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Hopf bifurcation in addition-shattering kinetics
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In aggregation-fragmentation processes, a steady state is usually reached. This indicates the existence of
an attractive fixed point in the underlying infinite system of coupled ordinary differential equations. The next
simplest possibility is an asymptotically periodic motion. Never-ending oscillations have not been rigorously
established so far, although oscillations have been recently numerically detected in a few systems. For a
class of addition-shattering processes, we provide convincing numerical evidence for never-ending oscillations
in a certain region U of the parameter space. The processes which we investigate admit a fixed point that
becomes unstable when parameters belong to U and never-ending oscillations effectively emerge through a
Hopf bifurcation.
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Two complementary processes, aggregation and fragmen-
tation, are widespread in nature [1–10]. Mathematically, a
well-mixed system undergoing aggregation and fragmentation
is described by equations

dck

dt
= 1

2

∑
i+ j=k

Ki j ci c j − ck

∑
j�1

Kk j c j

+
∑
j�1

Fk jc j+k − 1

2
ck

∑
i+ j=k

Fi j . (1)

Here ck (t ) denotes the density of clusters composed of k
monomers, Ki j = Kji � 0 is the rate of aggregation

[i] ⊕ [ j]
Ki j−→ [i + j], (2)

and Fi j = Fji � 0 is the rate of binary fragmentation

[i + j]
Fi j−→ [i] + [ j]. (3)

The system (1) of infinitely many nonlinear ordinary dif-
ferential equations (ODEs) is analytically intractable apart
from a few special cases. The long-time behavior is easier
to probe. If the mass distribution becomes stationary, then
one may guess the stationary distribution by equating the
rate of the aggregation process [i] ⊕ [ j] → [i + j] to that
of the reverse fragmentation process [i + j] → [i] + [ j]. The
detailed balance condition, Ki j ci c j = Fi j ci+ j , however, is an
overdetermined system that does not possess a solution [11]
apart from a few exceptional cases [12].

More rich stationary states have been found in some sys-
tems amenable to analysis, e.g., in addition to a stationary
distribution of finite clusters an infinite cluster comprising
a finite fraction of mass of the entire systems is sometimes
formed (see Refs. [13–17]). Some aggregation-fragmentation

processes are characterized by unlimited growth, namely the
typical cluster mass diverges in the long-time limit. Nonther-
modynamic behaviors and nonequilibrium phase transitions
have been also observed [11,18]. These complicated behaviors
reflect the peculiarities arising in infinitely many ODEs.

Persistent oscillations have been numerically observed in
Ref. [19] for some open aggregating systems driven by in-
put at small masses and sink at large masses. Oscillations
could be caused by the drive, however. In closed systems,
never-ending oscillations have been numerically detected in
a class of processes with collision-controlled fragmentation
where each fragmentation event leads to complete shattering
of colliding clusters into monomers:

[i] ⊕ [ j]
Si j−→ [1] + · · · + [1]︸ ︷︷ ︸

i+ j

. (4)

Since the binary collision can lead to aggregation or shatter-
ing, the reaction rates that differ only by an amplitude, Si j =
λKi j , have been explored [20–25]. For the family of rates
Ki j = (i/ j)a + ( j/i)a, never-ending oscillations have been de-
tected [21,22] for 1

2 < a � 1 and 0 < λ � λc(a).
We analyze a slightly simpler class of processes and pro-

vide much stronger evidence for never-ending oscillations. We
consider systems in which each aggregation event involves at
least one monomer:

[1] ⊕ [s]
As−→ [1 + s]. (5)

This naturally occurs if only monomers are mobile as it hap-
pens, e.g., in monolayer growth [26,27]. The shattering is
assumed to be spontaneous,

[s]
Bs−→ [1] + · · · + [1]︸ ︷︷ ︸

s

, (6)
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as opposed to the collision-induced shattering (4). The gov-
erning equations read

dcs

dt
= c1[As−1cs−1 − Ascs] − Bscs, s � 2, (7a)

dc1

dt
=

∞∑
s�2

sBscs − 2A1c2
1 − c1

∑
s�2

Ascs. (7b)

The system is closed, so the mass density is conserved:

M =
∞∑

s=1

scs(t ) ≡ const. (8)

There is no natural relation between spontaneous shatter-
ing rates Bs and collision-controlled addition rates As. For
instance, pure addition processes with rates As = sa have been
investigated in Refs. [28,29].

We take As = s (cf. Ref. [30]) and recast (7a)–(7b) into

dcs

dt
= c1[(s − 1)cs−1 − scs] − Bscs, s � 2, (9a)

dc1

dt
=

∞∑
s�2

sBscs − c2
1 − Mc1. (9b)

Without loss of generality, one can set M = 1. This can be
achieved by rescaling

cs �→ Mcs, Bs �→ MBs, t �→ M−1t .

Suppose the system falls into a steady state. Equation (9a)
gives cs = cs−1(s − 1)/(s + Bs/c1), leading to

cs

c1
=

s∏
j=2

j − 1

j + Bj/c1
. (10)

The mass density

1 =
∑
s�1

scs = c1

∑
s�1

s
s∏

j=2

j − 1

j + Bj/c1
(11)

implicitly determines c1. The right-hand side in Eq. (11)
increases monotonically with c1, so there is at most one
steady-state solution.

The above results are rather formal, so we specialize them
to a class of models with algebraic break-up rates

Bs = Bsβ, β � 0. (12)

When β = 0, the rate equation (9b) is closed

dc1

dt
= B(1 − c1) − c2

1 − c1. (13)

The stationary density of monomers is therefore

c1 = b − 1 − B

2
, b ≡

√
B2 + 6B + 1, (14)

FIG. 1. The plot of the exponent γ given by (16).

while (10) simplifies to

cs

c1
= �(s)�(2 + B/c1)

�(s + 1 + B/c1)
. (15)

This mass distribution has an algebraic tail, cs ∝ s−γ for s �
1, with

γ = 1 + B

c1
= b − 1 + B

b − 1 − B
. (16)

The exponent γ is an increasing function of the amplitude
B. Starting from γ = 2 for B = 0, the exponent γ (B) grows
asymptotically as B + 1 for B � 1; see Fig. 1.

We emphasize that (14) is a stable fixed point for the
monomer density. If c1(0) = 1, then the explicit expression
for the monomer density reads

c1(t ) = c1 + b(1 − c1)2

2 ebt − (1 − c1)2
(17)

with c1 ≡ c1(∞) and b given by (14). The remaining equa-
tions (9a) can be rewritten as

dns

dτ
= (s − 1)ns−1 − sns, s � 2 (18)

with ns(τ ) = eBt cs(t ) and τ = ∫ t
0 dt ′ c1(t ′). These equations

with already known n1(τ ) = eBt c1(t ), where c1(t ) is given
by (17), can be solved recurrently from which one verifies the
stability of the fixed point (14) and (15).

For the break-up rates (12) with β > 0, we extract
from (10) the asymptotic behaviors

cs

c1
∝

{
(c1/B)s(s!)−(β−1) β > 1
s−1 exp[−sβB/βc1] 0 < β < 1

(19)

for s � 1. A qualitative change happens at β = 1 where one
obtains more precise results:

cs

c1
= s−1(1 + B/c1)1−s, c1 =

√
B2 + 4B − B

2
. (20)

The stability of the steady state is difficult for theoretical
analysis when β > 0. Owing to mass conservation, the sets
of equal-mass size distributions are invariant for (9a) and (9b)
and each of them can be considered as phase space (when
we talk about the birth of limit cycles we always confine the
system to distributions of fixed mass). We write cs(t ) = cs +
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FIG. 2. The eigenvalues of the linearized truncated system of
N equations with β = 2, B = 10−7, and M = 1. The eigenvalues
have negative real parts and concentrate close to zero, with possible
exceptional pairs of eigenvalues that have positive real parts. Such
pairs appear in the region U of the parameter space, and they are
responsible for oscillations.

xs(t ) with
∑

s�1 sxs(t ) = 0 due to mass conservation, linearize
Eqs. (9a) and (9b) and get

dxs

dt
= c1[(s − 1)xs−1 − sxs] + Bs

[ cs

c1
x1 − xs

]
(21a)

for s � 2 and

dx1

dt
= −(2c1 + 1)x1 +

∑
s�2

sBsxs. (21b)

The eigenvalues of this infinite system determine stabil-
ity of the steady state (10). To probe them numerically, we
truncate our original infinite system (7a) and (7b) by keeping
the first N equations. For this finite system, mass is no longer
conserved (8); instead, it decays:

dMN

dt
= d

dt

(
N∑

s=1

scs

)
= −N (N + 1)c1cN . (22)

As a result, the finite system has a single steady state, the
zero one. However, given the asymptotic behavior (19) of the
original steady state (10), we can choose N to make dMN/dt
arbitrarily small (below machine precision) when evaluated
on the first N components of (10). In that case (cs)N

s=1 is,
numerically, a steady state and the eigenvalues of the trun-
cated Eqs. (21a) and (21b) do provide insight into its stability.
When N is not sufficiently large, (cs)N

s=1 cannot be considered
a steady state and the eigenvalues lose physical meaning.

In Figs. 2 and 3, we show the eigenvalues (computed with
standard LAPACK routines [31]) for fixed physical parame-
ters and different values of N : The eigenvalues have negative
real parts with maybe a few exceptional complex conjugate
pairs with positive real parts. A single pair is visible in Fig. 3
for N = 1000 and N = 2500 but not for N = 500. Turning

FIG. 3. The eigenvalues near λ = 0, the same parameters as in
Fig. 2. The pair of eigenvalues with a positive real part that causes
oscillations is visible and is present when N is sufficiently large.
For N = 500 the truncated steady state of the infinite system loses
its mass rapidly (22) and is not an approximate steady state of the
truncated system, and hence the corresponding eigenvalues have no
physical meaning.

to (22), we obtain

dMN

dt
≈

⎧⎨
⎩

−3.5 × 10−4 N = 500
−6.5 × 10−8 N = 1000
−2.2 × 10−35 N = 2500

. (23)

Hence the results for N = 500 are physically meaningless,
while those for N = 1000 and N = 2500 coincide near λ = 0
and represent the actual behavior.

The unstable pairs are present in a certain region in the
parameter space

U = {(β, B)| β > 1, 0 < B < Bcrit(β )}. (24)

The steady state loses stability via Hopf bifurcation when B
crosses the critical value Bcrit(β ) and enters U . This leads to
the birth of a stable limit cycle. The imaginary part of the
critical eigenvalue decreases monotonically, ignorant to the
bifurcation, as B decreases (Fig. 4). The real part changes its

FIG. 4. Real and imaginary parts of the eigenvalue that crosses
the imaginary axis as B varies with β = 2 and M = 1 fixed. The cusp
in the plot of log |Reλ| corresponds to Hopf bifurcation: The critical
eigenvalue changes its sign, and a limit cycle is born.
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FIG. 5. The region U of the (β, B) plane where unstable eigen-
values exist and oscillations are born for M = 1.

behavior once the eigenvalue becomes unstable: Re(λ) keeps
growing for a short while before reaching its maximum value
and then decays monotonically.

Figure 5 shows the transition curve Bcrit(β ) in the param-
eter space. In particular, it shows that there is a singularity
at β = 1, whose existence is connected with the qualitative
changes in the steady state (19) and (20). In our numerical
experiments, we exploit the structure of the Jacobian and
use the inverse power method [32] with absolute numerical
tolerance of 10−10 to find and track unstable eigenvalues (see
Supplemental Material [33] for details). Note that while we
tracked only the first complex conjugate pair that crosses the
imaginary axis, more pairs can appear in U as the parameters
change.

We carried out numerical integrations to study the oscil-
latory solutions of the system truncated to N equations, with
N sufficiently large to ensure that mass conservation holds on
each iteration with machine precision. (The size N used in
numerical integrations was larger than that used to compute
the eigenvalues because the oscillatory waveform has a longer
tail than the steady state.) This makes the finite system nu-
merically indistinguishable from the infinite one. The results
are presented in Fig. 6 for multiple values of B with β = 2.
The initial condition was taken as a perturbation of the steady
state (10)–(19) that preserves its mass density:

c̃1 = c1 + 1.8c2, c̃2 = 0.1c2, c̃s = cs. (25)

Comparing Figs. 4 and 6 we see that the oscillations die out
when B is above the critical value Bcrit(2) and persist when
B is below it. As B continues to decrease, the amplitude of
the oscillations at first grows, reaches its maximum, and starts
decaying to zero. The frequency of the oscillations decreases
monotonically with B.

In our numerical experiments, we have observed that
Eqs. (9a) and (9b) cease to have unstable eigenvalues for
parameters from the region (24) when N is not big enough
(see Fig. 3). The “big enough” grows as B tends to zero or β

tends to 1, together with the effective length of the stationary
distribution.

At another extreme, one can consider Eqs. (7a) and (7b)
and set As = 0 for s � 3. Finding limit cycles is difficult
even for such simple systems of two coupled ODEs. Several

FIG. 6. Oscillatory regimes for monomers c1(t ) and total den-
sity c(t ) = ∑∞

k=0 ck for different values of B with β = 2 and unit
mass density. The oscillations decay when B = 3.1622776602 ×
10−6 (Decay), persist when B = 1.2195704602 × 10−6 (Average),
and have the largest possible (for β = 2 and unit mass) amplitude
when B = 1.668100537 × 10−7 (Maximal). In all three cases we
used initial conditions as in (25).

tools allow one to rule out the limit cycles or prove their
existence [34–36]. In our case, the application of the Dulac
criterion shows the absence of limit cycles independently of
the rates (see Supplemental Material [33]). Recent results on
Hopf bifurcation in a finite Becker-Döring exchange model
also show that the number of ODEs in such finite systems has
to be sufficiently large to obtain oscillatory solutions [37,38].
This perhaps explains why despite years of searching, the
oscillatory solutions have not been observed.

To summarize, we have found oscillatory solutions in the
realm of addition-shattering models (9a) and (9b) with alge-
braic break-up rates (12). These solutions are born through the
Hopf bifurcation mechanism: The steady states exist when-
ever β � 0 but become unstable for parameters from (24)
and give birth to never-ending oscillations via Hopf bifurca-
tion. Oscillatory solutions in other models have been detected
recently [21,22,37]. For instance, Hopf bifurcation has been
found in a finite Becker-Döring system with constant kinetic
coefficients [37,38]. Our infinite system with algebraically
growing rates also exhibits oscillatory solutions, at least the
numerical evidence is very convincing.

In a class of addition-shattering processes that we in-
vestigated, persistent oscillations occur in a small region of
the phase space; the same holds for the model studied in
Refs. [21,22]. This rarity is similar to the empirical evidence
with limit cycles in planar systems with quadratic polynomi-
als: The rule of thumb is that a “generic” planar system has
no limit cycles (see Ref. [39]). The same seemingly holds
for aggregation-fragmentation systems. Limit cycles are very
rare [40–45], and systems with more than one limit cycle are
currently unknown. Another avenue for future work is to seek
oscillations in systems with standard binary fragmentation.
Among the biggest challenges is providing rigorous proof of
persistent oscillations in an infinite system and finding chaos.
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