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Effect of receptor clustering on chemotactic performance of E. coli: Sensing versus adaptation
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We show how the competition between sensing and adaptation can result in a performance peak in Escherichia
coli chemotaxis using extensive numerical simulations in a detailed theoretical model. Receptor clustering
amplifies the input signal coming from ligand binding which enhances chemotactic efficiency. But large clusters
also induce large fluctuations in total activity since the number of clusters goes down. The activity and hence the
run-tumble motility now gets controlled by methylation levels which are part of adaptation module rather than
ligand binding. This reduces chemotactic efficiency.
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I. INTRODUCTION

With the advent of sophisticated techniques to measure
single-cell response in experiments [1,2], an important ques-
tion has emerged: how behavior of a cell is affected by the
fluctuations present in the intracellular biochemical reaction
network [3–6]. In this paper we address this question for
Escherichia coli chemotaxis, one of the best characterized
systems in biology [7].

The chemotaxis describes the migration tendency of the E.
coli cell towards the region of higher nutrient concentration.
The underlying biochemical network has two main modules,
sensing and adaptation, which are coupled to each other
through the activity of the transmembrane chemoreceptors.
The receptor activity changes with binding of the receptor
to the nutrient ligand molecules and with methylation. There
are a few thousand receptors in a cell, and they show strong
cooperativity where the neighboring receptors form clusters
or “teams” and switch between active and inactive states in
unison. This helps in amplification of the input signal coming
from ligand binding and allows the cell to respond to even a
weak gradient of nutrient concentration [8–10].

In recent experiments involving single-cell FRET mea-
surements it was observed that receptor clustering results in
surprisingly large activity fluctuations inside a cell [11,12]
even in the absence of methylation noise. This observation
was striking since methylation was long believed to be the
most important source of noise in a chemotaxis network
[13–17]. The experiments in Refs. [11,12] showed that recep-
tor clustering is an independent and equally important noise
source in the pathway. The immediate and important question
here is how this newly found noise source is related to the
chemotactic performance of the cell.

In this work, we address this question within a detailed
theoretical model and find that there is an optimum size of
the receptor cluster at which the chemotactic performance
is at its best. Since receptor clustering amplifies the input
signal coming from ligand binding, it is expected to enhance
the cell performance [8–10]. However, when clusters become
significantly large, the total number of clusters goes down

proportionately. The total activity of the cell, which is the sum
of activity of all the clusters, starts showing large fluctuations
since the sum is now performed over a small number of signal-
ing teams (also see Sec. 3 of Ref. [18]). When the activity gets
too high or too low, the adaptation comes into play and the
receptor methylation level undergoes large change to restore
the activity to its mean value. Our data show that the total
activity which controls the run-and-tumble motility of the cell
is guided by methylation rather than ligand binding for large
receptor clusters. This reduces the chemotactic efficiency of
the cell, and its performance goes down.

Our study brings out a fundamentally important point: how
competition between sensing and adaptation may result in a
performance peak. We demonstrate this by monitoring sev-
eral different quantities as measures of performance. In the
presence of a spatially varying nutrient concentration profile
we define a good chemotactic performance by measuring
how fast the cell is able to climb up the gradient, or how
strongly it is able to localize itself in the nutrient-rich regions
[16,19]. A good performance implies a strong ability of the
cell to distinguish between regions with high and low nu-
trient concentration. We find that for an optimal size of the
receptor cluster this ability is most pronounced. Interestingly,
our conclusion remains valid even when the cell is tethered
and is not moving around using run-tumble motility. In this
case we define the performance by the differential response of
the cell when the nutrient level at its location is increased or
decreased. The rotational bias of the flagellar motors shows
maximum difference between the ramped up and ramped
down inputs at a specific size of the receptor cluster.

II. MODEL

In an E. coli cell the chemoreceptors pair up to form
homodimers, and three such homodimers form a trimer of
dimers (TD) [20,21]. In our description, a signaling team of
size n contains n number of TDs. The free energy difference
(in units of KBT ) between the active and inactive states of
a dimer is calculated according to Monod-Wyman-Changeux
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FIG. 1. Peak in localization and drift velocity as a function of
receptor cluster size. (a) The x-position distribution of the cell shows
steepest variation at an optimum n. Inset shows form of P(x) for
few representative n values. (b) Chemotactic drift velocity measured
from net displacement in a run (inset) and net displacement in a fixed
time interval T = 40 s (main plot); both show a peak for a specific n.
We have used a linearly varying nutrient concentration profile here.
Each data point has been averaged over at least 107 histories. The
simulation parameters are given in Table S1 in Ref. [18].

model [22–24]:

ε[m, c(x)] = 1 + log
1 + c(x)/Kmin

1 + c(x)/Kmax
− m, (1)

where c(x) is the nutrient concentration at the cell location x
and m is the methylation level of the dimer which can take
integer values between 0 and 8. The constants Kmin and Kmax

set the range within which a chemical concentration can be
sensed by the cell. The total free energy of the cluster is the
sum of free energy of the individual dimers. All dimers in
a cluster change their activity states simultaneously, and the
transition probability depends on the cluster free energy [18].

The methylation level of a dimer is controlled by methy-
lating enzyme CheR and demethylating enzyme CheB-P. A
dimer can bind to one enzyme molecule at a time. An inac-
tive dimer gets methylated by CheR, and the probability to
find it in active state increases. On the other hand, an active
dimer gets demethylated by CheB-P, and its activity decreases.
Unphosphorylated CheB receives its phosphate group from
autophosphorylation of active receptors. This constitutes a
negative feedback in the reaction network and is responsible
for adaptation. Autophosphorylation of active receptors also
supplies phosphate group to another protein CheY, and the

 0.1

 0.2

 100  200  300  400

(b)

�
-�

 (
se

co
n
d
)

n

 0

 0.07

 0.14

 0.21

 100  200  300  400

(a)

� R
- �

L
 (

se
co

n
d
)

n

FIG. 2. Motor response of the cell shows highest sensitivity at a
specific size of receptor cluster. (a) For a swimming cell, the mean
first passage time to the tumble mode for uphill run (τR) and downhill
run (τL) shows the largest difference at a particular n. (b) For a
tethered cell in CCW mode, the mean first passage time to CW mode
when the nutrient level is ramped up (τ↑) and ramped down (τ↓)
at a rate 0.1 μM/s shows the largest difference at a specific n. All
data have been averaged over at least 106 histories. The simulation
parameters are as in Fig. 1.

resulting CheY-P binds to the flagellar motors and induces
tumbling in the cell motion. A high value of total activity
implies large tumbling probability.

However, the number of enzyme molecules is far too low
compared to the number of dimers in a cell [25], and it takes a
long time for a dimer to bind to an unbound enzyme molecule
in cell cytoplasm [26]. To reconcile the low abundance of
enzyme molecules with near-perfect adaptation of the cell
[27,28], few mechanisms like “brachiation” or “assistance
neighborhood” have been proposed [29–31] and experimen-
tally verified [32,33] which allow a single bound enzyme to
modify the methylation level of more than one dimers before
it unbinds and returns to the cell cytoplasm [23,31,34]. We
include a flavor of this mechanism in our model. A complete
description of our model and other simulation details can be
found in Ref. [18]. We perform Monte Carlo simulations on
this model in one and two spatial dimensions. We present
the data for two dimensions below and include those for one
dimension in Ref. [18].

III. PERFORMANCE PEAK AT AN OPTIMAL SIZE
OF RECEPTOR CLUSTER

For a swimming cell with a linearly varying c(x), the
steady-state position distribution P(x) of the cell also assumes
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FIG. 3. Typical time series of activity along with methylation component and ligand component of free energy of a receptor cluster of size
n = 200. The time series has been recorded in steady state over a time window of 40 s. (a) A few transitions of activity state of the cluster.
(b) Simultaneous variation of free energy (in unit of kBT ) due to ligand binding, which directly captures the run-tumble trajectory of the cell.
(c) Variation of methylation free energy (in unit of kBT ) of the cluster, which is seen to roughly follow the activity transitions. The scale of
variation of ligand binding energy is negligible compared to that of methylation for the present value of n. (d) Probability �− that in a time
interval T = 40 s the net displacement of the cell is negative, shows a minimum, and then increases for large n. The simulation parameters
used are same as those in the Fig. 1(b) main plot.

an almost linear form [see inset of Fig. 1(a)]. Clearly, a good
performance implies a steep slope of P(x). In Fig. 1(a) (main
plot) we plot this slope as a function of receptor cluster
size and find a peak. A related quantity 〈C〉 = ∫

P(x)c(x) dx
which gives the average nutrient amount experienced by the
cell is often used to characterize performance when c(x)
or P(x) is not linear [15,16,35]. We find a similar peak in
〈C〉 also (data not shown here). Chemotactic drift velocity
V measures how fast the cell climbs up the concentration
gradient, and a large V implies a good performance. To ex-
tract V from the run-and-tumble trajectory of the cell we
measure the mean value of net displacement of the cell in a
run and divide it by the mean run duration [16,36–39]. We
present our data in Fig. 1(b) inset, which shows a pronounced
peak. Another possible way to measure the drift velocity is
from the net displacement in a fixed time interval T and
divide that by T . In the main plot of Fig. 1(b) we show
the plot for this quantity, denoted as U , and find a similar
peak.

At the core of chemotactic sensing lies the differential
behavior of the cell when the nutrient level in its environ-
ment goes up or down. This difference should be large for
a good performance. When a cell is running in the direc-
tion of increasing nutrient concentration, its tumbling rate

decreases and the run is extended. Similarly, for a run towards
a lower nutrient level, the tumbling rate increases and the run
is shortened. We measure the time till the first tumble during
an uphill run and a downhill run and plot their difference in
Fig. 2(a). This difference shows a peak at a specific size of the
receptor cluster. Interestingly, we can use a similar measure
to quantify performance for a tethered cell as well, which is
more commonly used in experiments. In this case we apply a
nutrient concentration that is increasing (decreasing) linearly
with time while the flagellar motors are rotating in the coun-
terclockwise (CCW) direction. We measure the average time
till the transition to clockwise (CW) rotation mode. In order
to compare with the swimming cell, we change the nutrient
level at the same rate as that experienced by a swimming cell
during a run. We plot the difference between ramped up and
ramped down cases in Fig 2(b) and find a peak at the optimal
cluster size.

From our data in Figs. 1 and 2 it follows that for various dif-
ferent performance criteria, the single-cell chemotaxis shows
optimality. The position of the performance peak may slightly
vary depending on the specific measure we use to quantify
performance, as seen in the above plots. But the most striking
feature here is the existence of a peak at some value of n.
Below we explain the origin behind this effect.
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FIG. 4. Average change �Fm (in unit of kBT ) in methylation free energy (discrete points) of a cluster for first 0.5 s during an uphill run for
four different n values. The continuous lines show the change in ligand free energy (in unit of kBT ) of the cluster. For small n the change in
ligand free energy dominates, but as n increases, �Fm takes over. These data have been averaged over at least 2 × 106 histories.

IV. COMPETITION BETWEEN SENSING
AND ADAPTATION

The probability to find a receptor cluster in the active
state is [1 + exp(FL − Fm)]−1, where FL is the sum of ligand
binding energy of all dimers in the cluster and Fm is the total
methylation of all those dimers. Since the contribution due to
ligand binding is the same for all dimers, FL is proportional
to n. As the cell swims up (down) the ligand concentration
gradient, FL increases (decreases) with time [see Eq. (1)],
and this change is proportionately larger with n. This means
as n increases, the activity of a receptor cluster decreases
(increases) quickly during an uphill (downhill) run, thereby
elongating (shortening) the run, since activity controls the
tumbling rate (see model details in Ref. [18]). This is why
the chemotactic performance gets better with n. For large n,
however, the number of clusters is less, and the activity, which
is calculated by averaging over all clusters, now shows large
fluctuations. Switching the activity state of one large cluster
brings about a large change in the total activity of the cell.
For example, when the activity gets too low, all the inactive
dimers in a cluster tend to get methylated. This increases Fm

significantly, and the change in Fm overrides the change in FL.
See Fig. 3 for a typical time series of cluster activity, Fm and
FL for a large n value. In Fig. 4 we plot the average change
�Fm in methylation free energy as a function of time during
an uphill run of the cell for various different n. The change
in FL has been shown with a continuous line for reference.
These plots clearly show for large n the change in Fm overtakes

the change in FL. The variation in cluster free energy is then
controlled by Fm. The cell is now less sensitive to the ligand
concentration profile. A shorter uphill run and a longer down-
hill run now become increasingly likely. In Fig. 3(d) we plot
the probability to find a negative net displacement of the cell
during a time interval T , and indeed after reaching a minimum
this probability increases again for large n. This reduces the
value of the chemotactic drift velocity and brings down the
performance when n is large.

Throughout this work, we have considered weak spatial
gradient of the nutrient (see Table S1 in Ref. [18]). Even
in the presence of a strong gradient our main conclusions
remain valid, and we find the optimal cluster size is somewhat
larger when the gradient is stronger (data shown in Fig. S5 in
Ref. [18]). Although rapid spatial variation of nutrients has
been shown to induce large activity fluctuations in the cell
[40–43], which is expected to trigger a stronger methylation
response, the ligand free energy changes by a larger amount
when the cell is running through a rapidly varying nutrient
profile, which shifts the trade-off point towards a larger cluster
size.

V. CONCLUSIONS

In this work we have investigated the role of receptor
clustering on the chemotactic efficiency of a cell. Although
receptor cooperativity amplifies the cell sensitivity towards a
small variation in nutrient level, the activity fluctuations inside
the cell also increase since the number of clusters goes down.
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Large deviation of activity from its mean value triggers a
large change in methylation levels to ensure adaptation in the
biochemical network. The ligand binding energy cannot keep
up with such a large change in methylation energy, and the
free energy difference between the active and inactive states
gets controlled by methylation now. The above interplay gives
rise to a performance peak at an intermediate value of the
receptor cluster size.

For a noisy nutrient environment, an optimal size of the
receptor signaling team was reported in earlier studies [44,45].
It was argued that receptor cooperativity amplifies not only
the ligand signal, but also the noise present in it. For optimal
performance, therefore, a trade-off is required where the sig-
naling team size should be large enough for sensitive detection
of small changes in ligand concentration, but small enough
such that the amplified noise does not insensitize the cell
response [44]. Moreover, when both ligand noise and intracel-
lular biochemical noise are considered, the receptor clustering
is beneficial as long as the amplified ligand noise stays below
the biochemical noise [45]. On the other hand, we find an
optimal team size even when the ligand concentration profile
does not fluctuate with time, and the origin of this optimality
to our best knowledge has not been reported previously.

It should be possible to test our results qualitatively in
experiment. Both for a swimming cell and tethered cell we
have observed the best chemotactic performance at a specific
size of the receptor cluster. In our model the best performance
is observed for clusters which contain ∼70 TDs. However, it
may not be possible to find accurate quantitative agreement

between our model and experiments. To keep our model sim-
ple and tractable, we have not considered a few aspects of
the intracellular reaction network, like hexagonal geometry of
the spatial arrangement of the receptor array [20,21] or, more
importantly, the energy cost due to curvature of the cell mem-
brane induced by the receptor clusters [46–48]. But our main
conclusions should not get affected by these assumptions, and
the interplay between ligand free energy and methylation free
energy can be experimentally investigated as the cooperative
interaction among the receptors is varied [11,12]. A stronger
interaction among the receptors which is responsible for for-
mation of larger clusters has been experimentally shown to
induce larger activity fluctuations in a tethered cell [11,12].
Whether the variation of methylation free energy increases for
stronger receptor interaction and its effect on the chemotactic
efficiency (τ↑ − τ↓) [Fig. 2(b)] can be investigated in experi-
ments. Finally, our study opens up the important question of
competition between sensing and adaptation, which is relevant
in a wide variety of biological systems [49–51]. It would
be interesting to see if this competition gives rise to similar
performance peaks in this broad class of systems as well.
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