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We develop a first-principles approach to compute the counting statistics in the ground state of N nonin-
teracting spinless fermions in a general potential in arbitrary dimensions d (central for d > 1). In a confining
potential, the Fermi gas is supported over a bounded domain. In d = 1, for specific potentials, this system is
related to standard random matrix ensembles. We study the quantum fluctuations of the number of fermions
ND in a domain D of macroscopic size in the bulk of the support. We show that the variance of ND grows as
N (d−1)/d (Ad log N + Bd ) for large N , and obtain the explicit dependence of Ad , Bd on the potential and on the
size of D (for a spherical domain in d > 1). This generalizes the free-fermion results for microscopic domains,
given in d = 1 by the Dyson-Mehta asymptotics from random matrix theory. This leads us to conjecture similar
asymptotics for the entanglement entropy of the subsystem D, in any dimension, supported by exact results
for d = 1.
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An important concept to study quantum noise and cor-
relations in many-body fermionic systems is the counting
statistics (CS), which characterizes the fluctuations of the
number of particles ND inside a domain D. Applications
include shot noise [1], quantum transport [2,3], quantum
dots [4,5], spin and fermionic chains [6–9], and trapped
fermions [10,11]. In the related context of random matrix
theory (RMT), the statistics of the number of eigenvalues in
an interval also generated a lot of interest [6,12–23]. The CS is
particularly important for noninteracting fermions because of
its connection [24–27] to the bipartite entanglement entropy
(EE) of the subsystem D with its complement D. The EE
is a highly nonlocal quantity, much studied in the context of
quantum information [28,29], conformal field theory [30–32],
topological phases [33], quantum phase transitions [34,35],
or quantum spin chains [36,37]. Both the CS and the EE are
difficult to compute analytically, in particular in the presence
of an external potential. There exist, however, standard results
for free fermions, in the absence of an external potential. In
this case, at zero temperature, both the variance of ND and the
EE grow as ∼Rd−1 log R with the typical size R of the domain
D [38–45].

In cold Fermi gases [46], the quantum microscopes
[47–49] allow one to take an instantaneous “picture” and
measure the counting statistics. In experiments the fermions
are in a trapping potential, of tunable shape and interaction
[46,50]. It is thus important to calculate both the CS and
the EE in an inhomogeneous background, for which very
few analytical results exist even for noninteracting fermions,
apart from the d = 1 harmonic oscillator [32,51,52], and the
rotating harmonic trap in d = 2 [53].

There has been recent progress to describe noninteracting
spinless fermions in traps in d dimensions [11]. In d = 1, for
a single-particle Hamiltonian Ĥ = p2

2 + V (x) (in units h̄ =

m = 1), there is a useful connection with random matrices for
a few specific potentials V (x). The many-body ground-state
wave function �0 of N fermions is a Slater determinant with
all energy levels of Ĥ occupied up to the Fermi energy μ, a
function of N . The quantum joint probability |�0|2 of the po-
sitions {x j} of the N fermions, maps onto the joint probability
for the eigenvalues {λ j} of random matrices of size N × N .
For the harmonic oscillator (HO), V (x) = x2

2 , the random ma-
trix is Hermitian from the Gaussian unitary ensemble (GUE).
At large N , the mean fermion density, i.e., the quantum av-
erage ρ(x) = 〈∑i δ(x − xi )〉, has support [x−, x+], with x± �
±√

2N . In the bulk, i.e., away from the edges x±, it takes the
semicircle form ρ(x) � ρbulk (x) = kF (x)/π , where kF (x) =√

2μ − x2 is the local Fermi momentum, and in this case
μ � N . There are two natural length scales, the microscopic
one of order the interparticle distance ∼1/kF (x), and the
macroscopic one of order x+ − x−. For an interval D = [a, b]
of microscopic size, it is well known from standard results
of RMT [54,55] that for

√
N |b − a| = O(1) � 1 the variance

behaves as [6,12–14,17,20–22]

Var N[a,b] � 1

π2
[log(

√
2N − a2|b − a|) + c2], (1)

with c2 = γE + 1 + log 2, where γE is Euler’s constant. The
fermions (or eigenvalues) correlations can be expressed as de-
terminants of a central object called the kernel, which depends
on V (x) (see below). At microscopic scales, the kernel takes
a universal scaling form, called the sine kernel, independent
of the (smooth) potential, which leads to (1). However, ex-
cept for free fermions on the infinite line, it does not apply
when both a, b are well separated in the bulk. For the HO,
some results in that regime were obtained in Refs. [20,21]
using a Coulomb gas method, and for the GUE in the math
literature [56–59].

2470-0045/2021/103(3)/L030105(8) L030105-1 ©2021 American Physical Society

https://orcid.org/0000-0003-4855-7206
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.L030105&domain=pdf&date_stamp=2021-03-22
https://doi.org/10.1103/PhysRevE.103.L030105


SMITH, LE DOUSSAL, MAJUMDAR, AND SCHEHR PHYSICAL REVIEW E 103, L030105 (2021)

Despite recent advances a general framework is still lack-
ing for computing the counting statistics and entanglement
entropy for noninteracting fermions in a general potential and
arbitrary dimension. In this Letter we provide a first-principles
approach to compute these quantities in d = 1 for a general
potential V (x), and in d > 1 for a general central potential.
Our method recovers the existing results in various special
cases (see below).

Let us summarize our main results. For a confining poten-
tial in d = 1, such that the bulk density kF (x)/π , kF (x) =√

2[μ − V (x)], has a single support [x−, x+], we obtain an
explicit formula for Var N[a,b], with a, b well separated in
the bulk, |a − b| � 1/kF (a). In the limit N � 1 (i.e., μ � 1)
where N � ∫ x+

x−
dx
π

kF (x),

(2π2)Var N[a,b] = 2 log

(
2kF (a)kF (b)

∫ x+

x−

dz

πkF (z)

)

+ log

(
sin2 θa−θb

2

sin2 θa+θb
2

| sin θa sin θb|
)

+ 2c2 + o(1), (2)

where

θx = π

∫ x
x− dz/kF (z)∫ x+
x− dz/kF (z)

,

{
θx− = 0,

θx+ = π.
(3)

We then consider noninteracting fermions in a general
central potential in d dimension, with single-particle Hamil-
tonian Ĥ = p2

2 + V (r), where r = |x|. We obtain the variance
Var ND for any rotationally invariant domain D. For instance,
for the HO, V (r) = 1

2 r2, the support of the density is the
ball of radius

√
2μ, and for a sphere of macroscopic radius

R = R̃
√

2μ we obtain for large μ, with fixed R̃ ∈ [0, 1[,

Var ND = μd−1[Ad (R̃) log μ + Bd (R̃) + o(1)], (4)

Ad (R̃) = 1

π2	(d )
(2R̃

√
1 − R̃2)d−1, (5)

and Bd (R̃) is given below for d = 2 in (26) and for d = 3 in
(27). As seen from the comparison to simulations in Fig. 1
(see Ref. [60] for details on the simulations), the prediction
in (4) for a disk in d = 2 is already excellent for μ = 100
[it is crucial to include the subleading term Bd (R̃)]. In the
microscopic limit R̃ → 0 we obtain

Var ND � 1

π2	(d )
(kF R)d−1[log (kF R) + bd ], (6)

where kF = √
2μ. The leading term reproduces the free-

fermion result [38–43] for a sphere and we further obtain the
subleading term

bd = 2 log 2 − γE

2
+ 1 − 3

2
ψ (0)

(
d + 1

2

)
, (7)

ψ (0)(x) being the digamma function. These results lead us
to the conjecture (34) for the entanglement entropy of the
subsystem D in any dimension for arbitrary smooth central
potential, corroborated by exact results in d = 1.

Let us start with fermions on the infinite line in d = 1. It
is useful to introduce the height field h(x) [61], also called the

FIG. 1. Variance of ND = NR for a disk of radius R in d =
2, plotted vs R̃ = R/

√
2μ for μ = 100 corresponding to N =

μ(μ + 1)/2 = 5050. The simulations (symbols) [60] show excellent
agreement with our predictions: In the bulk, with (4) (solid line),
where A2(R̃) is given in (5) and B2(R̃) in (26), and near the edge
R̃ = 1, with the scaling form (28) (dotted line). Inset: The subleading
term B2(R̃) plotted vs R̃ (dashed line), compared to the simulations
(symbols), the leading term A2(R̃)μ log μ being subtracted from the
variance.

“index” in RMT [15,16,18,19], and its two-point covariance
function H (x, y), from which the variance of ND for any
interval D = [a, b] is obtained as

h(x) = N]−∞,x], H (x, y) = Cov[h(x), h(y)], (8)

Var N[a,b] = H (a, a) + H (b, b) − 2H (a, b), (9)

with Var N]−∞,a] = Var N[a,+∞[ = H (a, a), for a semi-
infinite interval [62].

For N noninteracting fermions the correlation functions are
obtained from the kernel

Kμ(x, y) =
N∑

k=1

ψ∗
k (x)ψk (y), (10)

where the ψk (x) are the eigenstates of Ĥ = p2

2 + V (x). We
will denote {εk}k=1,2,... the eigenenergies in increasing order.
The mean density is ρ(x) = Kμ(x, x), and the n-point corre-
lation is given by detn×n Kμ(xi, x j ) (see, e.g., Ref. [11]). This
leads to the exact relation [60]

Kμ(x, y)2 = −∂x∂yH (x, y) + δ(x − y)ρ(x), (11)

from which we determine the height field covariance (8).
We now obtain an estimate of Kμ(x, y)2, and of H (x, y),

valid anywhere in the bulk in the large N limit. In this regime,
the sum over k in (10) is dominated by k � 1 [63]. One can
thus use the WKB asymptotics [64,65]

ψk (x) � Ck

{2[εk − V (x)]}1/4 sin
(
φk (x) + π

4

)
, (12)

where φk (x) = ∫ x
x− dz

√
2[εk − V (z)] and C2

k = 2
π

dεk
dk is a nor-

malization [66,67]. Inserting (12) in (10), we relabel k =
N − m around the Fermi energy μ = εN . Noting that the phase
φN (x) at large N is also very large, we can expand φN−m(x) =
φN (x) − m dφN (x)

dN + o(1) = φN (x) − mθx + o(1), where θx is
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given in (3), using dN
dμ

� ∫ x+

x−
dx

πkF (x) . Performing the geometric
sum over m we obtain

Kμ(x, y) � dμ/dN

2π
√

kF (x)kF (y)

∑
σ=±1

sin[φ̃N (x) − σ φ̃N (y)]

sin[(θx − σθy)/2]
,

(13)
with φ̃N (x) = φN (x) + O(1). In Eq. (13) the sine terms
oscillate on microscopic scales. For |x − y| ∼ 1/kF (x) the
term σ = 1 dominates [68]. Using φ̃′

N (x) � kF (x) and dθx
dx =

dμ

dN
1

kF (x) , one recovers the sine kernel

Kμ(x, y) � sin (kF (x)|x − y|)
π |x − y| , (14)

valid on microscopic scales. On the other hand, for x, y well
separated on macroscopic scales in the bulk ]x−, x+[, taking
the square of (13), one can neglect the cross term and replace
the sin2 by 1/2, leading to

Kμ(x, y)2 � (dμ/dN )2

2π2kF (x)kF (y)

1 − cos (θx ) cos (θy)

(cos θx − cos θy)2 , (15)

up to fast oscillating terms averaging to zero on scales larger
than microscopic. Note that Eq. (15) is valid for any smooth
potential: For the HO we also derived these estimates using
the Plancherel-Rotach asymptotics for the Hermite polynomi-
als [60]. Having obtained Kμ(x, y)2 in the two regimes, we use
(11) to compute the height correlator.

(i) For x, y well separated in the bulk, i.e., |x − y| �
1/kF (x), the two-point height covariance is given by

H (x, y) � 1

2π2

(
log

∣∣∣∣sin
θx + θy

2

∣∣∣∣ − log

∣∣∣∣sin
θx − θy

2

∣∣∣∣
)

, (16)

up to o(1) terms at large μ. One checks that (16) is consistent
with (15) and (11) (in this regime the δ function does not con-
tribute). Using (3), the right-hand side (rhs) in (16) vanishes
when x is in the bulk and y reaches an edge y = x±, and for
y /∈]x−, x+[, H (x, y) � o(1) [60]. The rhs in (16) coincides
with the correlator of the two-dimensional (2D) Gaussian free
field (GFF) in the upper-half plane (with Dirichlet boundary
conditions) along part of a circle z = eiθx , thus extending the
result of Ref. [57] for the GUE-HO [69]. Similar connections
to the GFF also emerge in recent approaches using inhomoge-
neous bosonization [32,72–74].

(ii) On microscopic scales, |x − y| ∼ 1/kF (x), one uses the
sine kernel (14) in the left-hand side of (11). The integra-
tion constants are fixed so that H (x, y) for |x − y| � 1/kF (x)
matches with the limit y → x in (16), leading to

H (x, y) � 1

2π2

[
U (kF (x)|x − y|) + log

2kF (x) sin θx

dθx/dx

]
,

(17)

where

U (z) = Ci(2z) + 2z Si(2z) − log z + 1 − 2 sin2(z) − πz,

(18)

with U (z � 1) = − log z + o(1) and U (z 
 1) = 1 + γE +
log 2 − πz + z2 + o(z2). One checks, using U ′′(z) =
2 sin2 z/z2, that (17) is consistent with (11) (including
the delta function) and Kμ given by the sine kernel (14), since

kF (x) � kF (y) on microscopic scales. Using (9), it leads to
the Dyson-Mehta behavior

π2 Var N[a,b] � U (0) − U (kF (a)|a − b|)
� log kF (a)|a − b| + c2. (19)

From (16), (17), and (9), we obtain our result (2) as well as
for any a in the bulk,

H (a, a) = VarN[a,+∞[ � 1

2π2

(
log

2kF (a)2 sin θa

dμ/dN
+ c2

)
.

(20)

Expanding (20) for a → x+, a < x+, one obtains [60] H (a, a)
� 1

2π2 [ 3
2 log(−â) + c2 + 2 log 2] for −â � 1. Here, the

edge scaling variable is â = (a − x+)/wN , and wN =
[2V ′(x+)]−1/3, the width of the edge regime [11], ap-
pears naturally. Inside the edge regime, i.e., for â = O(1),
H (a, a) � 1

2V2(â), where the scaling function V2 was defined
in Refs. [20,21] for the HO, but is universal for a smooth
potential [60]. The matching with the bulk for â → −∞
obtained above agrees with known results for the HO-GUE
[20,75,77].

For the HO, x± = ±√
2μ, θx = arccos(−x/

√
2μ), and

(16) agrees with the rigorous results for the GUE [57]. In this
case (2) gives a general result [60] which agrees with known
results in special cases [15,16,20,21,58].

Another important example is the inverse square well
V (x) = x2

2 + α(α−1)
2x2 for x > 0 and α � 1/2. It corresponds

[60] to the Wishart-Laguerre unitary ensemble (LUE) of ran-
dom matrices [78] with the correspondence between fermion
positions x j and eigenvalues λ j ∼ x2

j [79–81]. One has μ =
2N + α + 1/2, hence dμ/dN � 2 and cos θx = μ−x2√

μ2−α(α−1)
.

We focus on the interval [0, a] and scale both a = O(
√

μ) and
α = O(μ) in the large μ limit. This scaling, used below for
d-dimensional central potentials, is also the standard large-N
limit for Wishart matrices. Setting ã = a/

√
2μ and λ = α/μ,

one obtains from (20) in the bulk |2ã2 − 1| <
√

1 − λ2,

2π2 Var N LUE
[0,a] � log(μ) + log

(
4ã

(
1 − ã2 − λ2

4ã2

)3/2

(1 − λ2)1/2

)
+ c2,

(21)

with the superscript LUE added for later convenience. A sim-
ilar result was recently reported in the mathematics literature
[82,83]. The result (16) also agrees with rigorous GFF results
for the LUE [85,86]. We have extended these results to other
cases related to RMT [60].

We now address a central potential V (r) in d > 1 and focus
on the number of fermions NR in a spherical domain D of
radius R centered at the origin. The single-particle Hamilto-
nian Ĥ commutes with the angular momentum L̂, and with
L̂

2
of eigenvalues �(� + d − 2), � = 0, 1, . . . , defining the

sector of angular momentum �. The eigenstates of Ĥ are
obtained from those of a collection of 1D radial problems
Ĥ� = − 1

2∂2
r + V�(r), r � 0, with potentials [80,87]

V�(r) = V (r) +
(
� + d−3

2

)(
� + d−1

2

)
2r2

(22)

L030105-3



SMITH, LE DOUSSAL, MAJUMDAR, AND SCHEHR PHYSICAL REVIEW E 103, L030105 (2021)

and eigenenergies εn,�, each with degeneracy gd (�), which
behaves as gd (� � 1) � 2�d−2

	(d−1) . We consider the N fermion
ground state where all levels with εn,� � μ are filled. In
each sector �, the levels n = 1, . . . , m� are occupied, with
N = ∑

� gd (�)m�, with m� = 0 for � > �max(μ). Remarkably,
we show [60] that the quantum joint probability of the radial
positions {ri}i=1,...,N of the fermions decouples into a sym-
metrized product over the angular sectors. As a consequence,
the cumulants 〈N p

R 〉c for p � 1 are simply sums over the
angular sectors as

〈
N p

R

〉c =
�max(μ)∑

�=0

gd (�)
〈
N p

[0,R]

〉c
�
, (23)

where 〈N p
[0,R]〉c

� are the cumulants of N[0,R] for the 1D
potential V�(r) in (22) with m� fermions. In the large μ limit,
the sum in (23) is dominated by large values of � and m�, and,
for p > 1, is effectively cut off at �c(μ, R) � RkF (R) � �max,
where kF (r) = √

2[μ − V (r)]. This allows us to use our re-
sults in 1D and to obtain the variance of NR for a general
central potential (see Ref. [60]).

We discuss here the HO V (r) = r2/2, for which the density
has a spherical support, with ρbulk (r) ∼ (2μ − r2)d/2, and
an edge at r = re = √

2μ [88]. In this case V�(r) in (22)
is the inverse square well studied above with α = � + d−1

2 .
For large μ, the occupation numbers m� are determined
by εm�,� � 2m� + � � μ. Hence, defining λ = �/μ, one has
m� � μ

2 (1 − λ) for λ < 1 and m� = 0 for λ > 1. The total
number of fermions is thus

N � μd

	(d − 1)

∫ 1

0
dλ(1 − λ)λd−2 = μd

	(d + 1)
. (24)

Substituting the result (21) with a = R, i.e., ã = R̃ = R/
√

2μ,
into (23) with p = 2, and approximating the sum by an inte-
gral, one obtains, using �c(μ, R)/μ = 2R̃

√
1 − R̃2,

Var NR � 2μd−1

	(d − 1)

∫ 2R̃
√

1−R̃2

0
dλ λd−2 Var N LUE

[0,R] . (25)

Performing the integral over λ yields the result in (4) and
(5) for the HO in the large μ limit. The coefficient Ad (R̃)
has a maximum at R̃ = 1/

√
2 for any d > 1, and vanishes

at the edge as Ad (R̃) ∼ (1 − R̃)(d−1)/2. The O(μd−1) term Bd

is obtained in Ref. [60] for general d . For d = 2 and d = 3
it reads

2π2B2(x) = log

( |1 − 2x
√

1 − x2|
1 + 2x

√
1 − x2

)

+ 2x
√

1 − x2

{
log

[(
64x

1 − 2x2

)2

(1 − x2)3

]

+ 2γE − 2

}
(26)

and

2π2B3(x) = (1 − 2x2)2 log |1 − 2x2|
+ 4x2(1 − x2){log[8x(1 − x2)3/2] + γE }, (27)

respectively. Bd (x) has a singularity (1 − x)
d−1

2 log(1 − x)
near the edge at x = 1. As in d = 1, there is an edge region

of width wN = [2V ′(re)]−1/3 where the variance becomes a
universal function of R̂ = (R − re)/wN ,

Var NR �
( re

wN

)d−1
∫ ∞

0

dξ ξ
d−3

2

2	(d − 1)
V2(R̂ + ξ ). (28)

Here, (re/wN )d−1 is the typical number of fermions in the
edge region [11] and V2 is the above scaling function for
d = 1, defined in Refs. [20,21]. For the HO, Eq. (28) matches,
for R̂ → −∞, the behavior of Bd (x) for x → 1− [60]. Finally,
the small R limit corresponding to free fermions, given in
the introduction, can also be obtained directly [60] using the
sine-kernel analog in d dimensions [11,42].

One can ask about higher cumulants of ND. In d = 1, for
potentials related to RMT they can be extracted from known
Fisher-Hartwig asymptotics of Hankel and Toeplitz determi-
nants [17,58,82,89]. In all cases we find for n � 2 [90],

〈
N 2n

[a,b]

〉c = κ2n + o(1), κ2n = (−1)n+1(2n)!
2ζ (2n − 1)

n(2π )2n ,

(29)

and 〈N 2n+1
[a,b] 〉c = o(1), where ζ (x) is the Riemann zeta

function. This leads to two important observations. First, from
very recent results [84], Eq. (29) also holds for the potential
V�(r) � �2

2r2 even when � ∼ μ. Using our Eq. (23) we obtain
[60] the cumulants of NR for free fermions in dimension
d > 1, with kF R � 1,

〈
N 2n

R

〉c = (kF R)d−1

	(d )
[κ2n + o(1)], n � 2. (30)

Second, since (29) coincides with the results from the sine
kernel (and the Circular Unitary Ensemble) [6,17,22,27], it is
natural to conjecture that these higher cumulants arise solely
from fluctuations on microscopic scales and that (29) actually
holds in d = 1 for any smooth potential V (x) [91]. For d >

1, using �c(μ, R) � RkF (R) in Eq. (23), our conjecture leads
to 〈N 2n

R 〉c = (kF (R)R)d−1

	(d ) [κ2n + o(1)], a natural extension of our
result for free fermions (30), where kF (R) now depends on R.
In fact, for V (r) = 1

2 r2 the argument is already close to being
rigorous [92].

We now apply our results to the calculation of the bipartite
Rényi entanglement entropy of a d-dimensional domain D
with its complement D. It is defined for q � 1 as

Sq(D) = 1

1 − q
ln Tr[ρq

D], (31)

where ρD = TrD[ρ] is obtained by tracing out the density
matrix ρ of the system over D. For noninteracting fermions
Sq(D) can be expressed as a series,

Sq(D) =
∑
n�1

s(q)
n

〈
N 2n

D
〉c
, (32)

in the cumulants of ND, where s(q)
n are given in Ref. [27]

and s(q)
1 = π2

6 (1 + 1
q ). In d = 1 this relation leads to the well-

known result for the entropy of free fermions,

Sff
q ([a, b]) � q + 1

6q
log (2kF |a − b|) + Eq, (33)
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where Eq is given in Eq. (11) in Ref. [94] (see also Ref. [36]).
Our conjecture for the higher cumulants in an arbitrary
potential (central for d > 1) leads to

Sq(D) = π2

6

q + 1

q
Var ND + [kF (R)R]d−1

	(d )
[Ẽq + o(1)],

(34)

with Ẽq = Eq − q+1
6q (1 + γE ). It holds in d > 1 for the sphere

centered at the origin, and in d = 1 for any interval D = [a, b]
with both a, b in the bulk [95]. In (34) the simple form of
the second term arises from the common R dependence of the
cumulants of order 4 and higher. This conjecture is corrobo-
rated by the rigorous results leading to (29) in d = 1 for the
HO, the inverse square well, and the hard box [60]. It also
agrees with existing results for d = 1 [32,52,94,96]. Owing
to (30), Eq. (34) is exact for free fermions in d > 1. The
leading term Sq(D) ∝ Rd−1 log R at large R is consistent with

the result obtained using the Widom conjecture applied to a
spherical domain [38–41,43], and also with the rigorous proof
in Ref. [97]. Here, in addition, we obtain the first correction
O(Rd−1).

In conclusion, we obtained analytically the counting statis-
tics and the entanglement entropy for N � 1 noninteracting
fermions at temperature T = 0 in a general potential in d = 1,
and a central potential in d > 1. They depend nontrivially on
the shape of the potential, already at leading order in d > 1,
e.g., in (4). These results can be extended to finite T [98] and
it would be interesting to extend them to interacting particles,
as was done recently for bosons [99].
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