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Quantum chaos and the correspondence principle
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The correspondence principle is a cornerstone in the entire construction of quantum mechanics. This principle
has been recently challenged by the observation of an early-time exponential increase of the out-of-time-ordered
correlator (OTOC) in classically nonchaotic systems [E. B. Rozenbaum et al., Phys. Rev. Lett. 125, 014101
(2020)]. Here, we show that the correspondence principle is restored after a proper treatment of the singular
points. Furthermore, our results show that the OTOC maintains its role as a diagnostic of chaotic dynamics.
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Introduction. Since the beginning of quantum chaos in-
vestigations, it has been shown that exponentially unstable
classical motion can persist in quantum mechanics only up to
the Ehrenfest timescale tE ∝ | ln h̄| [1], where h̄ is the effective
Planck’s constant. Indeed, as it was illustrated in Ref. [2],
quantum “chaotic” motion is dynamically stable. This means
that, unlike exponentially unstable classical chaotic motion,
in the quantum case errors in the initial conditions propagate
only linearly in time. Therefore the quantum diffusion and
relaxation process takes place in the absence of exponential
instability, up to the Heisenberg timescale tH which is the
minimum time needed to resolve the discreteness of the oper-
ative eigenstates [3–5], namely, those states which enter the
initial conditions and therefore determine the dynamics. It
should be noticed that, even though the timescale tE is very
short, it diverges as h̄ goes to zero and this ensures the tran-
sition to classical motion as required by the correspondence
principle.

A popular tool to investigate chaos in quantum systems
is the four-point out-of-time-order correlator (OTOC) [6–43],
which can be defined as the expectation of the square commu-
tator of two operators taken at different times:

C(t ) = 〈|[Â(t ), B̂(0)]|2〉. (1)

In relation to OTOC, classical and quantum maps and
two-dimensional billiards have been studied in great detail
[13,14,19,21,41,42], since they are more easily amenable to
theoretical and numerical investigations. The importance of
these studies is in that, despite their simplicity, these models
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exhibit the typical properties of classical and quantum chaos
in more general systems.

The analysis of these systems has shown that the short-time
behavior of OTOC exhibits an exponential increase at a rate
which is twice the Lyapunov exponent of the corresponding
classical system. Quite obviously, for integrable systems, or
more generally for systems with only linear instability, the ini-
tial correspondence between classical and quantum mechanics
extends over much longer times.

A recent interesting Letter [40] has introduced a new el-
ement which was previously overlooked and that seems to
cast some doubts on the generality of the above picture. In
that Letter, classical and quantum polygonal billiards have
been investigated. While these systems are known to have zero
Lyapunov exponent, it has been found that the corresponding
quantum billiards display an initial exponential increase of the
quantum mechanical OTOC that has no origin in the classical
counterpart. Moreover, the growth rate appears to increase as
h̄ is decreased. On the other hand, since polygons have zero
Lyapunov exponent, then the corresponding classical OTOC
does not grow exponentially at any time. The seemingly un-
avoidable conclusion is a breakdown of the correspondence
principle.

This conclusion is very surprising to us and somehow hard
to accept. Indeed, the correspondence principle is a corner-
stone of the entire construction of quantum mechanics. As
remarked by Jammer [44], “In fact, there was rarely in the
history of physics a comprehensive theory which owed so
much to one principle as quantum mechanics owed to Bohr’s
correspondence principle.” The fundamental implications of
this problem require therefore a deep examination. This is the
purpose of the present Letter in which we provide convincing
evidence that there is no breakdown of the correspondence
principle: The initial growth of the quantum OTOC goes over
smoothly into the classical one and the agreement takes place
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up to times which increase as h̄ goes to zero, in accordance
with the correspondence principle. The OTOC then remains a
useful diagnosis of chaotic dynamics, provided an appropriate
average over the initial states is done and singularities in the
potential are rounded off below the scale of Planck’s cell. Our
analysis is based on the triangle map, which exhibits the same
qualitative properties, classical and quantum, of triangular or
polygonal billiards (in particular, zero Lyapunov exponent
and exponential growth of the quantum OTOC), while be-
ing much simpler for analytical and numerical investigations.
This is crucial in our case where, in order to discuss the
classical limit, it is desirable to consider sufficiently small
values of h̄.

Before discussing our results, we would like to remark that,
while the correspondence principle maintains its validity, the
analysis of Ref. [40] allows us to discover an important feature
of the quantum-to-classical transition. Indeed, polygons have
zero Lyapunov exponent but a round-off of a corner, no mat-
ter how small, might lead to chaotic exponentially unstable
motion. On the other hand, in a nonconvex polygon, due to
the finite size of the quantum packet, the quantum system
will always “see” a rounded vertex and therefore will move
as in a classically chaotic system. This is the reason for the
observed initial exponential growth in nonconvex polygons.
The importance of this observation is that a similar phe-
nomenon can take place in generic Hamiltonian systems due
to the presence of unstable fixed points which might lead to
an exponential increase of OTOC even in integrable systems.
This fact may render the role of OTOC to be very delicate
in discriminating integrable from chaotic systems. Indeed, in
recent papers [37,38] it has been claimed that the exponential
growth of OTOC does not necessitate chaos.

Exponential instability in the round-off triangle map. The
triangle map [45] is defined on the torus with coordinates
(x, p) ∈ [−1, 1) × [−1, 1) as follows,{

pn+1 = pn − V ′(xn) (mod 2),
xn+1 = xn + pn+1 (mod 2), (2)

where V (x) = −α|x| − β. It is an area preserving, parabolic,
piecewise linear map which corresponds to a discrete bounce
map for the billiard in a triangle. The map is marginally
stable, i.e., initially close trajectories separate linearly with
time. Even though the Lyapunov exponent is zero, numerical
evidence indicates that this map, for generic, independent
irrationals α and β, is ergodic and mixing [45]. Hereafter we
consider β = 0 for simplicity. In this latter case the map is
only ergodic [45].

We also consider the round-off triangle map, where we
substitute the cusps in the potential V (x) by small circle arcs
of radius r (see Fig. 1):

V (x)

α
=

⎧⎪⎨
⎪⎩

−√
2r + √

r2 − x2, |x| �
√

2
2 r,

−1 + √
2r −

√
r2 − (|x| − 1)2, |x| � 1 −

√
2

2 r,
−|x|, otherwise.

(3)
The original triangle map is recovered for r = 0.

The round-off triangle map is exponentially unstable for
any r �= 0. The Lyapunov exponent can be estimated by con-
sidering the tangent map. The length of the tangent vector

FIG. 1. Shape of the potential V (x) for the round-off triangle
map, at different values of r.

(δxn

δpn
) increases significantly only when a trajectory reaches the

neighborhood of x = 0 or |x| = 1, that is, when |x| <
√

2
2 r or

|x| > 1 −
√

2
2 r. We denote these two regions by E0 and E|1|, re-

spectively, and E = E0 ∪ E|1|. The width of E is wE = 2
√

2r,
so that the average time between consecutive passages of a
trajectory through E is τ 


√
2

2r . For consecutive passages at
time steps t = n and t = n + τ , in the case of small r we have
[46]

(
δxn+τ

δpn+τ

)
=

[√
2α
r

√
2α
r (τ − 1)

√
2α
r

√
2α
r (τ − 1)

](
δxn

δpn

)
. (4)

Given the distribution of return times τ to the region E ,
P(τ ) = qτ−1

r pr , where pr = wE/2 = √
2r and qr = 1 − pr ,

we obtain [46]

λlyp =
∑∞

τ=1 qτ−1
r pr ln

(√
2α
r τ

)
τ

= 2r2
∞∑

τ=1

(1 −
√

2r)τ−1 ln

(√
2α

r
τ

)
. (5)

Note that λlyp decreases with r, and λlyp → 0 when r → 0. As
shown in Fig. 2, this analytical estimate is in very good agree-
ment with the numerically computed Lyapunov exponent.

Similarly, we can also estimate the largest local Lyapunov
exponent λmax

lyp for the region E :

λmax
lyp = ln

(√
2α

r

)
. (6)

In contrast with the Lyapunov exponent, λmax
lyp increases as

r decreases. If we consider the dynamics up to time t , the
proportion of trajectories that satisfy x(t ′) ∈ E for all t ′ up to
some time t is equal to (

√
2r)t , i.e., it decreases exponentially

with time.
Exponential growth of OTOC. In order to study the quan-

tum evolution we consider the Floquet operator

U = exp

(
−i

p̂2

2h̄

)
exp

(
−i

V (x̂)

h̄

)
, (7)
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FIG. 2. Lyapunov exponent λlyp as a function of r. The analytical
estimate of Eq. (5) is compared with the numerical results. Here and
in the following figures, α = [(

√
5 − 1)/2 − e]/2.

where h̄ = 2
πD , D being the Hilbert space dimension. Here,

we consider the averaged OTOC defined as follows [47],

Aq
L(t ) = 1

N

N∑
k=1

ln(〈ψk|[x̂(t ), p̂(0)]2|ψk〉/h̄2), (8)

where |ψk〉 is the initial coherent state, which, in the position
basis, reads as follows:

ψk (x) = (π h̄)−1/4 exp

(
− (x − xk )2

2h̄
+ ipkx

h̄

)
. (9)

Here, (xk, pk ) is the center of the kth initial state.
In Fig. 3, we show that the initial growth of the quantum

OTOC is exponential also for the classically nonchaotic case
(r = 0), for which the Lyapunov exponent λlyp = 0. There-
fore, as in polygons, one can observe that quantum mechanics
induces short-time exponential instability in a classically non-
chaotic model. We plot in Fig. 3 the quantum OTOC for three
different values of h̄. We can see that, in agreement with Fig. 4
of Ref. [40], the quantum OTOC grows exponentially with a
rate which increases as h̄ is decreased [48]. This appears to
be the experimentum crucis which proves the breakdown of
the correspondence principle. However, as we shall discuss
below, a deeper analysis leads to a quite different conclusion.

Quantum-to-classical correspondence. In order to study
the quantum-to-classical correspondence, we consider the
canonical substitution [x̂(t ), p̂(0)] → ih̄{x(t ), p(0)}PB, where
PB stands for Poisson brackets. We thus obtain the classical
counterpart of OTOC as [49,50]

Ac
L(t ) = 1

N

N∑
k=1

ln

[∫
dγργk

0
(γ )

(
∂x(t )

∂x(0)

)2]
, (10)

where γ = (x, p). The initial condition is a Gaussian distribu-
tion

ργk
0
(γ ) = (2πσ 2)−1 exp

(
− (x − xk )2 + (p − pk )2

2σ 2

)
, (11)

FIG. 3. Average OTOC Aq
L (t ) for different values of h̄, at r = 0

and 10−6. It can be seen that, for the values of h̄ considered here,
the growth rate increases with decreasing h̄. Data for r = 10−6 are
almost indistinguishable from those at r = 0, as expected since in
quantum mechanics the sharp, nonanalytic features of the triangle-
map potential V (x) are smoothed.

where, in order to compare with the quantum wave packet, we

take σ =
√

h̄c
2 and h̄c = h̄.

There are obviously no problems for the correspondence
principle when r > 0. The round-off triangle map is chaotic
and therefore one expects that classical and quantum OTOC
agree up to the Ehrenfest time. This is nicely confirmed by
our numerical computations (see Supplemental Material [46])
where one can see that the growth rate of Ac

L(t ) approaches the
Lyapunov exponent as h̄ goes to zero while Aq

L(t ) approaches
the corresponding Ac

L(t ) up to the Ehrenfest time.
On the other hand, the case r = 0 requires careful inspec-

tion. First of all, we observe that there are singular points (the
cusps in the potential) for which ∂x(t )/∂x(0) diverges. This
leads to a divergence of the growth rate for Ac

L, as explained
in what follows.

Besides Ac
L, we consider two other ways of averaging over

initial conditions:

Lc
A(t ) = ln

[
1

N

N∑
k=1

∫
dγργk

0
(γ )

(
∂x(t )

∂x(0)

)2
]
, (12)

and

Lc
L(t ) = 1

N

N∑
k=1

∫
dγργk

0
(γ ) ln

(
∂x(t )

∂x(0)

)2

. (13)

We can see that Lc
L is an average of the quantity considered in

computing the Lyapunov exponent. For a number N of initial
conditions large enough, we can expect that

Lc
L(t ) ∝ 2λlypt . (14)

As for Lc
A(t ), it is close to Lc

L(t ) only if the fluctuations from
trajectory to trajectory of the local Lyapunov exponent are
quite small. On the other hand, for small r such fluctuations
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are large and Lc
A(t ) is dominated by the trajectories with

the largest local Lyapunov exponent λmax
lyp . Given λmax

lyp from

Eq. (6), and the fraction (
√

2r)t of the trajectories with the
largest local Lyapunov exponent up to time t , we conclude
that, for r → 0,

Lc
A(t ) ∝ 2λ∗

lypt, (15)

where

λ∗
lyp ≈ ln

(√
2α

r

)
+ 1

2
ln(

√
2r). (16)

Therefore, the growth rate of Lc
A diverges when r → 0, in spite

of the fact that in that limit the system is classically integrable.
Then we come to the discussion of the quantity Ac

L(t ). For
sufficiently small h̄c, for each single initial ensemble at small
times all the trajectories remain very close, at distances much
smaller than r. Then the behavior of Ac

L(t ) is quite similar to
that of Lc

L(t ). On the other hand, for longer times, when the
size of the ensemble becomes much larger than r, Ac

L(t ) is

close to Lc
A(t ). As a conclusion, for σ =

√
h̄
2 � r we obtain

Ac
L(t ) ∝

{
Lc

L(t ) ∝ 2λlypt, t � t∗,
Lc

A(t ) ∝ 2λ∗
lypt, t � t∗,

(17)

where t∗ indicates the timescale when the size X (t ) ∼√
h̄c exp (λlypt ) of the wave packet becomes comparable with

r.
Therefore, we can estimate the value of t∗ as

t∗ ∼ 1

λ
ln

r√
h̄c

. (18)

For a fixed r, when h̄c is large, t∗ is very small, and Ac
L(t ) in-

creases with growth rate 2λ∗
lyp. On the other hand, for h̄c → 0

we have t∗ → ∞, and the initial growth rate is given by 2λlyp

(see Supplemental Material [46] for a numerical confirmation
of the above picture).

To examine the validity of the correspondence principle for
r = 0, we first compute the quantum OTOC Aq

L(t ) at different
values of h̄. Numerical results are shown in Fig. 4(a). It is clear
that the growth rate of Aq

L, which we have seen to increase with
decreasing h̄ (down to h̄ = π−12−9), vanishes instead when
h̄ → 0, in accordance with the correspondence principle.

For a detailed classical-quantum comparison, given that
quantum mechanics smoothens the sharp features of the clas-
sical potential below the Planck’s scale, we juxtapose the
quantum results for OTOC at r = 0 with the classical ones
at r = 1/

√
D. As shown in Fig. 4(b), also the growth rate of

ALtan
c vanishes when h̄c → 0. In order to get a clear picture of

the difference between the quantum and classical results, we
consider the relative difference of Aq

L and Ac
L,

qc(t ) = ∣∣Aq
L(t ) − Ac

L(t )
∣∣/[Aq

L(t ) + Ac
L(t )

]
. (19)

The results for t = t0 = 6, 10 are shown in Fig. 4(c). It is
clear that in both cases qc → 0 with decreasing h̄. These
results show that there is no breakdown of the correspondence
principle.

It is intriguing that the OTOC growth rate exhibits a
nonmonotonous dependence on h̄. While we do not have a
rigorous explanation for this numerical result, a possible clue

FIG. 4. AL (t ) in (a) a quantum case for r = 0 and (b) its clas-
sical counterpart for different h̄ from h̄ = π−12−13 to h̄ = π−12−22.
The classical counterpart Ac

L (t ) is obtained by considering a finite
r, which is related to the dimension D of the system as r = 1√

D
.

(c) Difference between Aq
L (t ) and Ac

L (t ) at a fixed time t0, denoted
by qc(t = t0), for t0 = 6 (black blocks) and t0 = 10 (red circles).

is the following. Due to the finite size of the wave packet, the
quantum system “sees” a rounded potential, with an effective
radius r = f (h̄), where f is a monotonous growing function
of h̄. We then have, as we have discussed for the classical case,
a growth rate 2λlyp up to a time t� and then a growth rate 2λ�

lyp.
Numerical data as well as Eq. (18) suggest that t� increases
when h̄ decreases, in such a way that the initial growth rate is
determined by the fluctuations in the local Lyapunov exponent
for large h̄, and by the Lyapunov exponent for small h̄. In
particular, the OTOC growth rate in Fig. 3 is not given by the
Lyapunov exponent.

Conclusions. In recent years, the OTOC has emerged as an
important tool to characterize chaos in many-body quantum
systems. This validity, first corroborated by models which
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exhibit an exponential increase of OTOC with a rate equal to
twice the Lyapunov exponent of the underlying classical dy-
namics, has been more recently questioned. Indeed, unstable
fixed points might lead to an exponential increase of OTOC
even in integrable systems [37,38]. Even more importantly,
the exponential increase can be observed at early times, ques-
tioning the validity of the correspondence principle [40]. Our
results show that the correspondence principle is restored and

the OTOC remains a useful diagnosis of chaotic dynamics,
provided an appropriate average over initial states is done and
singularities in the potential are rounded off below the scale
of Planck’s cell.

Acknowledgments. J.W. and W.-g.W. acknowledge the Nat-
ural Science Foundation of China under Grants No. 11535011
and No. 11775210. G.B. acknowledges the financial support
of the INFN through the project “QUANTUM.”

[1] G. P. Berman and G. M. Zaslavsky, Physica A 91, 450 (1978);
M. Toda and K. Ikeda, Phys. Lett. A 124, 165 (1987); Y. Gu,
ibid. 149, 95 (1990).

[2] G. Casati, B. V. Chirikov, I. Guarneri, and D. L. Shepelyansky,
Phys. Rev. Lett. 56, 2437 (1986).

[3] G. Casati, B. V. Chirikov, F. M. Izrailev, and J. Ford, in Stochas-
tic Behavior in Classical and Quantum Hamiltonian Systems,
Lecture Notes in Physics Vol. 93 (Springer, Berlin, 1979),
p. 334.

[4] B. V. Chirikov, F. M. Izrailev, and D. L. Shepelyansky, Sov.
Scient. Rev. C 2, 209 (1981).

[5] G. Casati and B. V. Chirikov, Quantum Chaos: Between Order
and Disorder (Cambridge University Press, Cambridge, UK,
1995).

[6] A. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 55, 2262
(1968) [JETP 28, 1200 (1969)].

[7] A. Kitaev, Hidden correlations in the Hawking radiation and
thermal noise, talk given at KITP, Santa Barbara, 2014, http:
//online.kitp.ucsb.edu/online/joint98/kitaev/.

[8] J. Maldacena and D. Stanford, Phys. Rev. D 94, 106002
(2016).

[9] J. Maldacena, S. H. Shenker, and D. Stanford, J. High Energy
Phys. 08 (2016) 106.

[10] P. Hosur, X.-L. Qi, D. A. Roberts, and B. Yoshida, J. High
Energy Phys. 02 (2016) 004.

[11] Y. Huang, Y.-L. Zhang, and X. Chen, Ann. Phys. 529, 1600318
(2017).

[12] B. Swingle, G. Bentsen, M. Schleier-Smith, and P. Hayden,
Phys. Rev. A 94, 040302(R) (2016).

[13] E. B. Rozenbaum, S. Ganeshan, and V. Galitski, Phys. Rev. Lett.
118, 086801 (2017).

[14] K. Hashimoto, K. Muratab, and R. Yoshii, J. High Energy Phys.
10 (2017) 138.

[15] I. Kukuljan, S. Grozdanov, and T. Prosen, Phys. Rev. B 96,
060301(R) (2017).

[16] R. Fan, P. Zhang, H. Shen, and H. Zhai, Sci. Bull. 62, 707
(2017).

[17] M. Giärttner, J. G. Bohnet, A. Safavi-Naini, M. L. Wall, J. J.
Bollinger, and A. M. Rey, Nat. Phys. 13, 781 (2017).

[18] J. Li, R. Fan, H. Wang, B. Ye, B. Zeng, H. Zhai, X. Peng, and J.
Du, Phys. Rev. X 7, 031011 (2017).

[19] J. S. Cotler, D. Ding, and G. R. Penington, Ann. Phys. 396, 318
(2018).

[20] C.-J. Lin and O. I. Motrunich, Phys. Rev. B 97, 144304
(2018).

[21] I. García-Mata, M. Saraceno, R. A. Jalabert, A. J. Roncaglia,
and D. A. Wisniacki, Phys. Rev. Lett. 121, 210601
(2018).

[22] S. Pappalardi, A. Russomanno, B. Žunkovič, F. Iemini, A. Silva,
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