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Critical scaling of compression-driven jamming of athermal frictionless spheres in suspension
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We study numerically a system of athermal, overdamped, frictionless spheres, as in a non-Brownian suspen-
sion, in two and three dimensions. Compressing the system isotropically at a fixed rate ¢, we investigate the
critical behavior at the jamming transition. The finite compression rate introduces a control timescale, which
allows one to probe the critical timescale associated with jamming. As was found previously for steady-state
shear-driven jamming, we find for compression-driven jamming that pressure obeys a critical scaling relation as
a function of packing fraction ¢ and compression rate €, and that the bulk viscosity p/é diverges upon jamming.
A scaling analysis determines the critical exponents associated with the compression-driven jamming transition.
Our results suggest that stress-isotropic, compression-driven jamming may be in the same universality class as

stress-anisotropic, shear-driven jamming.
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Athermal granular and related soft matter materials, such
as non-Brownian suspensions, emulsions, and foams, all un-
dergo a phase transition from a liquidlike state to a rigid
disordered state as the packing fraction ¢ of the granular
particles increases. This is the jamming transition [1,2]. Here
we focus on the behavior of frictionless particles, where jam-
ming is like a continuous phase transition with respect to
the behavior of the stress. Early studies of jamming focused
on what we will call stress-isotropic jamming: mechanically
stable jammed configurations are generated by isotropically
compressing the system, or by energy quenching random ini-
tial configurations at fixed ¢ [2-6]. At low ¢, particles avoid
each other and the pressure p vanishes. At a critical ¢, a
system-spanning rigid cluster forms and the pressure becomes
finite, while the shear stress o remains zero. Later studies
investigated shear-driven jamming [7-16], where the system
is uniformly sheared at a fixed strain rate y. For systems
with a Newtonian rheology, such as particles in suspension,
the system flows at low ¢ and small y with a shear stress
o « y. Thus, for y — 0, the viscosity n = o /y remains fi-
nite. However, above a critical ¢;, the system develops a
nonzero yield stress o¢(¢) = lim;_,oo > 0 leading to a di-
verging viscosity. Because of this finite o, we will refer to
this as stress-anisotropic jamming. Given the different sym-
metry of anisotropic shear-driven jamming versus isotropic
compression-driven jamming, it is natural to wonder if they
belong to the same critical universality class, i.e., if the critical
exponents describing singular behaviors are the same for any
given dimensionality of the system. For equilibrium critical
points, different symmetries often imply different universality
classes [17].

In this work, we consider this question by investigating the
dynamical behavior of the unjammed state below ¢, in order
to probe the diverging timescale associated with jamming.
In particular, we numerically compute the bulk viscos-
ity ¢ = p/é€ of frictionless, overdamped, soft-core particles,
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isotropically compressed at finite compression rates é. Al-
though isotropic compression causes the packing ¢ to steadily
increase, and thus it does not produce a steady-state ensemble
as does simple shearing, we nevertheless can compute ¢ by
averaging results over several different independent compres-
sion runs. Below jamming we find that ¢ has a well-defined
limit as € — 0, which diverges as ¢ — ¢;. We demonstrate
that a simple critical scaling ansatz, found previously to apply
for shear-driven jamming [8,9], also applies to compression-
driven jamming, thus uniting these two different thrusts of
jamming research and providing a framework in which to
numerically address the question of a common universality
class. Our scaling analysis strongly suggests that the critical
exponents of compression-driven jamming in two dimensions
(2D) are the same as previously found for shear-driven jam-
ming; the situation in three dimensions (3D) remains less
clear.

Prior Works. Numerical works in 3D [18,19] have ar-
gued for a common universality for athermal isotropic and
anisotropic jamming by looking at static “shear-jammed”
configurations of soft-core spheres, obtained by applying a
static shear strain to unjammed isotropic configurations, and
increasing the shear strain until jamming occurs. The same
scalings of pressure and contact number were obtained as
were previously found in isotropic jamming [2]. Similar con-
clusions for thermalized hard-core spheres have been found
in infinite-dimensional mean-field calculations [20] and in 3D
simulations [19]. These works are concerned with the struc-
tural properties of static, mechanically stable configurations at
or above jamming, and they do not probe the dynamics asso-
ciated with a diverging timescale as one approaches jamming
from below.

However, a connection between structural and dynamic
properties was proposed in [21,22] using a marginal-stability
analysis. If n, = p/y is the pressure analog of shear viscos-
ity in a shear-driven steady state, then [21,22] argued that
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the exponent 8, which characterizes the divergence of 7, as
jamming is approached from below, is determined by the
exponent 6 that describes the distribution of small contact
forces between particles in configurations exactly at jamming.
In other works [23,24], this viscosity 7, was found to scale
proportional to the decay time 7 for a sheared configuration
to relax to zero energy after the driving strain is turned off.
Recently, a direct calculation [25] of t from the dynamical
matrix of jammed configurations was found to give the same
relationship between t and 6 as in [21,22].

If these marginal-stability arguments are correct (see [26]
for further discussion), and if the exponent 6 has the same
value in stress-isotropic jammed configurations as in stress-
anisotropic jammed configurations, it could imply a common
universality for dynamic behavior. Such a common value for
6 was found for thermalized hard spheres at jamming in
[19,20]. However, it remains unclear whether the properties of
the thermally equilibrated, mechanically stable, shear-jammed
states of [19,20] are necessarily the same as in the athermal,
nonequilibrium, steady state of shear-driven jamming.

Experimental support for the critical scaling of shear-
driven flow curves in 3D has been found in both non-
Brownian suspensions [27,28] and emulsions [29-31]. How-
ever, the critical exponents 8 ~ 1.7-2 found in these works are
significantly smaller than that given by the above theoretical
prediction, 8 = 2.83 [26], possibly because the data used in
these experiments span too wide a range of packing ¢. We
are unaware of any similar experimental investigations for the
divergence of relaxation times or bulk viscosity in athermal
compression-driven systems.

Recently, numerical simulations have been used to inves-
tigate dynamic behavior below the jamming ¢;. As a direct
probe of diverging timescales upon approaching jamming
from below, Ikeda et al. [32] measured the decay time t as 3D
configurations relax to zero energy according to overdamped
equations of motion. For both stress-isotropic random initial
configurations, and for stress-anisotropic initial configurations
sampled from steady-state shearing, they found t to collapse
to a common curve, with a common divergence as ¢ — ¢y,
thus suggesting the same critical universality. However, a
more recent work [33] by several of the same authors of [32]
questions these results. While the predictions of [21,22,25],
relating the divergence of t to the force exponent 6, appear to
hold for small system sizes, once the number of particles N in
the system is sufficiently large, they found that t ~ In N for
¢ < ¢y; thus T would seem to have no proper thermodynamic
limit. It is therefore important to reexamine this question
numerically, using a method alternative to 7, to probe the
timescale associated with jamming as ¢ — ¢; from below.

To do so, we consider here isotropic compression at a
finite rate € [34] of soft-core, overdamped athermal spheres,
as in a non-Brownian suspension, in both 2D and 3D. The
finite rate € introduces a control time by which one can
probe the timescale associated with jamming. Measuring the
bulk viscosity ¢ = p/é€, we find no finite-size effect, as was
claimed for 7 in [33]. Considering soft spheres allows us to
measure not only how ¢ diverges below ¢;, but also how p
behaves above ¢,. We can then compare these results against
previous simulations of the viscosity 7, in the shear-driven
steady-state.

Model. Our model consists of bidisperse, frictionless
soft-core spheres, with equal numbers of big and small
spheres with diameter ratio dp/d; = 1.4 [2]. For particles
with center-of-mass positions r;, and r;; = |r; — r;|, two par-
ticles interact with a one-sided harmonic contact potential,
U(rij) = %ke(l — r,;,-/d,-j)z, whenever their separation r;; <
dij = (d; + d;)/2. The elastic force on i, due to contact with
Jj,1s thus ffjl = —dU (r;;)/dr;, and the total elastic force on i is
ffl => ; fi"}l, where the sum is over all j in contact with i. Par-

ticles also experience a dissipative drag force fidis with respect
to a suspending host medium. We take fidiS = —k,Vi[v; —
Vhost (1)1, where V; is the volume of particle i, and v; = dr;/dt.
For uniform compression we define the local velocity of the
host medium as vpes(r) = —ér. This simple model has been
widely used for sheared suspensions [7,8,10,15,21,22,35-40].
Particles obey the equation of motion, m;[dv;/dt] = ff' 4 £355,
where m; is the mass of particle i, which we take proportional
to its volume V.

To simulate our model, we use dimensionless units of
length, energy, and time so that d;, =1, k., =1, and 7y =
(D/2)k(,gVSdS2 /ke = 1, where D = 2,3 is the dimensionality
of the system. We define the quality factor Q = t;/7, =
mgk./ksVid; as the ratio of the dissipative time t; =
my/(kqVy) and the elastic time t, = \/m,d?/k, [41]. Note,
to = (D/2)1,/Q. We set the mass of the small particles m
so that Q = 0.01 in 2D and 0.0225 in 3D, which puts our
system in the strongly overdamped limit Q < 1 where p is
independent of Q [41]. We use LAMMPS [42] to integrate
the equations of motion, using a time step of At/fy = 0.01.
Our system consists of N particles in a cubic (square) box
of length L. We compress by decreasing the box length at a
fixed strain rate, dL/dt = —€L, while the particles are acted
on by the compressing host medium via fidis. This results in an
increasing packing fraction ¢ = N(V; + V;,)/(2LP). We take
periodic boundary conditions in all directions. Compressing
our system at rates from ¢ = 10~ down to 1078, we measure
the pressure p of the elastic forces from the stress tensor
L7P ij ffjl ® (r; —r;) as a function of the packing ¢. To
check for finite-size effects, we compare systems with N =
16384 and 32768 particles, averaging over 10 independent
random initial configurations for each size. Further details of
our compression protocol can be found in our Supplemental
Material [26].

Results. In Fig. 1 we plot our results for pressure p and
bulk viscosity ¢ = p/€é in both 2D and 3D. No finite-size
effect is observed in our data (see Supplemental Material [26]
for details). Our results are qualitatively similar to results
seen for pressure and shear viscosity in shear-driven jamming
[8,9]. From the trends observed as € decreases, our results
suggest the following limiting behavior as € — 0: below ¢y,
p vanishes while ¢ approaches a constant; above ¢, p stays
finite while ¢ diverges. As ¢ — ¢; from above, p vanishes
continuously; as ¢ — ¢; from below, ¢ diverges continu-
ously, demonstrating the existence of a diverging timescale in
compression-driven jamming. This is our first key result.

To confirm the above behavior, we posit that pressure obeys
a critical scaling equation of the same form found in shear-
driven jamming [7-10,38],

p=¢&lfp /ey, Sp=¢ — ¢y, (1)
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FIG. 1. (a) Pressure p and (b) bulk viscosity { = p/é vs packing
¢, for different compression rates é in two dimensions, and (c) p
and (d) ¢ in three dimensions. The vertical dashed lines locate the
jamming ¢;. Results for N = 16384 particles are shown as open
symbols, while results for N = 32 768 are solid symbols. No depen-
dence on N is observed. Error bars are roughly the size of the data
symbols.

where f(x) is an unknown scaling function. Since we observe
that { = p/é approaches a finite limit as ¢ — O below ¢,
Eq. (1) implies that f(x — —o0) ~ |x|~1=9%"  so that for
b < ¢y,

lim¢~ig—g)™",  p=0-q@. @
Above ¢, we observe that p approaches a finite limit as ¢ —
0, so Eq. (1) implies that f(x — +00) ~ x%", so that for ¢ <
¢y,

lim p~(p =y, y=qz. A3)

Note, the exponent B is expected to be independent of the
specific form of the elastic contact potential since it describes
behavior in the é — 0 hard-core limit [10]; the exponent y,
however, is sensitive to the power-law of the contact potential
[2,10]. A review of scaling in the context of shear-driven
jamming may be found in [9].

Since we find no size dependence in our data, we average
the results from our N = 16 384 and 32 768 systems together,
S0 as to improve our statistics. Expanding the log of the scal-
ing function as a fifth-order polynomial, In f(x) = Zi:o cpx",
we fit our data to Eq. (1), regarding ¢y, g, 1/zv, and the ¢, as
free fitting parameters.

The scaling form (1) holds only asymptotically close to
the critical point, i.e., ¢ — ¢;, € — 0. To test that our fits
are stable and self-consistent, we fit to Eq. (1) using different
windows of data, with ¢ € [@min, Pmax] and € < €max, to see
how our fitted parameters vary as we shrink the data window
closer to the critical point. Since our polynomial expansion for
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FIG. 2. Critical scaling parameters (a) ¢,, (b) 8, (c) y, and (d) the
x2/n ¢ of the fits, vs the upper limit of compression rate €y, used
in the fit, for three different ranges of ¢ € [@min, Pmax]- Each panel
shows results for both 2D and 3D systems. We use the jackknife
method to compute the estimated errors and bias-corrected averages
of the fit parameters. The data symbols in all panels follow the legend
shown in (a); open symbols and dotted lines are for 2D, solid symbols
and solid lines are for 3D. Note in (a) that the scale for ¢, in 2D is
on the left, while the scale for ¢; in 3D is on the right.

the scaling function f(x) should be good only for small x, we
also restrict the data used in the fit to satisfy |x| < 1.

In Fig. 2 we show the results from such fits, comparing
2D and 3D systems. In Fig. 2(a) we show the jamming ¢y,
in Fig. 2(b) the exponent 8, in Fig. 2(c) the exponent y, and
in Fig. 2(d) the x?/n; of the fit, where n; is the number of
degrees of freedom of the fit. All quantities are plotted versus
€max for three different ranges of [@min, Pmax]- We use the
jackknife method to estimate errors (one standard deviation
statistical error) and bias-corrected averages of these parame-
ters. We see that the fitted parameters remain constant, within
the estimated errors, as €y, decreases and we vary the range
of ¢. This suggests that our fits are stable and self-consistent,
with no need to include corrections-to-scaling in the analysis,
such as has been found to be necessary for simple shearing
[8,9]. The X2 /ny decrease as we narrow the window closer to
the critical point; for our narrowest window in ¢ the x2/n f
remain roughly constant at the two smallest €,,x, another in-
dication of the good quality of our fits. It is difficult, however,
to assess the significance of the numerical value of x2/n 5
unlike for shearing, where each data point (¢, y) represents
an average over a steady-state shearing ensemble that is inde-
pendent of its starting configuration [6], for compression the
configuration at a given (¢, €) is in general strongly corre-
lated with the configuration at the previous compression step
(¢ — Ag, €), and so the estimated errors on the data points are
similarly correlated.

Figure 2 shows that the exponents 8 and y are different
comparing 2D with 3D, in agreement with recent results for
simple shearing [23]. Thus jamming criticality in 2D seems
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FIG. 3. Scaling collapses showing p/é¢ vs (¢ — ¢;)/€/? for
(a) our 2D system and (b) our 3D system. The values of ¢;, g, and
1/zv used in making these plots come from our fits for €y, = 10763
and the narrowest range of [@min, Pmax]- The points within this data
window, which are used to make the fit, are shown as solid symbols;
the points that are not used in the fit are shown as open symbols.
We see a good collapse even for data that lie well outside the data
window used in the fit. The vertical solid line locates the jamming
8¢ = 0; the vertical dashed lines denote the additional constraint
|x| < 1 for data used in the fit.

to be different from that in 3D. This is our second key re-
sult. Taking the fit for the narrowest range [@min, Pmax] and
émax = 10707 as representative, we use those parameters to
make a scaling collapse of our data in Fig. 3, plotting p/é?
versus (¢ — ¢;)/é'/?". We see an excellent data collapse,
which extends well outside the data window that was use to
determine the fit parameters. However, when 8¢ /¢!/? < —2,
we see that the data depart from a common scaling curve at
the larger values of €. We believe this is due to the effect
of corrections-to-scaling that become more significant as €
increases and one goes further from the critical point.

From the fits of Fig. 3 we find the following critical pa-
rameters. In 2D we have ¢, = 0.8415 £ 0.0003, 8 = 2.63 £
0.09, and y = 1.12 £ 0.04. We can compare these to the
values found in simple shearing, in which case B is the
exponent associated with the divergence of the pressure ana-
log of the shear viscosity, n, = p/y. For shearing of the
same model system as considered here, Ref. [8] gives ¢; =
0.8435 +£0.0002, B =2.774+0.20, and y = 1.08 £ 0.03,
while Ref. [10] gives ¢; = 0.8433 £0.0001, 8 =2.58 £
0.10, and y = 1.09 £ 0.01. We thus find that the values of
the exponents B and y, found here for compression-driven
jamming, agree completely, within the estimated errors, with
those found for simple shearing. In 2D, compression-driven
and shear-driven jamming appear to be in the same universal-
ity class. This is our third key result.

Note, our ¢, for compression-driven jamming is slightly
lower than that found for shear-driven jamming. It is well
known [4-6] that the value of ¢; can depend on the jam-
ming protocol, and that the isotropic jamming ¢; found from
rapid quenches of random initial configurations is lower than
that found from shear-driven jamming. We can compare our
¢, for compression-driven jamming with previous values for
isotropic rapid quenches. In [43], O’Hern et al. find ¢; =
0.842, while in [44], Véberg et al. find 0.84177 £ 0.00001.
Both agree, within the estimated errors, with our compression-
driven value above.

For our 3D system, we find ¢; = 0.6464 £ 0.0005, 8 =
3.07 £ 0.15, and y = 1.22 £ 0.03. Our value of ¢, is a bit
lower than the ¢, = 0.648 found for the same model with
the rapid quench protocol [43], and the ¢; = 0.6481 found
by Chaudhuri et al. [4] for a more complicated isotropic
compression/decompression protocol that starts at a low ¢iyig;
neither of these works give an estimate for the error in their
values. As in 2D, our 3D compression-driven value of ¢,
is slightly lower than values found for simple shearing of
the same model, ¢; = 0.6474 in [39] and [40], and ¢; =
0.6491 £ 0.0001 in [23].

Concerning the critical exponents in 3D models of
overdamped sheared suspensions, numerical simulations on
hard-core spheres by Lerner er al. [39] find g = 1/0.34 =
2.94, while a later work of the same group, DeGiuli et al. [21],
finds B = 1/0.36 = 2.8. Simulations on soft-core spheres by
Kawaski et al. [40] find 8 = 1/0.391 = 2.56. None of these
works discuss the exponent y. More recent work by Olsson
[23], using a scaling analysis that includes corrections-to-
scaling, finds 8 = 3.8 £ 0.1 and y = 1.16 £ 0.01. Olsson has
argued that other works find a smaller value of 8 because
they do not probe close enough to the critical point. Given the
disagreement among these values of B for 3D simple shear-
ing, our value of 8 ~ 3.1 for compression-driven jamming
could be consistent with a common universality class. The
situation remains to be clarified. See our Supplemental Ma-
terial [26] for a comparison of 8 with the marginal-stability
predictions.

Note, the values of y that we find from compression are
in reasonable agreement with the values found from shearing.
That y > 1 for compression in both 2D and 3D is surprising
since it has generally been believed [2,4] that y = 1 for our
harmonic contact interaction.

The above results were obtained by averaging together
independent runs at constant values of the packing ¢. In our
Supplemental Material [26] we repeat our scaling analysis, but
averaging our runs at constant values of the average particle
contact number Z. We find no difference in any of the critical
parameters between these two methods of averaging.

To summarize, we have carried out simulations of
compression-driven jamming in a model of frictionless soft-
core spheres in suspension, in two and three dimensions.
Using the compression rate € as a scaling variable, in addition
to the distance to jamming 8¢, we find that the pressure, and
hence the bulk viscosity ¢, obey a critical scaling law (1) of
the same form as found previously for shear-driven jamming.
A diverging ¢ demonstrates that compression is characterized
by a finite timescale that diverges as ¢ — ¢; from below.
Unlike the claims in [33] for the relaxation time t, where
In N finite-size effects were seen for ¢ < 0.83 in 2D systems
of size N > 4096, and for ¢ < 0.57 in 3D systems of size
N > 1024, we observe no such finite-size effects in the bulk
viscosity ¢ for the entire range of ¢ and € we have used in
our systems with N = 16 384 and 32 768. Our results indicate
that isotropic, compression-driven jamming in 2D and 3D has
different critical exponents. For 2D our results suggest that
stress-isotropic, compression-driven jamming is in the same
universality class as stress-anisotropic, shear-driven jamming.
For 3D the situation is less clear, but our results could also be
consistent with a common universality class.
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