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Precursors of the El Niño phenomenon: A climate network analysis
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The identification of precursors of climatic phenomena has enormous practical importance. Recent work
constructs a climate network based on surface air temperature data to analyze the El Niño phenomena. We
utilize microtransitions which occur before the discontinuous percolation transition in the network as well as
other network quantities to identify a set of reliable precursors of El Niño episodes. These precursors identify
10 out of 13 El Niño episodes occurring in the period of 1979–2018 with an average lead time of approximately
6.4 months. We also find indicators of tipping events in the data.
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I. INTRODUCTION

The climate system is a highly complex nonlinear dy-
namical system consisting of various subsystems such as the
atmosphere, the ocean, the cryosphere, etc. The nonlinear
interactions within these subsystems lead to climatic phe-
nomena on multiple timescales such as cyclones, monsoons,
and oceanic currents [1]. These phenomena have major con-
sequences for ecological and economic events. Hence the
prediction of such events has practical utility, but is difficult
to achieve due to their complex nature. Therefore, the con-
struction of reliable predictors of such events is useful and
important. Recent methods proposed to analyze such systems
include the construction of complex networks from climate
data [1–3] which have been used to forecast important phe-
nomena, e.g., monsoons [4,5], the North Atlantic Oscillation,
and El Niño events [6–12].

These networks are constructed using massive datasets
consisting of the time series of weather observations at dif-
ferent geographic locations. These locations are chosen to be
nodes, and links are added between nodes based on correla-
tions between the dynamics. Recently, the utility of designing
generic tools that reliably track the structural changes in the
network has been highlighted [12]. Tracking these structural
changes in these networks reveals severe responses to climatic
events such as El Niño events.

The El Niño Southern Oscillation (ENSO) discussed
here is the most influential climate phenomenon on in-
terannual timescales, and is marked by irregular warm
(El Niño) and cold (La Niña) anomalies of sea surface tem-
peratures (SSTs) from the long-term mean state. Events are
defined as the consecutive overlapping of 3-month periods
of SST anomalies (�+0.5 ◦C) for warm (El Niño) events
and (�−0.5 ◦C) for cold (La Niña) events in the Niño 3.4
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region (i.e., 5◦ N-5◦ S, 120◦–170◦ W). The threshold is fur-
ther broken down into weak (0.5 ◦C–0.9 ◦C SST anomaly),
moderate (1.0 ◦C–1.4 ◦C), strong (1.5 ◦C–1.9 ◦C), and very
strong (�2.0 ◦C) events. This phenomenon triggers many
disruptions around the globe causing disastrous flooding or
severe droughts in large areas of South America, Asia, and
Australia, severe winters in Europe, intense tropical cyclones
in the Caribbean, and epidemic diseases occurring in var-
ious places [13,14]. The ENSO phenomenon is currently
quantified by the NINO 3.4 index. Here, the datasets of
the near surface air temperature of ERA-Interim reanalysis
[The European Centre for Medium-Range Weather Forecasts
(ECMWF)] within the period 1979–2018 are used to forecast
the development of the El Niño well in advance [15]. Early
forecasts of the El Niño event can contribute to better disaster
management and efficient distribution of resources well be-
fore the calamity.

Complex networks which represent a wide range of sys-
tems, e.g., ecosystems, financial markets, and the climate, can
have tipping points at which a phase transition to a contrast-
ing dynamical regime occurs. A variety of indicators, such
as the order parameter and the susceptibility, quantify the
loss of resilience which occurs when the systems approach
the transition point [16,17]. Percolation theory and the be-
havior of connected clusters has been used to predict the
transition point [18] for climate networks, where discontin-
uous transitions with associated jumps in the order parameter
have been observed. We analyze these discontinuous transi-
tions and identify a set of early warning precursors to these
transitions, and use them to predict the onset of El Niño
activity about 4–10 months in advance. Our methods are
quite reliable, and only lead to a single missed prediction
in the analysis of 40 years of data, and include the analysis
of microtransitions, and the identification of topological net-
work quantities such as node degrees, link densities, and link
lengths.

In the context of percolation, microtransitions are small
jumps in the order parameter, i.e., the size of the maximal
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cluster, which occur before the transition to percolation, and
accumulate at the transition point [19]. These microtransitions
are signaled by peaks in the variance of the order parame-
ter, and can be used to predict critical thresholds at which
the percolation transition occurs. For climate networks, these
values are characteristic of the data of the period for which
the network is constructed and can hence be used as generic
early-warning indicators of the El Niño years. The variance
in the order parameter, i.e., the susceptibility at the critical
point, can also be used to identify pre–El Niño years (indicator
years), and predict El Niño events in the subsequent year.
We note that the jump in the order parameter has been used
earlier to identify pre–El Niño years [20], but the suscepti-
bility constitutes a stronger indicator. Additionally, we have
carried out the topological analysis of the climate network of
each year and have found that several distinct features such
as the number of links and the degrees of the nodes in the
El Niño basin, differentiate clearly between El Niño years and
indicator years. Thus, this entire collection of features, i.e., the
susceptibility, the total number of links, the node degree (the
degree of the most linked node), the maximum value of corre-
lation strength, and the critical correlation value observed for
the climate network can be used as a set of precursors to an
upcoming El Niño event.

II. THE CONSTRUCTION OF THE NETWORK

The climate network is constructed by using daily near
surface (1000 hPa, nearly equal to one atmospheric pressure)
air temperature datasets [T̃ y(d )] recorded at 115,680 nodes
whose geographical locations are fixed by latitude and
longitude values. The grid size of the network can be altered
by changing the resolution of nodes such that every element
in the grid covers the same area on the globe. The available
datasets of the daily near surface (1000 hPa) air temperature
of ERA-Interim reanalysis (ECMWF) have 115,680 total
number of grid points (nodes) with 0.75◦ grid resolution out
of which we have extracted data for 726 grid points with 7.5◦
grid resolution that approximately homogeneously cover the
entire globe. Thus the total number of nodes on the equator
is given by n0 = 360◦/r0, where r0 is the grid resolution, and
the total number of nodes on mr0 latitude is given by nm =
n0 cos(mr0) where m ∈ [−90/r0, 90/r0]. The total number of
nodes in the climate network is then N = ∑m=90/r0

m=0 2nm − n0.
A geographical grid of 726 nodes with a grid resolution of
7.5◦ is constructed. Links are added between two nodes by
calculating the Pearson correlation function between their
temperatures. The filtered daily near surface air temperature
T y(d ) and the cross-correlation function Cy

i, j are defined
by [20]

T y(d ) = T̃ y(d ) − mean[T̃ (d )]

std[T̃ (d )]
, (1)

Cy
i, j (τ ) =

〈
T y

i (d − τ )T y
j (d )

〉 − 〈
T y

i (d − τ )
〉〈

T y
j (d )

〉
√[
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T y
i (d − τ )

〉]2
.
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T y

j (d )
〉]2

. (2)

Temperature datasets for 40 years from 1979 to 2018 have
been used to build a network for each year from January 1st
to December 31st. Here, τ is the time lag ranging from 0 to
200 days where the choice of time lag is discussed in [21]
and temperature data points prior to day “d” are considered
for the lagged data. Here, the quantities “mean” and “std” are
the mean and standard deviation of the temperature on day
“d” over all years and the averages (〈·〉d ) are taken over 365
days. The weight of the link between i and j is defined as
the maximum of the cross-correlation function max[Cy

i, j (τ )].
First, the links or edges with the highest weight (the largest
value of the cross-correlation function Cy

i, j) are added to the
network and later links are added in order of decreasing link
strength. Thus the network evolves as a function of C, as links
of weights ranging from a given value of C up to the maximum
value of C (which is Cmax) are added at each stage. Cmax is
the maximum link weight obtained from the correlation.
Quantities such as the order parameter, which is the
normalized size of the largest cluster (s1) and the susceptibility
(χ ) for each distinct value of C, are defined by [20]

s1 = S1

N
, (3)

χ =
∑′

s s2ns(C)∑′
s sns(C)

. (4)

Here, S1 is the size of the largest cluster, N is the total number
of nodes, ns(C) is the number of clusters of size “s” for link’s
weight C and below, and the prime on the sums indicates the
exclusion of the largest cluster S1 in each measurement. The
transition to the percolating state in this climate network is
identified via the existence of a giant cluster containing O(N )
nodes. Precursors which can predict this transition can prove
to be highly useful in the prediction of the El Niño and other
climatic phenomena.

III. PRECURSORS AND INDICATORS
OF THE TRANSITION

We note that El Niño events have been classified as very
strong, strong, and moderate events based on the El Niño
index, and compare the networks corresponding to each class.
These networks are characterized by plotting the susceptibility
(χ ) and the largest normalized cluster (s1). We plot these
quantities as functions of C for typical years with El Niño
events of each class, as well as the preceding years, which
turn out to be indicator years of the event (see Fig. 1).

The year is indicated at the top of all the plots, and the
red line marks the critical value Cc on the x axis at which the
largest jump is observed in s1. The transition to percolation
is signaled by the value of s1 tending toward 1, and the exis-
tence of a maximal cluster. A discontinuous phase transition
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FIG. 1. The largest cluster s1 (blue dotted line) and susceptibility χ (green line) is plotted as a function of the link strength C for the
network. Plots (a) December 2013, (b) December 1990, and (c) December 1993, which are years which precede a very strong El Niño episode,
strong El Niño episode, and a moderate El Niño episode, respectively. Plots (d)–(f) are for years when the El Niño episode peaks: (d) very
strong El Niño episode, December 2015; (e) strong El Niño episode, December 1992; (f) moderate El Niño episode, December 1994.

is clearly seen in s1 and the jump in the size of the maximal
cluster �s1 is the largest for the indicator year, i.e., 1 year prior
to the El Niño episode. The susceptibility χ is also plotted on
the same graphs. It can be seen that the magnitude of the jump
�χ is significantly larger in the indicator years compared to
other years.

The susceptibility of the network gives a measure of the
variation in the spread of clusters of different sizes at a given
correlation strength. We note that while the jump in the order
parameter has been suggested as a precursor [20], the sus-
ceptibility constitutes a more definitive and reliable precursor
for the upcoming El Niño episode as not only is the largest
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FIG. 2. The maximum jump in the susceptibility χ for each year
(1979–2018). El Niño years are shown in red with a gradation ac-
cording to their strength. There have been 13 such El Niño episodes
out of which 1982, 1997, and 2015 are very strong El Niño years;
1987 and 1991 are strong El Niño years; 1986, 1994, 2002, and
2009 are moderate El Niño years; and 2004, 2006, 2014, and 2018
are weak El Niño years. A false alarm (in the year 2000) and the
missed predictions (in the years 2001, 2003, 2008, and 2017) are
solely based on susceptibility. Note that after taking into account
other precursors (as summarized in Table I) we get one false alarm
and one missed prediction (in the year 2003).

jump �χ significant, but the sequence of peaks seen before
this jump also has a very distinctive pattern. Reference [20]
suggested that the susceptibility did not appear to have a clear
relation with the El Niño Index and hence did not use it as
a predictor. In contrast to their observations, we show that
the susceptibility can be used as a predictor, and also shows
a series of small transitions, i.e., microtransitions before the
percolation transition point. These quantities can be made to
make two distinct predictions. Here, the value of the jump
in the susceptibility (Fig. 2) can be used as a precursor of
the El Niño event, and the pattern of microtransitions can be
used to predict the value Cc at which the percolation transition
occurs.

We adopt the following criterion for the prediction of the El
Niño. When the maximum jump in the susceptibility crosses
a threshold value (here, 7), an El Niño episode is predicted in
the following year. This threshold succeeds in the prediction
of 7 events correctly out of 13 with just one false alarm. All
very strong, strong, and moderate events mentioned here are
predicted by our criterion, and only one very weak El Niño
event is missed. The threshold has been set to be the value of
the jump of the year 2005, which is the indicator year for a
weak El Niño year. This minimizes the false alarms.

This should be compared with the results of Ref. [20]
where the normalized largest cluster �s1 crossing a threshold
value (0.286), predicts an El Niño episode in the next year,
resulting in seven events being predicted correctly out of ten,
with one false alarm between 1980 and 2016.

The susceptibility pattern prior to an El Niño episode is
further analyzed by looking at the microtransitions signaled
by small jumps in the susceptibility occurring before the phase

transition signaled by the largest jump. The scaling relation
for the quantity (Cc − Ci+1/Cc − Ci ) plotted as a function of
the index i, the index of the peaks in the susceptibility �χ ,
can be used to predict the critical value of Cc in the given year
as follows.

A. Microtransitions and scaling

Here, Cc is the value of the link strength at which the
climate network undergoes the percolation transition, i.e., the
formation of a giant component (cluster) containing O(N )
nodes [Fig. 3 (inset)]. Figure 3(a) plots the magnitude of
successive jumps in the susceptibility with respect to the link
strength. Index i defines the ith jump in susceptibility starting
from Cmax. Using the scaling relation of Fig. 3(b) we have

Cc − Ci+1

Cc − Ci
= 0.9956. (5)

This scaling relation can be used to predict the critical value
Cc for the percolation transition, for the microtransitions in
the network for each year. For the indicator year 2014, we
find that Cc = 0.4669 using the values i = 44,C44 = 0.6719,
and C45 = 0.6710. This value of Cc from the scaling relation is
in reasonable agreement with the actual value of Cc = 0.4522
obtained from the order parameter jump. A similar pattern of
activity is observed for all the pre–El Niño years. We notice
that the Cc value ranges from 0.4411 to 0.4736 for all indicator
years except for the year 2008 prior to a moderate El Niño
episode.

The structure of the network can be analyzed further us-
ing topological quantities such as the distribution of the link
lengths, the total number of long length links, and the degrees
of the nodes. The values of these quantities can also be used
for the prediction of El Niño events.

B. Topological analysis of the network

The topological analysis of all 40 climate networks con-
structed out of the available data has also been carried out.
A significant quantity here is the length of the links, �i, j ,
i.e., the geographical distance between point i and point j,
typically of the order of thousands of kilometers. These re-
mote connections, called teleconnections [12], are of great
importance as they reflect the underlying climatic currents
mirroring the transportation of energy (Figs. 4 and 5). The
total number of teleconnections, the number of long distance
links, as well as the number of links with high correlation
strengths increase during El Niño episodes, as do nodes of
high degree (number of links per node). Figures 5(a) and 5(b)
indicate the geographical distribution of nodes of high degree.

It is noticed that the number of large distance links or
teleconnections increases significantly during El Niño as well
as La Niña activity. See Figs. 4(a), 4(b), 5(c), and 5(d).

The figures above further support the observation that the
total number of teleconnections increases significantly during
El Niño as well as La Niña activity. An increased number of
teleconnections with higher values of correlation strength are
also seen for El Niño years. The degrees of nodes (number
of links per node) at each grid location have been plotted
in Fig. 5(c), and confirm this observation. It can be clearly
seen that during very strong El Niño activity, nodes from the
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FIG. 3. (a) The jump �χ as a function of the link strength C. Inset: The susceptibility χ as a function of the link strength C for the network
1 year before a very strong El Niño episode, December 2014. (b) The scaling relation for the relative �χ positions (Cc − Ci+1/Cc − Ci ) as a
function of the index i.

El Niño basin have higher degree (�40) and are strongly con-
nected, whereas for indicator years, the degrees of these nodes
have a lower value in the range 0–15 and highly connected
nodes appear outside the El Niño basin. We thus have a set of
topological signatures for the indicator years of the El Niño
episodes in addition to the susceptibility, Cc and Cmax.

IV. CONCLUSIONS

Complete set of characterizers and lead times for prediction

Table I summarizes all the distinct and significant in-
dicators, for indicator years, as well as all the El Niño
episodes which occurred between the years 1979 and 2018.
The episode durations vary from 5 months to 19 months.
The values of the quantity �χ are significantly higher in
indicator years. We see that when the quantity �χ crosses
a threshold value 7, it serves as a predictor of the occurrence
of an El Niño event in the subsequent year. Here, a network is

constructed for each year using the data of ≈565 days and a
prediction is made at the end of every year (31st December).
We note that if an El Niño episode has already started before
this, and continues into the next year, this is not predicted
afresh for the next year, e.g., we treat the 18-month episode
of 1986-1987-1988, and the 19-month episode of 2014-2016
as single episodes in Table I.

From the data in Table I, the lead time between the pre-
diction and the beginning of the El Niño episodes is ≈6.4
months, and is ≈11.4 months before the episode peak, when
averaged over all the years. Again, the magnitude of �χ is
distinctly higher for indicator years followed by strong and
very strong El Niño episodes compared to those followed
by weak or moderate episodes. The value Cc at which the
network undergoes a discontinuous percolation transition is
listed in Table I. Here, the difference between indicator years
and El Niño years can be clearly seen. The degrees of the
nodes in these years also take high values, as can be seen in

FIG. 4. The histogram of the teleconnections in kilometers for the network. (a) One year before a very strong El Niño episode, December
1996. Inset: One year before strong La Niña episode, December 2009. (b) During a very strong El Niño episode, December 1997. Inset: During
a strong La Niña episode, December 2010.
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FIG. 5. (i) The geographic distribution of degrees for the nodes of the network for C = 0.5 and above. (a) One year before a very strong
El Niño episode, December 1996. (b) During a very strong El Niño episode, December 1997. (ii) The teleconnection plots of the networks at
C = 0.5 and above. (c) One year before a very strong El Niño episode, December 1996. The same quantity in the red rectangular region in
(c) is shown during a very strong El Niño episode, December 1997 in (d) indicating the teleconnections between the nodes with degree �70.

Fig. 5(b). Some of these quantities can be used as precursors
in conjunction with the susceptibility jumps and Cc values in
years where the El Niño phenomena is mild.

Here, we use three crucial predictors, viz., the jump in
the susceptibility, the total number of links, and the degree
of nodes. The jump in the susceptibility is used as the first
predictor (with the threshold value of the jump being set at 7),
as in Fig. 2. If this misses a prediction, as in 2001 and 2008,
and 2017, we look at the next two characterizers, viz., the
total number of links and the degree. If the values for both

these exceed their thresholds (here the threshold for the total
number of links is 10 000 and that for the degree of the
most linked node is 12), we predict an El Niño episode in
the next year. Table I also lists Cmax and Cc values for the
indicator years and El Niño years. Since these values vary in
a narrow range, we treat them as additional confirmation of
upcoming events as the Cc values range between 0.4411 <

Cc < 0.4736 for all indicator years except 2008 and shift
to higher values for the El Niño years. In the case of Cmax

the range is 0.7609 < Cmax < 0.8430 for indicator years, and

TABLE I. All El Niño events observed between 1979 and 2018 are listed here with their indicator years, and their duration in boldface. The
values of the jump in the susceptibility, as well as the topological characterizers, are listed in the table for El Niño years as well as indicator
years. Note that in 1986 the El Niño event lasted for 18 months and in 2014 it lasted for 19 months. Figure 2 shows the 1986 event as a
moderate El Niño event followed by a strong El Niño episode observed in 1987. Similarly, Fig. 2 shows a weak El Niño event in 2014 followed
by a very strong El Niño event in 2015. These consecutive events have been clubbed together in the table, giving 11 events in all.

Total Total Node
number Node number Node

Year �χ of links degrees Cmax Cc Year �χ of links degrees Cmax Cc

1. 1981 (15 months) 22 10108 14 0.7609 0.4411 7. 2003 (8 months) 5 9393 10 0.7984 0.4856
04/1982 to 06/1983 3 24850 40 0.8863 0.5419 07/2004 to 02/2005 7 10000 9 0.7929 0.4660
2. 1985 (18 months) 30 10601 9 0.7960 0.4536 8. 2005 (5 months) 7 10000 8 0.7929 0.4660
09/1986 to 02/1988 5 20021 70 0.9361 0.4879 09/2006 to 01/2007 2 12830 35 0.8712 0.4948
3. 1990 (14 months) 18 10592 8 0.7912 0.4682 9. 2008 (9 months) 6 17882 40 0.8346 0.5126
05/1991 to 06/1992 6 16545 25 0.8513 0.4874 07/2009 to 03/2010 1 24397 70 0.8747 0.5119
4. 1993 (7 months) 15 11981 25 0.7787 0.4695 10. 2013 (19 months) 27 11170 8 0.7877 0.4620
09/1994 to 03/1995 4 14099 25 0.8538 0.4871 11/2014 to 05/2016 3 20301 50 0.8949 0.5022
5. 1996 (13 months) 37 10331 8 0.8430 0.4736 11. 2017 (10 months) 2 11224 26 0.7840 0.4980
05/1997 to 05/1998 5 27469 85 0.9520 0.5027 2018 4 12919 30 0.8650 0.5001
6. 2001 (9 months) 3 10122 12 0.8157 0.4660
06/2002 to 02/2003 5 14311 10 0.7986 0.4856
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0.7929 < Cmax < 0.9520 for El Niño years. However, the
ranges are too small to set a reliable threshold.

We note that the complete set is able to identify the moder-
ate El Niño events in the years 2002-2003, 2009-2010, as well
as the weak event seen in 2018. Here, although the jumps in
the susceptibility miss picking up these events, Table I clearly
shows that the total number of links and the highest node
degree both successfully pick up these events, according to
the thresholds discussed, and the Cc and Cmax values lie in
the ranges mentioned above, both for the years of the events
and the indicator years. Thus, Table I successfully picks up
all the events shown except one, viz., 2003. This emphasizes
the importance of looking at the characterizers in conjunction
with each other.

Conversely, a false-positive alarm is observed in the year
2000 in the 40 climate networks studied, where the sus-
ceptibility and Cc predicted an El Niño in the year 2001,
which did not occur due to the presence of a prolonged and
strong La Niña episode between July 1998 and February 2001
(32 months). The total number of links and the highest de-
grees of nodes showed moderate values, viz., 11 000 and 16
in the year 2000, consistent with other indicator years. This
further emphasizes the requirement of looking at the full set
of indicators for the La Niña years, and for years where the
two phenomena occur close to each other. Some preliminary
work in this respect is in progress [22]. Further work in this
direction could include the improvement of prediction times
using sliding windows and the identification of tipping points
using link densities in focused geographic regions, e.g., in
the area of polar jet streams, i.e., slightly below the tropic of
Capricorn and the northwest part of Eurasia [23].

We note that we have not divided the data into a learning
and validation phase in the present work. However, the set of
precursors constructed here are amenable to automation via
machine learning. In the future, we hope to work on more
extensive data, and analyze the extent to which the method is
successful after dividing the data into learning and validation
phases.

V. SUMMARY AND DISCUSSION

To summarize, we have identified a set of precursors for
the El Niño phenomena, using the construction of climate
networks. These include the susceptibility, the value of the
critical correlation, the maximum value of the correlation
strength, and the total number of links observed in the cli-
mate network. The topological characterizers, i.e., the degree
distribution and the total number of links, supplement the
information available in the order parameter and the suscepti-
bility. These precursors, taken together, constitute signatures
of the indicator year which can reliably predict an El Niño
event, 4–10 months in advance, and significantly reduce the
frequency of false alarms. We hope our methods provide
pointers for other investigations in the context of climate
networks.
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