•)). For the purpose of
eliminating the purely rigid-body displacement of the disk,
the center of the disk is taken to be fixed, and the outer edge
is stress free. The associated boundary conditions are given
as r2∂2w/∂r2 + ν(r∂w/∂r + ∂2w/∂θ2) = 0, r∂ (∇2w)/∂r +
(1−ν)∂2(∂w/r∂θ )/∂r∂θ = 0 at r = b, and w = 0, ∂w/∂r =
0 at r = 0 [45].

To solve the bifurcation equation (4), we set W =
f (ρ) cos(nθ ), where n ∈ N is the wave number (the number
of identical circumferential wrinkles) and f (ρ) satisfies the
following differential equation:

d4 f

dρ4
+ 2

ρ

d3 f

dρ3
−

(
2n2 + 1

ρ2
+ hb2σ (0)

rr

D

)
d2 f

dρ2

+ 1

ρ

(
2n2 + 1

ρ2
− hb2σ

(0)
θθ

D

)
df

dρ

+ n2

ρ2

(
n2 − 4

ρ2
+ hb2σ

(0)
θθ

D

)
f = 0. (5)
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FIG. 2. The dimensionless prebuckling radial (a), (c) and hoop
stress (b), (d) distributions of the LCE disk under illumination radius
ratio λ = 0.3 for different light intensities Ī and illumination times t̄ .
It is noted that the prebuckling stresses are linear to the contraction
coefficient C0.

The corresponding boundary conditions for f (ρ) can also
be derived as

f |ρ=0 = 0,

df

dρ

∣∣∣∣ρ=0 = 0,

ρ2 d2 f

dρ2
+ ν

(
ρ

df

dρ
− n2 f

)∣∣∣∣ρ=1 = 0, (6)

ρ3 d3 f

dρ3
+ ρ2 d2 f

dρ2
− ρ[1 + (2 − ν)n2]

df

dρ

+ (3 − ν)n2 f

∣∣∣∣ρ=1 = 0.

Equation (5) associated with the corresponding boundary
condition (6) gives the eigenvalue problem for the wrinkling
of the LCE disk, which can be numerically solved by the
module bvp4c in MATLAB software.

IV. PREBUCKLING STRESSED STATES
DRIVEN BY ILLUMINATION

Based on Eq. (3), we can obtain the prebuckling stress
distribution in the disk. In the following computation, we
set b/h = 100 and ν = 0.5 [46,47]. Figure 2 illustrates the
radial and hoop stress distribution of the LCE disk under
illumination radius ratio λ = 0.3 for different light intensity
Ī , illumination time t̄ , and the contraction coefficient C0. It
is seen that the radial stress σ (0)

rr and hoop stress σ
(0)
θθ in the

illumination zone are equal to a constant greater than zero,
that is, the illumination zone is in tensile hydrostatic pressure
state. Outside the illumination zone, with the increasing ρ,
the tensile radial stress decreases continuously to zero at the
boundary of the disk, while the compressive hoop stress is
discontinuous at the boundary of the illumination zone, and
decreases continuously, which is the cause of wrinkling.

FIG. 3. Critical contraction coefficient C0 for wrinkling instabil-
ities of different modes in the LCE disk under different illumination
radius ratios λ = a/b, in the case of infinite light intensity and infinite
illumination time. In the computation, ν = 0.5 and b/h = 100.

It is noted that the prebuckling stress is linear to the
contraction coefficient C0, which can be seen from Eq. (3).
Figures 2(a) and 2(b) show that for given light intensity
(Ī = 2), with the increase of illumination time, the stress
amplitude increases nonlinearly and finally approaches an
asymptotic state shown by the red line, which is easily under-
stood from Eqs. (2) and (3). Figures 2(c) and 2(d) show that
for given illumination time (t̄ = 0.3), with the increase of the
light intensity, the stress amplitude increases nonlinearly and
also finally approaches an asymptotic state shown by the red
line. It can be seen that the prebuckling stress can be signifi-
cantly adjusted by changing the contraction coefficient, while
regulated within a certain limit by tuning the light intensity
and illumination time.

V. WRINKLING BEHAVIORS

As shown in Eq. (2) and Fig. 2, the light-driven strain
approaches the maximum value C0, in the case of infinite
light intensity and infinite illumination time. Herein, Fig. 3
shows the critical contraction coefficient C0 for wrinkling
instabilities of different modes in the LCE disk under different
illumination radius ratios λ = a/b, in cases of infinite light in-
tensity and infinite illumination time. It can be seen that, when
the light shines on the central zone of the LCE disk, it can
induce the wrinkling mode n � 2. This is because the region
outside the illumination zone wrinkles out of the surface to
release the hoop compressive stress. For a given illumination
radius ratio λ = a/b, with increasing wrinkling mode n, the
critical contraction coefficient C0 increases. Therefore, the
second-order wrinkling mode is most easily to occur.

For a given wrinkling mode n, the critical contraction coef-
ficient C0 first decreases and then increases with the increase
of the radius ratio λ. There is a minimum critical contraction
coefficient for the second-order wrinkling mode, which is
C0 = 0.0002 at λ = 0.69. There is a stable region in the disk
that will not buckle, as shown by the shaded area in Fig. 3.
The result means that the material contraction coefficient must
be greater than a critical value for triggering the wrinkling of
the disk. This result can guide the selection of materials in
practical applications.
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FIG. 4. The critical times for the appearance and disappearance
of wrinkling of second-order mode under different illumination ra-
dius ratios and light intensities.

VI. DYNAMIC EFFECTS

Next, we discuss the appearance critical time t̄a and the
disappearance critical time t̄d of wrinkling, in which t̄a is the
required time for the disk from light on to wrinkling, and
t̄d is the required time from light off to wrinkle disappear.
In the calculation, we assumed that the increasing buckling
deformation of the disk does not influence the illumination
zone. Figure 4(a) shows the variation of the critical time t̄a
of the second-order wrinkling mode with the illumination
radius ratio λ for C0 = 0.002. With the increase of λ, t̄a first
decreases and then increases. When the illumination radius
ratio λ = 0.69, t̄a is minimum. Under a given light intensity,
there is an instability region of illumination radius ratio, and
outside this region t̄a is infinite, that is, wrinkling does not oc-
cur. With the increase of light intensity, this region increases.
It is noted that when Ī → ∞, the region has a limit range
0.15 � λ � 0.98.

Furthermore, given the illumination radius ratio λ = 0.69,
t̄a increases with decreasing Ī . When Ī � 0.012, t̄a approaches
infinity, that is, no wrinkling occurs. This can be understood
from Eq. (2) that for given C0, when light intensity or illu-
mination time approaches infinity, the light-driven strain has
upper limit [38]. The result implies that there exists a mini-
mum light intensity for triggering the wrinkling. Meanwhile,
t̄a decreases with the increasing Ī , and there is a minimum
critical time t̄a = 0.0075, as shown in Figs. 4(a) and 4(b).
Additionally, Fig. 4(b) shows that for a given light intensity,
the larger the material contraction coefficient C0 is, the smaller
the critical time t̄a is.

Figure 4(c) shows the change of the critical time t̄d of
the second-order wrinkling mode with the illumination ra-
dius ratio λ for C0 = 0.002. With the increase of λ, t̄d first
increases and then decreases. Given the illumination radius
ratio λ = 0.69, t̄d increases with increasing Ī , and approaches

an upper limit value t̄d = 2.2. Meanwhile, when Ī � 0.012,
t̄d = 0, that is, no wrinkling occurs, as shown in Figs. 4(c)
and 4(d). Additionally, Fig. 4(d) shows that for a given light
intensity, the larger the material contraction coefficient C0

is, the larger the critical time t̄d is. It is concluded that the
critical times t̄a and t̄d can be significantly controlled by the
contraction coefficient, while can be regulated only within a
certain range by the light intensity and the illumination radius
ratio.

The LCE plate model adopted in this paper ignores the
slight curvature of the disk due to the inhomogeneous contrac-
tion caused by attenuating light intensity along the thickness,
which may slightly affect the quantitative analysis results,
while the qualitative analysis results should be reliable. More-
over, the model and analytical method proposed in this paper
are universal and have value for analyzing wrinkling of LCE
plates caused by illumination with arbitrary spatial and time-
resolved distribution. We hope that the results in this paper
can benefit for deepening the understanding of the buckling
caused by light-driven dynamic contraction, so as to guide the
subsequent experiments and engineering applications.

VII. CONCLUSION AND DISCUSSION

The wrinkling of LCE disk can be caused by light-driven
dynamic contraction. Through linear stability analysis, we
numerically calculate the critical contraction coefficient, the
critical times for appearance and disappearance of the wrin-
kles. The prebuckling stress can be significantly adjusted by
changing the contraction coefficient, while changed within a
certain limit by changing the light intensity and illumination
time. There exists a critical contraction coefficient for trigger-
ing the wrinkling of the disk, and the second-order mode of
wrinkling is the most unstable mode, which is most easily in-
duced for the illumination radius ratio 0.69. The results show
that the critical times for the appearance and disappearance
of wrinkling depend on the illumination radius ratio, light
intensity, and material contraction coefficient, which can be
significantly controlled by the contraction coefficient, while
regulated only within a certain range by the light intensity and
the illumination radius ratio. In practice, the phenomenologi-
cal contraction coefficient can be experimentally controlled by
the ways of adjusting the fraction of photochromic molecules,
etc., for achieving accurate active control in the fields of
soft robotics, active microlens, smart windows, and tunable
surface patterns.
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