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Advection-enhanced diffusion in biased convection arrays
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We numerically investigated the transport of a passive colloidal particle in a one-dimensional periodic array of
planar counter-rotating convection rolls at high Péclet numbers. We show that advection-enhanced diffusion is
drastically suppressed by an external transverse bias but strongly reinforced by a longitudinal drive of appropriate
intensity. Both effects are magnified by imposing free-slip flows at the array’s edges. The dependence of the
diffusion constant on an external forcing is interpreted as a measure of the fluid-mechanical robustness of the
flow boundary layer mechanism governing diffusion in convection rolls.
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Introduction. Diffusion of a passive Brownian particle ad-
vected by a laminar flow is a recurrent problem in today’s
nanotechnology [1–3]. One encounters this problem at the
most diverse spatial scales, from the design of microflu-
idic chips [1,3], to the kinematic dynamo models in plasma
physics [4,5]. In particular, the phenomenon of advection
enhanced diffusion (AED) is key to understanding mass and
heat transport in geophysical processes and has applications
in chemical engineering and combustion [6].

As a study case of diffusion in a laminar convective flow,
we considered an overdamped pointlike Brownian particle of
unit mass suspended in an array of counter-rotating convec-
tion rolls of stream function [7,8]

ψ (x, y) = (U0L/2π ) sin(2πx/L) sin(2πy/L). (1)

Here, L is the size of the flow unit cell, U0 the maxi-
mum advection speed at the roll separatrices, �L = 2πU0/L
the maximum vorticity at their centers, and DL = U0L/2π

an intrinsic flow diffusion constant. The orthogonal coor-
dinate, z, is ignorable, so that we deal with an effectively
two-dimensional (2D) problem. When subjected to thermal
fluctuations of strength D0, the particle undergoes normal
diffusion with asymptotic diffusion constant D. At high Péclet
numbers, Pe = DL/D0 � 1, the constant D is appreciably
larger than the free diffusion constant, D0. This AED manifes-
tation has been explained [7–10] by noticing that, at low noise,
an unbiased particle jumps between convection rolls while
being advected along the roll outer flow layers. Such flow
boundary layers (FBLs) form a network of advection channels
of estimated width δ = (D0/�L )1/2, centered around the rolls’
separatrices, which thus favors the particle’s spatial diffusion.
By contrast, roll jumping due to thermal fluctuations is way
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less effective, even if the stationary particle’s probability den-
sity function (pdf) inside the ψ (x, y) unit cells is uniform [11].

AED has been reported for both square [7,8] and lin-
ear arrays [9,10] of convection rolls. The underlying FBL
mechanism, however, fails for non-center-symmetric stream
functions [12]. There the stream function separatrices split
and narrow easy-flow channels open up between parallel one-
dimensional (1D) arrays of convection rolls. As the width of
such channels grows of the order of δ, AED is deactivated.

In this Letter we investigate distinct and possibly more
general manifestations of tunable AED, i.e., advection in the
presence of a bias. We observed that AED in a 1D array
of convection rolls [convection array for short, Fig. 1(a)]
becomes sharply suppressed upon raising the intensity of an
applied transverse force. This result suggests that the exter-
nal force blocks the particle’s circulation in the FBL’s, thus
causing their sudden breakup. By contrast, in the presence of
a longitudinal force, the FBL branches parallel to the array
edges keep governing particle’s diffusion. This is signaled by
a huge excess-diffusion peak for values of the force intensity
of the order of the advection drag, U0. Both effects occur
independently of the slip properties of the flow at the array
edges, though more appreciably in free-boundary arrays.

Model. A Brownian particle of coordinates x and y, diffus-
ing in the convection array of stream function ψ (x, y), Eq. (1)
with 0 � y � L/2, obeys the Langevin equations (LE),

ẋ = ux + Fx + ξx(t ), ẏ = uy + Fy + ξy(t ), (2)

where u = (ux, uy) = (∂y,−∂x )ψ is the incompressible ad-
vection velocity vector, ∇ · u = 0, and F = (Fx, Fy) denotes
a tunable, uniform force applied to the array. As illustrated
in Fig. 1(a), the array unit cell consists of two counter-
rotating convection rolls. Reflecting boundaries are assumed
for the particle’s trajectories at the array edges, y = 0 and
L/2. The random sources, ξi(t ) with i = x, y, are stationary,
independent, delta-correlated Gaussian noises, 〈ξi(t )ξ j (0)〉 =
2D0δi jδ(t ), modeling equilibrium thermal fluctuations in a
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FIG. 1. Diffusion of a Brownian particle in a convection array
with stream function of Eq. (1) and 0 � y � L/2. (a) Array’s unit
cell. Boundary conditions are reflecting for y = 0, L/2, and periodic
for x = 0, L. (b) Longitudinal probability density functions (pdfs)
for different D0 and g (see legends). pdfs obtained by distributing the
particle’s x coordinate according to a one-cell representation. The
flow parameters are U0 = 1 and L = 2π , hence DL = 1.

homogeneous, isotropic medium. In our notation, D0 coin-
cides with the free-particle diffusion constant in the absence of
advection. The flow parameters, L and U0, define convenient
length and time units, respectively, L and �−1

L . Therefore
the only tunable parameters left in our analysis are the noise
strength, D0 (in units of DL), and the bias components, Fx, Fy

(in units of U0). The stochastic differential equations, Eqs. (2),
were numerically integrated by means of a standard Mil’shtein
scheme [13]. To ensure numerical stability, the numerical
integrations have been performed using a very short time
step, 10−5–10−4. The particle’s spatial distributions, shown
in Figs. 1(b) and 1(c), have been computed over at least
107 samples (trajectories). Computing the asymptotic diffu-
sion constant [14], D = limt→∞〈�x2(t )〉/2t, with �x(t ) =
x(t ) − 〈x(t )〉, required extra caution, because for Pe � 1, the
advected particle may take an exceedingly long time to exit a
convection roll.

As illustrated in Fig. 2, at zero bias the asymptotic dif-
fusion constant D changes from D = κ

√
DLD0 for Pe � 1

(advective diffusion) to D = D0 for Pe 	 1 (thermal dif-

FIG. 2. Diffusion in a convection array of Eq. (1) with transverse
bias. Asymptotic diffusion constant, D/DL , vs (a) g/U0 for different
D0, and (b) D0/DL for different g. Inset: rescaled curves from panel
(b) to illustrate the FBL breakup mechanism. The analytical estimate
of D, Eq. (4) with 〈cos(2πy/L)〉 = 1, is represented by dashed lines
in (a), and a dashed curve in (b). The flow parameters are U0 = 1 and
L = 2π , with DL = 1.

fusion). The constant κ depends on the convection array’s
geometry and boundary conditions [7,10]. For the unbiased,
free-boundary convection array of Eq. (1), κ 
 1.065 [7],
consistently with the numerical results of Fig. 2(b). The
crossover between these two diffusion regimes is well local-
ized at around D0 
 DL [15]; accordingly, AED sets in for
Pe > 1. Indeed, as anticipated in the Introduction, numerical
evidence [15] demonstrates that for Pe � 1 spatial diffusion
takes place mostly along the FBL’s delimiting the convection
rolls [7,8,10]. Vice versa, for Pe 	 1 the effects of advection
are superseded by translational thermal fluctuations. Many
numerical and experimental studies support this interpretation
of AED [16–20].

Transverse bias. The most prominent effect of a transverse
bias, say, F = (0,−g), is the drastic drop of the particle’s
diffusion constant, D, for Pe � 1, Fig. 2. Note that the data
in panel (a) are restricted to Pe � 1, whereas the data in
panel (b) span over both Péclet regimes. The drop of D upon
increasing g, panel (a), or decreasing D0, panel (b), is very
sharp. Also remarkable is that AED gets suppressed for bias
values which appear to increase with D0 [inset of Fig. 2(b)]. In
parallel with this dynamical transition, the profile of the par-
ticle’s longitudinal distribution undergoes an abrupt change.
The pdfs of Fig. 1(b), p(x), grow from uniform, as to be
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FIG. 3. Diffusion in a convection array of Eq. (1) with transverse
bias. 〈cos(2πy/L)〉 vs g/U0 for different values of D0. Vertical arrows
are the relevant gc values, Eq. (5). The flow parameters are U0 = 1
and L = 2π , with DL = 1. The dashed curve represents the analytical
prediction of Eq. (3) for D0 � DL .

expected for g = 0, to narrowly peaked around the ascending
laminar flow centered at x = L/2. For Pe � 1, this transition
is very sharp and coincides with the D drop in Fig. 2 [21]. In
contrast, for Pe < 1, p(x) oscillates with maxima (minima) in
correspondence with the ascending (descending) flows at L/2
(L) mod(L). The dynamical transition revealed by the g depen-
dence of D and p(x) is confirmed by the curves 〈cos(2πy/L)〉
vs g, displayed in Fig. 3 for different values of D0. Numerical
evidence points to the existence of one critical bias, gc, for
Pe � 1.

We consider first the regime of low Péclet num-
bers, where the LE for the longitudinal coordinate,
ẋ = U0 cos(2πy/L) sin(2πx/L) + ξx(t ), is analytically more
tractable. For D0 � DL, the coordinates x and y are clearly
decoupled, i.e., advection is negligible with respect to thermal
diffusion. For g � U0, advection is negligible with respect to
the bias as well, so that the average 〈cos(2πy/L)〉 can be
safely computed by approximating the particle’s vertical pdf
to p(y) ∝ exp(−gy/D0) with 0 � y � L/2; hence

〈cos(2πy/L)〉 = coth(π/2X )/(1 + X 2), (3)

with X = D0U0/gDL, in good agreement with the simulation
data of Fig. 3. Two relevant limits of Eq. (3) are 1 for g/U0 �
D0/DL and (2/π )(g/U0)(DL/D0) for 1 � g/U0 	 D0/DL.
Therefore the process x(t ) boils down to a Brownian motion in
a washboard potential of amplitude, DL〈cos(2πy/L)〉, which
depends on g and D0. This is a well-established problem
[22]. Accordingly, the particle’s pdf oscillates, as shown in
Fig. 1(c), with minima (maxima) where the bias is parallel
(antiparallel) to the descending (ascending) advection drag.
The asymptotic diffusion constant D can also be computed
analytically [Eq. (11.47) of Ref. [22]],

D/D0 = I−2
0 [〈cos(2πy/L)〉DL/D0], (4)

where I0[. . . ] is the modified Bessel function.
We address now the more interesting regime of high Péclet

numbers, where the decoupling argument leading to Eqs. (3)
and (4) fails, because x and y are strongly coupled via ψ (x, y).
At g = 0, 〈cos(2πy/L)〉 = 0 for any value of D0, so that
p(x) = 1/L in both Figs. 1(b) and 1(c). On increasing g, the

FBLs get distorted until they finally break up. Indeed, the
particle moves along the top branch of a FBL for a time of the
order of a quarter of the circulation period, π/�L, and during
such a time interval, the bias pulls it downward by a length
of about g/4�L. As such length grows comparable with the
width of an unbiased FBL, δ = (D0/�L )1/2, i.e., for g > gc

with

gc/U0 = 4
√

D0/DL, (5)

the FBL mechanism is suppressed. Upon dropping out of the
top branch of a FBL, the particle is likely to get trapped into
the bottom branch of the same FBL and then swept toward
an ascending advective flow. This mechanism gives rise to the
strongly peaked p(x) curves of Fig. 1(b).

The existence of a critical dynamical transition for g ∼ gc

is confirmed by the observation that our qualitative estimate
for gc, Eq. (5), correctly locates the sharp 0 → 1 jump of the
〈cos(2πy/L)〉 curves in Fig. 3. Moreover, for gc � g 	 U0,
the rising branches of D versus D0 in Fig. 2(b) collapse onto
a universal curve (see inset) upon rescaling D0 → D0/g2, as
suggested by Eq. (5). Finally, the abrupt profile change of the
pdfs in Fig. 1(b) also occurs for g ∼ gc [21].

The breakdown of the FBL mechanism implies that for g >

gc the particle gets pinned down in the vicinity of the bottom
array’s edge, subjected to an effective washboard potential
with amplitude DL〈cos(2πy/L)〉. As a result, for sufficiently
large values of g, Eq. (4) with 〈cos(2πy/L)〉 ∼ 1 closely fits
also the horizontal tails of the curves of Fig. 2(a) and the
curves of Fig. 2(b) with g � U0.

Longitudinal bias. If a transverse bias suppresses AED,
what about a bias F = F (cos θ, sin θ ) applied at a tunable an-
gle θ with the array’s axis? The FBL suppression mechanism
introduced above for Pe � 1 applies under two conditions: (i)
F is oriented at an angle θ large enough to extract the particle
out of the top (bottom) FBL branches, that is, |θ | > θc with
θc = gc/U0, and (ii) |Fy| > gc, with gc given in Eq. (5). Under
these conditions, the particle is pressed against the array’s
edges and is thus pinned to an effective washboard potential
in the horizontal direction. Accordingly, for |Fy| > gc and
F � U0, the particle’s mobility, μ = 〈ẋ〉/Fx, and diffusion
constant, D, in Fig. 4 drop to exponentially small values [22].
However, on increasing F , the longitudinal component of
the bias, Fx, eventually wins over the pinning action of the
edge advection flow. Depinning from a washboard potential
of amplitude DL〈cos(2πy/L)〉 ∼ DL occurs for |Fx| ∼ U0 [22]
and is signaled by an excess-diffusion peak [23,24], marked
by vertical arrows in Fig. 4(a). For vanishing and exceed-
ing large values of F , μ approaches the expected horizontal
asymptote, μ = 1, whereas D tends to two distinct zero-bias
limits, respectively, κ

√
DLD0 (as obvious being Pe � 1) and

D0 (like in the opposite Pe 	 1 regime). Indeed, on increas-
ing F much larger than U0, the effect of advection becomes
negligible even for Pe � 1 (no high Péclet numbers AED,
here!).

The curves D versus F at small bias angles hint to a
totally different picture. Our simulation data show that for
θ < θc, (i) the mobility is insensitive to advection, with μ = 1
for any value of F [25], and (ii) the asymptotic constant D
develops a broad peak for F � U0, which can grow orders
of magnitude larger than its asymptotic values for F → 0
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FIG. 4. Particle driven by a force F at an angle θ with the array’s
axis: (a) D/DL and (b) μ = 〈ẋ〉/F cos θ vs F/U0 for different θ .
Vertical arrows mark the predicted excess-diffusion peaks at the
depinning threshold |Fx| = U0; dashed lines denote the D asymptotes
for F → 0 and F → ∞. Other simulation parameters are L = 2π ,
U0 = 1, and D0/DL = 0.01. Inset: power-law fit of Dmax/DL vs
D0/DL for θ = 0.

or F → ∞. Such a huge diffusion enhancement results from
the interplay of advection, applied (longitudinal) drive, and
the array’s geometry. We estimated the height of such an
excess-diffusion peak, Dmax, as follows. By the time F comes
close to U0, the FBLs around the individual convection rolls
have long been gone; the particle can diffuse either along the
central array’s lane, with relatively low free diffusion constant
D0, or along the array’s edges, still subject to the advection
drag with longitudinal velocity ±U0. The pinning action of
the relevant washboard potential can be overcome even for
|F | � U0, since the particle can thermally diffuse across the
array, i.e., transverse to its axis, with an average time of
the order of τD = (L/2)2/2D0. Moreover, the advection drag
along the top and bottom array’s edges are opposite in phase.
Accordingly, for F ∼ U0 the particle’s diffusion constant due
to edge switching must be of the order of D = Ū 2

0 τD/2, where

Ū0 is a suitable spatial average of the advection speed across
the FBL (proportional to U0); hence

Dmax/DL ∝ Pe.

Such a power-law divergence of Dmax for D0/DL → 0 fits well
the simulation data reported in the inset of Fig. 4(b). This is
an interesting result when compared with the D0 dependence
of the height, Ddep, of the depinning excess-diffusion peaks
centered at |Fx| ∼ U0 [marked by arrows in Fig. 4(a)], namely,
Dmax/D0 ∝ D−2

0 versus Ddep/D0 ∝ D−2/3
0 [24]. The excess

diffusion for |θ | < θc is no boundary effect (under the same
conditions it can be observed also in 2D convection arrays!)
and, most remarkably, it can be made larger than the excess
diffusion due to pinning at the array’s boundaries, i.e., for
|θ | > θc. The situation described in this section clearly differs,
despite some apparent similarities, from the case of Brownian
particles pumped through corrugated channels in the presence
of a divergence-free force field [26].

Conclusions. The main conclusions of this study can be
summarized saying that the FBL mechanism responsible for
AED at high Péclet numbers is fluid mechanically rather
weak. Applying a transverse bias with modulus above a crit-
ical value suffices to deactivate it, thus strongly suppressing
particle diffusion. On the contrary, applying a longitudinal
bias of modulus comparable with the advection speed causes a
huge excess-diffusion peak. We have presented numerical evi-
dence of both effects for the case of free-boundary convection
arrays.

However, the overall picture presented above holds for no-
slip arrays, as well. Simulation data for a simple example are
presented in the Supplemental Material [21]. In the presence
of a transverse bias g, the breakdown of the FBL mechanism is
still detectable, though not as sharp as in free-slip arrays. On
the other hand, the particle’s diffusion constant, D, still drops
sharply with increasing g, except for g � gc it now rises back
toward its free value, D0. Such a reentrant diffusivity happens
because a particle sliding against the edges of a no-slip array
is advection free, and its diffusion is controlled by the sole
thermal fluctuations.
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