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Analytical approach to Lyapunov time: Universal scaling and thermalization
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Based on the geometrization of dynamics and self-consistent phonon theory, we develop an analytical
approach to derive the Lyapunov time, the reciprocal of the largest Lyapunov exponent, for general nonlinear
lattices of coupled oscillators. The Fermi-Pasta-Ulam-Tsingou-like lattices are exemplified by using the method,
which agree well with molecular dynamical simulations for the cases of quartic and sextic interactions. A
universal scaling behavior of the Lyapunov time with the nonintegrability strength is observed for the quasi-
integrable regime. Interestingly, the scaling exponent of the Lyapunov time is the same as the thermalization
time, which indicates a proportional relationship between the two timescales. This relation illustrates how the
thermalization process is related to the intrinsic chaotic property.
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Lyapunov exponents, which quantify the average exponen-
tial rate of divergences of the initially neighboring trajectories
in each direction of phase space, are powerful tools to provide
quantitative characterization of chaotic dynamics [1]. Lya-
punov exponents have been widely studied [2—19] to elucidate
the relationship with the important physical phenomena, such
as relaxation [5,8,9,20], transport [9,19,21-23], and phase
transitions [5,8,11]. For Hamiltonian systems with symplectic
structure, since the largest Lyapunov exponent is usually used
for measuring the degree of chaos, how to estimate the largest
Lyapunov exponent and its scaling properties are extremely
important. An analytical method based on the geometrization
of dynamics to calculate the largest Lyapunov exponent has
been principally proposed [24,25]. However, it is generally
difficult to quantify the largest Lyapunov exponent explicitly
via this method due to the presence of nonlinearity in the
Hamiltonian. Meanwhile, although various scaling laws of
the largest Lyapunov exponent have been given for different
models [17,26,27], whether there is a universal scaling law for
the largest Lyapunov exponent has been undetermined, which
requires the development of the analytical method for general
nonlinear Hamiltonian systems.

The features of chaos have been generally shown in Hamil-
tonian systems that can relax to thermodynamic equilibrium
from a nonequilibrium initial state, indicating the relevance
between nonlinear dynamics and statistical mechanics. The
relaxation process can be characterized by the property of
equipartition that was first numerically investigated by Fermi,
Pasta, Ulam, and Tsingou (FPUT) in 1955 [9,28]. During
the past several decades, the delicate relationship between
relaxation properties and chaos has drawn a lot of attention
[20,26,29-32]. It has been shown in Refs. [26,29] that the
behavior of relaxation time and the largest Lyapunov exponent
change consistently in the strong-stochasticity threshold. The
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ergodization time defined in Refs. [30,31] shows that consid-
erably different behavior in comparison with the Lyapunov
time. Recently, numerical evidence suggests that a close rela-
tion exists between the equilibration time and the Lyapunov
time [32]. For the quasi-integrable Hamiltonian systems, the
thermalization time f.q displays a universal power-law behav-
ior with the nonintegrability strength in the thermodynamic
limit, where the scaling exponent is —2 according to the wave-
turbulence theory [33-37]. However, the relationship between
two characteristic times, the Lyapunov time that represents
how long we should wait until the chaotic system exhibits
its chaotic features, and the thermalization time that indicates
how fast the system can be thermalized, is still unclear.

In this Letter, we develop an analytical approach to cal-
culate the Lyapunov time for nonlinear lattices of coupled
oscillators in terms of the geometrization of dynamics and the
self-consistent phonon theory (SCPT). In the quasi-integrable
regime, a universal scaling behavior of the Lyapunov time
is discovered, which is coincident with the universal scaling
of the thermalization time. This fact indicates an interesting
proportional relationship between the two timescales. The
approach are verified by molecular dynamical simulations for
the FPUT-like lattices. The numerical results agree well with
the theoretical predictions.

The idea of looking at dynamics from the geometric point
of view dates back to Poincaré, and qualitatively attempted to
investigate dynamics and its connection with statistical me-
chanics in 1940s. Based on previous studies [8,20] that bridge
the dynamical foundations of statistical mechanics with Rie-
mannian differential geometry, the theory of geometrization
of dynamics has been applied to study the chaos [24-27,38]
and phase transition [11,39-44] in Hamiltonian systems. The
key idea of geometrization of dynamics is connecting two
functional extremes, the action functional for natural motions
of system and the curve length functional for the geodesics
of manifold via a suitable choice of metric. One can verify
the geodesics of manifold with Jacobi or Eisenhart matric
[45] are the trajectories of natural motions of Hamiltonian
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systems [5,8,45]. So that the stability for trajectories of natural
motion corresponds to the stability of geodesics of manifold.
In general, the evolution equation (called Jacobi equation)
of the perturbation vector of geodesics, which is completely
determined by the curvature properties of the underlying man-
ifold, is too complex to be solved exactly. For simplifying
the Jacobi equation to provide an average measure of the
instability instead of the knowledge of dynamical trajectories,
several assumptions are introduced. Two main assumptions
are that the manifold is quasi-isotropic and the evolution of
geodesics is chaotic, which are invalid for general cases but
reasonable for the cases of large-N mechanics manifold. The
final effective Jacobi equation is a stochastic oscillator equa-
tion

&y

a2
where v represents any of the components of perturbation
vector, and the effective curvature k(¢) is regarded as a
Gaussian and §-correlated stochastic process on a convenient

timescale t. The mean and the variance of k() are the average
and fluctuations of the Ricci curvature per degree of freedom
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respectively, where (-),, denotes microcanonical average. For
Eisenhart metric and unit mass homogeneous chain, the Ricci
curvature is given by

Kr = AV, “4)

where AV represents the Laplacian of the potential energy.
According to the theory of stochastic oscillator equation de-
veloped by van Kampen [46], the largest Lyapunov exponent
A can be estimated by the exponential growth rate of the
solutions of Eq. (1):
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where © = w+/ko/[2+/ko(ko + 0x) + moy] is the characteris-
tic correlation timescale of k(¢). Finally, the Lyapunov time is
given by

I =—. (6)

The constant negative curvature or the fluctuations of the
curvature can cause chaos rather than the constant positive
curvature such as that for the harmonic or Toda lattices [47].
The theory of geometrization of dynamics not only explains
the origin of chaos with the geometrical perspective, but also
provides the quantitative measure of chaos, i.e., the largest
Lyapunov exponent or the Lyapunov time.

As we can see in Eq. (5), how to analytically obtain ky and
ok2 is the key point for analytically calculating the Lyapunov

time. However, due to the presence of nonlinear terms in
Hamiltonian

2
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the exact evaluation of the microcanonical average and fluc-
tuation, e.g., Eqs. (2) and (3), are generally difficult or even
impossible.

To overcome the difficulty, we employ the self-consistent
phonon theory (SCPT), which can be traced back to Feynman
[48] and has been developed to study the properties of thermal
conduction in low-dimensional nonlinear lattices [49-53] and
the temperature of microcanonical ensemble [54]. The key
idea of SCPT is replacing the original Hamiltonian by a trial
Hamiltonian that allows an approximate evaluation of the
exact partition function. For systems of only the two-body
interaction, a reasonable choice of the trial Hamiltonian is a
chain of N coupled harmonic oscillators chain in the form of
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The trial parameters f and f. are obtained by minimizing
the upper bound of the free energy, which is given by the
Feynman-Jensen inequality [52,55]. Then the corresponding
trial partition function can be calculated (see the Appendix
for more details). In the thermodynamic limit N — oo, the
microcanonical ensemble is generally equivalent to the canon-
ical ensemble. For a physics quantity A, the microcanonical
average (A), is equal to the canonical one

(A>u(8) = (A)can[T(S)]’ (9)

where (-)can denotes canonical average. The temperature as a
function of the energy density T (¢) (caloric curve), as well
as its inverse function ¢(7), can be analytically obtained by
SCPT in general [54].

However, contrary to the average of physical quantity, the
fluctuation (8%A) = (A — (A))? is sensitive to the choice of
probability measure, which means that canonical or micro-
canonical ensemble yields different values. The relationship
between microcanonical and canonical fluctuation is given by
the Lebowitz-Percus-Verlet formula [56]

T2 [3[{A)ean(T)1)’
mn{ T },um
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where cy (T) = "S(T) is the specific heat capacity at constant
volume. So the mlcrocanonlcal average and fluctuation of the
Ricci curvature per degree of freedom can be analytically
evaluated by SCPT, and the Lyapunov time is explicitly avail-
able by Egs. (5) and (6).

Here we consider one-dimensional FPUT-like lattices, of
which the Hamiltonian is given by

ZP;

where n > 4 and u denotes the strength of nonlinearity. For
the sake of simplicity, we only consider even n. We rescale
the Hamiltonian (11) H' = ¢H by ¢, = g;e'/?, so that the
nonlinear parameter u# and energy density ¢ has a rigid scaling

(1 - i)2 u n
ii——+#%wm, (11)
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W = ue'z . Therefore, it is equivalent to study the effects of u
by fixing ¢ or that of & by fixing u [34,37]. For convenience,
the nonintegrability strength of the FPUT-like lattices is de-
fined by

n—=2
2

12)

n =ue

In our following numerical simulations, we fix ¢ = 1. For the
case we consider, the self-consistent equation of f is written
by (see the Appendix for more details)

fi—f T —un— 1D =3)---1(kgT): "' =0, (13)

and f, = 0 due to the absence of the on-site potential in our
model. The energy density can be evaluated by averaging the
Hamiltonian (11) with the effective partition function basing
on the effective Hamiltonian [54], which is given by
k371 k371 u kBT' 2
e, T)= > +2f+n(n )(n—3) 1<f> .
(14

One can solve Egs. (13) and (14) simultaneously to obtain f
and T for given u and .

According to Eq. (4), the Ricci curvature for the FPUT-like
system reads

Kp =2N +2u(n—1)Y (g1 —q)" > (15)

The canonical average of the Ricci curvature per degree of
freedom in terms of SCPT reads

(kr)can(u, T) =2+ 2u(n—1)(n—3)--- 1<kBTT>2. (16)

In the thermodynamic limit N — oo, the microcanonical av-
erage of the Ricci curvature per degree of freedom ko (i, &) can
be obtained by changing the variable from 7 to ¢ by Eq. (14).

Similarly, the canonical fluctuation of the Ricci curvature
per degree of freedom can be also calculated by SCPT and
given by

(8%kR)ean(, T) = 4’ (n — 1} [2n —5)2n —=7)--- 1

n—2
—(n=3P(n—-57- 12](1‘37T> :
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Then the microcanonical fluctuation okz(u, ¢) is evaluated by
Eq. (10). Finally, the Lyapunov time is analytically given by
Egs. (5) and (6).

Taking the quasi-integrable regime n < 1 into account,
one can easily find

ko ~ 2, (18)
and
ol (u, &) ~ Cin’. (19)
With that the Lyapunov time can be approximately given by
t(u, €) ~ Cn~?, (20)

which indicates the universal scaling behavior of #; in respect
of u and ¢ with scaling exponents —2 and —(n — 2), respec-
tively.

2154 theory (n=4)

@ simulation (n=4)
theory (n=6)
A  simulation (n=06)

10° 10 10° 107

FIG. 1. The average Ricci curvature per degree of freedom as a
function of the nonintegrability strength n, which is obtained by the
presented analytical approach (solid line for n = 4 and dotted line
for n = 6) and numerical simulations (solid ball for n = 4 and solid
triangle for n = 6).

According to the results of Refs. [33-35,37] obtained by
the wave-turbulence theory, the thermalization time follows
the scaling law

feq ™ 77_2, 1)

whose scaling exponent coincides with the behavior of the
Lyapunov time given by Eq. (20).

To verify the validity of our approach, molecular-dynamics
simulations are applied for the n = 4 and n = 6 cases. The
SABA,C symplectic algorithm [57] is employed to integrate
the equations of motion derived from the Hamiltonian (7),
with the fixed boundary conditions, i.e., go = 0 and gy 4| = 0,
and the system size N = 1024. In our simulations, the inte-
gration time step is At = 0.1 and the energy drift is kept less
than 107°. The initial conditions follow by fixing the position
to equilibrium position g; = 0 and by choosing the moments
p; randomly. Then, we rescale |p;| — b|p;| to control the
energy density to the desired value, which is fixed by ¢ = 1 in
our simulations. We numerically compute the microcanonical
average and fluctuation of the Ricci curvature per degree of
freedom besides the Lyapunov time. Instead of ensemble aver-
age, the time average along numerical trajectory is employed
in our numerical simulations thanks to the ergodic hypoth-
esis. The average and fluctuation of the Ricci curvature are
calculated by their definition (2) and (3). In our numerical
simulations, the time steps is over 10% as to guarantee the
system reaches the equilibrium state.

Figures 1 and 2 show the average and fluctuation of the
Ricci curvature per degree of freedom as a function of 7, re-
spectively. One can see a nice agreement between theoretical
prediction and numerical simulations. It has been shown in
Fig. 2 that the fluctuation displays the power-law behavior
o ~ n? for both n = 4 and n = 6 cases, which is consistent
with the prediction of Eq. (19).
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FIG. 2. The fluctuation of the Ricci curvature per degree of
freedom as a function of the nonintegrability strength n, which is
obtained by the presented analytical approach (solid line for n = 4
and dotted line for n = 6) and numerical simulations (solid ball for
n =4 and solid triangle for n = 6). The dashed line is drawn for
a? ~ n* as a reference.

The largest Lyapunov exponent is numerically computed
via a standard technique [2,3] for over 10° time steps. It
has been shown that the largest Lyapunov exponent does not
depend on the initial condition of numerical simulation [58].
Then the Lyapunov time is given by Eq. (6). An excellent
consistency between theoretical and numerical results of the
Lyapunov time can be observed in Fig. 3. One can find that

theory (n=4)
10" 9@ simulation (n=4)
theory (n=0)
A simulation (n=6)
s [-A
10 A
/ A
- A
L S A
S A .\
10° 1 5 e A,
t~n A
4 A
1
10 | |
10" 10°

n

FIG. 3. The Lyapunov time as a function of the nonintegrability
strength n, which is obtained by the presented analytical approach
(solid line for n = 4 and dotted line for n = 6) and numerical simu-
lations (solid ball for n = 4 and solid triangle for n = 6). The dashed
line is drawn for #; ~ 2 as a reference.

the Lyapunov time exhibits a universal scaling law
L~ (22)

for both the n =4 and n = 6 cases in the regime of weak
nonintegrability strength 7, which agrees with the prediction
by Eq. (20).

In summary, in terms of geometrization of dynamics and
SCPT, we present an analytical approach to measure the de-
gree of chaos, i.e., the Lyapunov exponent, in an explicit
way. In the quasi-integrable regime, a universal scaling law
of the Lyapunov time #; ~ =2 is found. As the verification,
the numerical results for the FPUT-like lattices with n = 4
and n = 6 are computed by molecular-dynamics simulations,
which agree well with the analytical results.

It is noteworthy that the universal scaling exponent of the
Lyapunov time and the thermalization time are the same. Thus
the relation between the Lyapunov time and the thermalization
time can be written by

feq(u, &) = aty(u, &), (23)

where the proportional coefficient o depends on the initial
state of the thermalization process and artificial cutoffs in
numerical simulations, such as the global indicator of ther-
malization and the threshold of the indicator as to quantify
the thermalization time. Numerical studies show the scaling
law of thermalization remains unchanged with the variation
of o [59]. The physical origin and the scope of validness
of Eq. (23) are both interesting, which require further stud-
ies. In our preliminary opinion, the key for understanding
Eq. (23) might be the phase mixing that could be a stronger
dynamical property than ergodicity. Note that exponentially
fast phase mixing implies exponential separation of trajec-
tories, for which an obvious quantity to be examined is the
largest Lyapunov exponent [9]. Accordingly, Eq. (23) implies
a relationship between nonlinear dynamics and statistical me-
chanics.

Furthermore, we also obtain the same universal scaling
law for Klein-Gordon-like (also called the ¢*-like) chains via
this approach [60], which agree with the scaling exponent of
the thermalization time [36,61]. As for heterogeneous cases,
such as diatomic [35] and disorder [37] lattices, scaling of the
thermalization time is the same as the homogeneous cases.
Meanwhile, it has been numerically shown that the Lyapunov
time does not obviously change in the impurity system [62],
which indicates the scaling behavior of the Lyapunov time and
Eq. (23) still holds.

Note that there are various ways to define the characteristic
time to describe the thermalization process. Yet the Lyapunov
time is uniquely defined as to describe the intrinsic property
of chaotic systems. In this sense, the thermalization time fq
defined in Ref. [63], which satisfies the proportional relation
(23), might be a reasonable candidate. Similarly, we expect
that there might also exist an appropriate candidate for the re-
laxation process in real space, which exhibits the same scaling
behavior as the Lyapunov time.

The authors acknowledge helpful discussions with Hong
Zhao, Jiao Wang, Yong Zhang, and Weicheng Fu. This
work was financially supported from the National Natural
Science Foundation of China (Grants No. 12075199 and
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No. 11675133). Numerical simulations were performed on
TianHe-1 (A) at the National Supercomputer Center in Tian-
jin.

APPENDIX: SELF-CONSISTENT PHONON THEORY

In this Appendix, we give details on the self-consistent
phonon theory. Without loss of generality, the Hamiltonian at
Eq. (7) can be written in the following form:

2
H= Z %’ +U(qi) +W(gi — qi-1), (AD

where U and W donate the on-site potential and interaction
potential energy. For such a system one can find the Feynman-
Jensen inequality for the upper bound of the free energy [48]:

F < Fo+ (H — Hp)o. (A2)
The average (-) is taken with respect to the trial system of free
energy Jo = —kpT InZy, where the trial partition function is
written as
_ M
Zy = / e BTdqdp. (A3)

The average value of the on-site potential and interaction
potential energies can be expressed by

(A4)

where p? and y? correspond to the lattice displacement and
two-point correlation function, i.e.,

kgT ~
Pt =la) == ;wkz, (A3)
and
kgT 4sin? (X
v = (g — qia)?) = BT N—z(z) (A6)
k @i

respectively. By minimizing the right-hand side of Eq. (A2)
with respect to @y, one can get the renormalized phonon
frequency

~ U . k\ oW,
B =21 —2 +4sin® [ 2 )£t (A7)
90?2 2/ ay?
The trial parameters f and f. in Eq. (8) can be obtained by
solving the self-consistent equations (AS)—(A7).

For the FPUT-like lattice described by Eq. (11), in terms
of Eq. (A4), one immediately find that the average interaction
potential

1 , un—1)n-3)---1

W, == n A8
¥ 2V+ . 14 (A8)

and the average on-site potential U, = 0. Noting that the
sinusoidal term in Eq. (A6) can be canceled since U, = 0, one
can get the two-point correlation function

uin —1)(n—3)---1y" +y> —kgT =0,  (A9)
and the effective force constant

f=1+4+un—Dn—-3)--1p" 2. (A10)
With Egs. (A9) and (A10), Eq. (13) can then be obtained.
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