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The heterogeneity of human populations is a challenge to mathematical descriptions of epidemic outbreaks.
Numerical simulations are deployed to account for the many factors influencing the spreading dynamics. Yet, the
results from numerical simulations are often as complicated as the reality, leaving us with a sense of confusion
about how the different factors account for the simulation results. Here, using a multitype branching together with
a graph tensor product approach, I derive a single equation for the effective reproductive number of an infectious
disease outbreak. Using this equation I deconvolute the impact of crowd management, targeted testing, contact
heterogeneity, stratified vaccination, mask use, and smartphone tracing app use. This equation can be used to
gain a basic understanding of infectious disease outbreaks and their simulations.
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Infectious diseases spread in heterogenous populations of
susceptible individuals. There is variability in the number
of potential contacts [1], age groups [2], and adherence to
nonpharmaceutical interventions [3]. These heterogeneities
may sound too complex to be handled by means of analytical
descriptions, leaving us with the choice of numerical simula-
tions. Numerical simulations are the right context to introduce
all kinds of parametrizations [3–5]. Yet, we want a basic
understanding as well, albeit sacrificing numerical precision.
Here, I demonstrate that a combination of multitype branching
process theory and graph tensor products disentangles the
contributions of different factors and containment strategies
to the outbreak dynamics.

The susceptible, infected, and removed (SIR) model is a
good representation of infectious disease outbreaks when the
recovery from the disease confers immunity. In the case of
COVID-19 it is not clear how long a person remains immune
to the disease after infection, but it is expected to be at least
of the order of months. In the SIR model the disease states are
susceptible to acquiring the disease, infection, and removal
due to death or recovery from the disease. Infected individuals
can transmit the disease to susceptible individuals when they
are in contact. In the case of COVID-19, contact means physi-
cal proximity for a certain amount of time. In the case of HIV,
contact means sexual intercourse, syringe-needle sharing, or a
mother giving birth.

Some individuals visit crowded places during the day,
getting in contact with several people. Others work at home
and get in contact with a few housemates. With relevance to
sexually transmitted diseases, there is a broad distribution in
the number of sexual partners of individuals across a popula-
tion [6]. I will call this contact heterogeneity. The number of
physical proximity contacts in a day, or the number of sexual
partners within a year, can vary from zero to hundreds and it
is better represented by a probability distribution.
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Individuals are also different regarding their perception of
containment strategies. In the ongoing COVID-19 pandemic
face masks and smartphone tracing apps are not used by all
individuals. For HIV and other sexually transmitted diseases
additional heterogeneities include sexual orientation, condom
use, drug use, among other factors. I will call this type het-
erogeneity, where a type can be any property taking values
over a discrete set of small size that can have an impact on
the infectious disease dynamics. The types are characterized
by their frequency in the population and the mixing patterns
between individuals according to type.

Another source of variability is the disease dynamics
within individuals. This dynamics could be correlated with the
contact or type heterogeneities. For example, the population is
stratified by age and age influences the infectious dynamics
within individuals. Here, I focus on the contact and type
heterogeneity and assume that the disease dynamics within
individuals is uncorrelated from the contact and type hetero-
geneity. The transmission dynamics will be characterized by
the generating time, denoted by τ , defined as the interval from
the time of infection of an individual to the time they transmit
the disease to a susceptible individual. I will denote by g(τ )
the probability density function of the generating time.

Here, I model a population of susceptible individuals as a
multitype Markov process in the limit of large populations.
I will assume that the statistical properties of individuals,
including to whom they transmit the disease, are dictated
by their types. Using the multitype branching process for-
malism, I have calculated the expected number of infected
individuals of epidemic outbreaks on heterogeneous popula-
tions [7]. Briefly, the multitype formalism replaces the average
reproductive number, a scalar, by a matrix of reproductive
numbers, making a distinction between patient zero and any
other infected individual. In more detail, each individual con-
tacts other individuals at some rate λ. The mixing pattern is
represented by the probability eab that an individual of type a
reaches a type b individual upon contact. Each contact results
in disease transmission with probability r and the effective
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disease transmission rate is denoted by β = λr. Infected in-
dividuals are removed, die to recovery, isolation, or death, at
a rate γ . Under these assumptions, the reproductive number
matrix for patient zero has elements

R0,ab = 〈β〉
γ

eab, (1)

where 〈·〉 denotes the average over the heterogeneity of con-
tact rates λ across individuals. For infected cases other than
patient zero, I take into account the disease spreading bias to
individuals with a higher contact rate. The patient zero can
be thought of as an individual selected at random from the
population. Any other infected individual is not selected at
random, but instead is found with a probability proportional
to its contact rate, β/N〈β〉, where N is the population size.
Once infected, the individual found by contact will engage in
new contacts at a rate β. Therefore, the reproductive number
matrix for patients other than patient zero has elements

Rab = 〈β2〉
〈β〉γ eab. (2)

R0 gives the average number of infectious at the first gen-
eration, R0R at the second generation, and R0Rd−1 at the d
generation. The actual time when an infected case at genera-
tion d becomes infected equals the sum of d generation times
and it has a probability density function g�d (t ), where the sym-
bol � denotes convolution [g�d = ∫ t

0 g�(d−1)(τ )g(t − τ )dτ ].
Therefore, the average number of new infected individuals at
time t is given by [Eq. (36) in Ref. [7]]

İ (t ) =
∑

ab

Na

D∑
d=1

(R0Rd−1)abg�d (t ), (3)

where Na is the number of patients zero of type a and D is the
maximum generation.

The shape of the distribution of generation times de-
termines the functional dependence of the number of new
infections with time [8]. In contrast, it does not change the
epidemic threshold. For the sake of simplicity I will use the
SIR model. For the SIR model the distribution of generating
times is the distribution of recovery times. Given that recovery
takes place at a constant rate, the distribution of generation
times is exponential,

g(τ ) = γ e−γ τ . (4)

In this case, Eq. (3) has two limiting behaviors depending on
the parameter,

θ = D − 1

ρ
, (5)

where ρ is the largest eigenvalue of R [7]. When ρ > 1 and
θ � 1, then for γ t � θ the number of new infectious grows
exponentially according to

İ (t ) ∼ e(ρ−1)γ t . (6)

Note that R, and therefore ρ, is inversely proportional to γ .
In contrast, when θ � 1, then for γ t � θ the number of new
infectious grows as a power law with an exponential cutoff

İ (t ) ∼ tD−1e−γ t . (7)
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FIG. 1. Type graphs for vaccination (G1), mask use (G2), smart-
phone tracing app use (G3), and their graph tensor product (G1 ×
G2 × G3). Open circles represent individuals not covered by the
containment strategy. Squares represent vaccinated individuals, diag-
onal lines wearing a mask, and solid symbols using the smartphone
tracing app.

Therefore the outbreaks dynamics is determined by the largest
eigenvalue of the reproductive number matrix R and the maxi-
mum number of generations D. The power-law prediction has
been observed in numerical simulations of virus spreading in
the Internet [9] and the first COVID-19 outbreak [10].

The branching process is suitable to model the early phase
of epidemic outbreaks. It has limitations to estimate the late
dynamics when there is a reduction in the number of sus-
ceptible individuals. A compartment model represented by
differential equations is more suitable to understand the late
dynamics. Nevertheless, the key quantity of the compartment
model is still the reproductive number matrix R [11]. There-
fore I will focus on the impact of heterogeneities on the largest
eigenvalue ρ.

The type mixing matrix, with elements eab, is represented
by a directed weighted graph with loops. A directed edge (arc)
is drawn from a to b when eab > 0. Loops account for infected
individuals of a given type infecting susceptible individuals of
the same type. The arc weights eab quantify the probability of
finding type a coming from type b. Figure 1 illustrates type
graphs associated with vaccination, mask use, or smartphone
use. In each case there are two types: vaccinated or not, wears
a mask or does not, and smartphone tracing app user or not.
The associated mixing matrices are 2 × 2 matrices and it is
straightforward to calculate the largest eigenvalue. The chal-
lenge begins when we consider combinations of those or other
population stratifications at once. We would have to include
several types and deal with matrices of the largest dimension,
making an analytical description cumbersome and prompting
calculation errors.

When different type stratifications are independent, mean-
ing that being of one type in one stratification is uncorrelated
with being of another type in another stratification, we can
tackle the problem with graph tensor products. Under the
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assumption of independence, the type graph taking into
account n independent population stratifications can be rep-
resented by the graph tensor product of each independent
stratification,

G = G(1) × G(2) × · · · × G(n). (8)

An example is shown in Fig. 1. In turn, the type mixing matrix
of graph G can be written as a Kronecker product of the type
mixing matrices of graphs Gi,

e = e(1) × e(2) × · · · × e(n). (9)

The eigenvalues of the Kronecker product of two matrices
are given by the pairwise product of the eigenvalues of each
matrix (Theorem 13.12, Ref. [12]). An obvious corollary, the
largest eigenvalue of e is equal to the product of the largest
eigenvalues,

	 = 	1	2 · · ·	n, (10)

where 	i denotes the largest eigenvalue of e(i). Finally, the
largest eigenvalue of R in Eq. (2) is given by

ρ = 〈β2〉
〈β〉γ 	1	2 · · · 	n. (11)

We can use Eq. (11) to estimate the effectiveness of mixed
strategies to contain an infectious disease outbreak. To illus-
trate how it is done, let us consider the case of a population
where crowd management, targeted testing, vaccination, mask
use, and smartphone tracing apps have been deployed. Crowd
management reduces the contact rate λ, in turn reducing β =
λr. The main component of targeted testing is testing the
contacts traced from an infected case. Since the testing of the
traced contacts effectively eliminates them from the disease
transmission chain, targeted testing can be also modeled by
an effective reduction of the contact rate. Therefore, crowd
management and targeted testing are modeled by the transfor-
mation

〈β2〉
〈β〉 → cT 〈β2〉

〈β〉 , (12)

where c and T are the reduction in transmission rate due to
crowd management and targeted testing.

Vaccination is modeled by the type graph G1 in Fig. 1 and
the associated type mixing matrix

e(0) =
[

0 1 − v

0 1 − v

]
, (13)

where v is the fraction of vaccinated individuals. More gen-
erally, we consider stratified vaccination according to a type
(e.g., age group). Let ai j be the mixing matrix elements of
the type driving the vaccine stratification and vi the fraction
of i-type individuals that are vaccinated. When j is vacci-
nated, then ei j = 0. When j is not vaccinated, they can be
infected by the nonvaccinated connections and ei j = ai j (1 −
v j ) = ai j (1 − v)x j , where v = ∑

i vi and xi = (1 − vi )/(1 −
v). Once again, making use of the graph tensor product, we
write the mixing matrix of stratified vaccination as

e(1) = e(0) × (a ◦ x), (14)

where ◦ denotes the Hadamard, elementwise, product. The
largest eigenvalue of e(1) is

	1 = (1 − v)ρ1, (15)

where (1 − v) is the largest eigenvalue of e(0) and ρ1 is the
largest eigenvalue of a ◦ x. Note that the xi can be optimized
to obtain the vaccination strategy that minimizes ρ1 given a
total vaccination capacity v.

Mask use is modeled by the type graph G2 in Fig. 1.
I assume a fraction m of individuals wearing a mask, no
transmission between mask users (e11 = 0), transmission with
attenuation efficiency 0 � a1 < 1 from a mask user to a
nonuser [e12 = a1(1 − m)], transmission with attenuation ef-
ficiency 0 � a2 < 1 from a nonmask user to a user [e21 =
a1(1 − m)], and transmission between nonmask users (e21 =
1 − m). In this case the mixing matrix and the largest eigen-
value are

e(2) =
[

0 a1(1 − m)
a0m 1 − m

]
, (16)

	2 = 1 − m +
√

(1 − m)2 + 4m(1 − m)a0a1

2
. (17)

Smartphone tracing app use is modeled by the type graph
G3 in Fig. 1. I assume a fraction u of smartphone tracing
app users. The chain of transmissions between app users is
truncated because of the forward and backward tracing. This
will be modeled as no disease transmission between app users
(e11 = 0), which is an effective approximation to be tested.
With these assumptions we obtain the type mixing matrix and
the largest eigenvalue,

e(3) =
[

0 1 − u
u 1 − u

]
, (18)

	3 = 1 − u +
√

(1 − u)2 + 4u(1 − u)

2
. (19)
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FIG. 2. Largest eigenvalue as a function of the relevant param-
eter for the listed containment strategies. Lines are the analytical
predictions (20) and the symbols numerical estimates: circles for
vaccinated fraction v, squares for mask wearing fraction m, triangles
for app user fraction u, ∗ for vaccinated fraction v together with
m = 0.2, and × for app user fraction u together with m = 0.2.
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Figure 2 shows the largest eigenvalue of the different con-
tainment strategies as a function of the fraction of individuals
subject to the intervention (vaccinated, mask user, smartphone
tracing app user). It is evident that the largest eigenvalues
associated with mask use and smartphone tracing app use
are concave functions of the corresponding users fraction.
Therefore, for small user fractions there is not much reduction
of the largest eigenvalue. These containment strategies require
that many individuals become users. For example, 50% of
mask users will reduce the reproductive number by just 20%.
Furthermore, mask use is more effective that smartphone trac-
ing app use. This is because mask use reduces the probability
of transmission between mask users and nonusers, while the
smartphone tracing app does not.

Now I combine the containment strategies. Substituting
Eqs. (12)–(19) into Eq. (11) we obtain

ρ = ρ0cT (1 − v)ρ1

× 1 − m +
√

(1 − m)2 + 4m(1 − m)a0a1

2

× 1 − u +
√

(1 − u)2 + 4u(1 − u)

2
, (20)

where ρ0 = 〈β2〉/〈β〉γ is the basic reproductive number of
the standard SIR model. This equation is the starting point
for a comprehensive understanding of how intervention strate-
gies impact the expected reproductive number. In the absence

of contact heterogeneity (〈β2〉 = 〈β〉2) and no interventions
(c = 1, T = 1, v = 0, ρ1 = 1, m = 0, u = 0), we recover
ρ = ρ0. In the presence of multiple containment strategies, we
can use (20) to estimate the aggregate impact. For example,
combining 50% of mask users with 50% of smartphone trac-
ing app users will reduce the reproductive number by about
a half. Add to that 50% vaccination and it will reduce the
reproductive number by about a third.

I have performed agent-based simulations to test Eq. (20).
I have generated a virtual city where places are represented
by nodes in a network and the flow of people between two
places is represented by a link between the associated nodes
[11]. Agents are located at different places and they switch
place following the network links, at a certain rate that varies
between individuals. A SIR model is simulated in the virtual
city introducing a patient zero and constraining the disease
transmission to individuals at the same place [11]. The value
of 	 is estimated as 	(x) = ρ(x)/ρ(0), where x = v, m, or u
and ρ(x) is obtained from a fit of (6) to the early growth phase
of the numerical data [11]. The analytical prediction (20) is
in good agreement with the numerical estimates (2), although
the theoretical line always underestimates the numerical val-
ues. The underestimation can be due to the contribution of
eigenvalues besides the largest.

In conclusion, the analytical predictions estimate and ex-
plain the impact of multiple containment strategies on the
reproductive number of an epidemic outbreak.
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