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Exact solution to the random sequential dynamics of a message passing algorithm
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We analyze the random sequential dynamics of a message passing algorithm for Ising models with random
interactions in the large system limit. We derive exact results for the two-time correlation functions and the speed
of convergence. The de Almedia-Thouless stability criterion of the static problem is found to be necessary and
sufficient for the global convergence of the random sequential dynamics.
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Probabilistic inference is a key problem in statistics, signal
processing, and machine learning. To make predictions on
unobserved random quantities given observed data, averages
over conditional distributions have to be computed. For high-
dimensional inference problems, the resulting sums or inte-
grals can usually not be performed exactly. To overcome this
problem, efficient approximate inference algorithms, known
as message passing, have been developed [1]. Prominent ex-
amples are belief propagation and expectation propagation
[2–5]. More recently, the so-called approximate message pass-
ing (AMP) algorithms designed for probabilistic models on
densely connected networks have been applied to various
inference problems, e.g., Refs. [6–15]. Methods of statisti-
cal physics have played an important role in the design and
the theoretical analysis of such algorithms, e.g., fixed points
of AMP-style algorithms were shown to coincide with the
solutions of the advanced Thouless-Anderson-Palmer (TAP)
mean-field equations developed in the statistical physics of
disordered systems [16]. This shows that under certain sta-
tistical assumptions on network couplings, message passing
algorithms can achieve exact predictions in the thermody-
namic limit of large systems. Using techniques of information
theory and statistical physics, exact solutions for the dynamics
of the AMP-style message passing iterations have also be-
come possible [17–23]. So far, the theoretical analysis has
concentrated on the simplest type of dynamics, the parallel
update of all dynamical variables or nodes in the algorithm.

In practical applications, however, a sequential update of
individual or groups of variables may often be preferable
to obtain a more stable behavior. In fact, Tom Minka’s ex-
pectation propagation (EP) algorithm [4], which is one of
the motivations behind the vector-AMP (VAMP) approach
[21,22,24], is formulated in terms of sequential iterations.
Parallel versions of EP often require extra damping proce-
dures (see, e.g., Ref. [25]) to achieve convergence. The second
advantage of sequential algorithms over parallel ones might
be a reduced computational complexity. In the case of the
Ising model, for example, sequential updating of individual
variables reduces the need for matrix-vector multiplication
in the parallel updates to vector-vector multiplication at each
iteration step.

In this paper, we obtain an exact large-system analysis of
the dynamics for an AMP-style message passing algorithm
with random sequential updates. We show that the effective
dynamics of a single node is described by a simple stochastic
equation driven by a Gaussian process. We derive explicit
analytical conditions for global convergence and compute the
convergence time. This result is nontrivial, because previ-
ous studies of other random sequential learning algorithms,
e.g., Refs. [26,27] have shown that the effective single node
dynamics can be more complex due to the occurrence of
memory terms.

For simplicity, we will focus on a class of toy problems for
inference which is given by the prediction of magnetizations
m = E[s] for Ising models with pairwise interactions between
spin variables s = (s1, . . . , sN )� ∈ {−1, 1}N . Generalizations
to teacher-student scenarios for other inference problems such
as generalized linear models will be discussed in a future
publication. For applications of Ising models to real data, see,
e.g., Ref. [28]. The Ising model is defined by the Boltzmann
distribution:

p(s|J, h)
.= 1

Z
exp

( ∑
i, j�N

Ji jsis j + h
∑
i�N

si

)
. (1)

To discuss a typical inference task, we assume that the
coupling matrix J = J� is drawn from an arbitrary rotation-
invariant random matrix ensemble. This means that J and
OJO� have the same probability distribution for any orthog-
onal matrix O independent of J. This leaves the freedom
to specify the spectrum of the matrix J. A special case of
this ensemble is given by independent zero-mean Gaussian
couplings, known as the Sherrington-Kirkpatrick (SK) model
[29]. In general, however, matrix elements are statistically
dependent for a rotation invariant ensemble.

We consider approximations of the magnetizations m
which are given by the so-called TAP mean-field equa-
tions. For invariant random coupling matrices, these are
given by [30,31]

m = Th(γ ), (2a)

γ = Jm − R(χ )m. (2b)
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Here, for short, we have defined the nonlinear func-
tion Th(x) = tanh(h + x) and χ

.= E[Th′(σγ u)], where u is
a zero-mean normal Gaussian random variable and σ 2

γ

.=
(1 − χ )R′(χ ). The function R stands for the R-transform
[32] of the limiting spectral distribution of J defined as
R(ω)

.= G−1(ω) − 1/ω, where G−1 is the functional inverse
of the Green’s function G(z)

.= limN→∞ E[(zI − J)−1
ii ]. To

ensure that the Green’s function has a unique inverse, we
assume χ < limz→λ+ G(z), where λ+ stands for the supremum
of the support of the limiting spectral distribution of J. To
define an AMP-style algorithm for solving the TAP equations,
we first transform (1) into an equivalent, canonical form

A f (γ ) = γ . (3)

The function f is applied component wise to the vector γ and
A is a N × N matrix. The two conditions on this transforma-
tion which are essential for the further analysis are that

E[ f ′(σγ u)] = 0, lim
N→∞

E[(A)ii] = 0, (4)

together with the fact that A is a random matrix with ro-
tationally invariant distribution. For the Ising problem, this
is achieved by setting m = χ (γ + f (γ )) and by using the
definitions

f (x) = 1

χ
Th(x) − x, (5a)

A = 1

χ
(G−1(χ )I − J)−1 − I. (5b)

While (1) are specific to the Ising problem, similar transfor-
mations are possible for other inference problems. We define
an AMP-style iterative algorithm for solving (3) in discrete
time k = 1, 2, . . . by

φ(k) = A f (γ (k−1)), (6a)

γ (k) = γ (k−1) + P(k)[φ(k) − γ (k−1)]. (6b)

The initialization is given by γ (0) = σγ u where u is a
vector with independent zero-mean normal random vari-
ables; (6b) is a generalization of the parallel iterative
algorithm given in Ref. [13], which was motivated by
the VAMP algorithms of Refs. [21,22,24]. The parallel
dynamics of Ref. [13] is obtained when the diagonal
matrix P(k) is equal to the unit matrix. By introduc-
ing binary diagonal entries p(k)

i
.= P(k)

ii ∈ {0, 1}, we obtain
random sequential updates of nodes. The random de-
cision variables decide if node i is updated (p(k)

i = 1)
at time k or not (p(k)

i = 0). We assume that the p(k)
i are

independent for all i, k and that Pr(p(k)
i = 1) = η. The case

η = 1/N corresponds to an update of only a single node on
average.

We will next derive the statistical properties of the dynam-
ics (1) in the thermodynamic limit of large N while keeping
η fixed. We will later also discuss the limit η → 0 to simulate
the behavior for η = 1/N .

Our goal is to show that for N → ∞, the sequence
{φ(k)

i }K
k=1 over K time steps for an arbitrary component i

converges to a zero mean Gaussian process. We will build on
results of Ref. [19] which are based on the dynamical func-
tional theory of statistical physics. This path integral method

allows for an explicit averaging over the randomness of the
matrix A and leads to a decoupling of the degrees of freedom.
Using the second condition (4) for the random matrix A, it was
shown in Ref. [19] that {φ(k)}K

k=1 (suppressing the component
index i for convenience) can be transformed into a Gaussian
random sequence by appropriate subtractions. The subtrac-
tions define an auxiliary dynamical system which is obtained
by replacing the variable φ(k) in (6a) by

φ(k)
aux = A f (γ (k−1)) −

∑
l<k

Ĝ (k,l ) f (γ (l−1)) (7)

for k = 1, 2, . . . K . Under the new dynamics, {φ(k)
aux}K

k=1 can be
shown to be a Gaussian process. The memory terms in (7)
are defined as follows: Ĝ (k,l ) denotes the (k, l )th indexed en-
tries of the K × K matrix Ĝ which is defined in terms of the
R-transform and its power series expansion as

Ĝ = RA(G) =
∞∑

n=1

cA,nGn−1. (8)

Finally, the entries of the response matrix G are given by

G (k,k′ ) .= lim
N→∞

E

[
∂ f (γ (k−1))

∂φ
(k′ )
aux

]
, (9)

again suppressing the component index i for convenience, i.e.,
γ (k) = γ

(k)
i of γ (k) and φ(k)

aux = φ
(k)
aux,i of φ(k)

aux. We will show
next that G = 0. From this, we also obtain Ĝ = 0. This will
prove that φ(k) = φ(k)

aux and (7) reduces to (6a). By construc-
tion, we have

∂γ (k−1)

∂φ
(k′ )
aux

= p(k′ )
k−1∏

l=k′+1

(1 − p(l ) )

︸ ︷︷ ︸
.=p(k,k′ )

k′ < k. (10)

Hence, the response terms read

G (k,k′ ) = lim
N→∞

E[ f ′(γ (k−1))p(k,k′ )]

= Pr(p(k,k′ ) = 1) lim
N→∞

E[ f ′(γ (k−1))p(k,k′ )|p(k,k′ ) = 1]

= η(1 − η)k−1−k′
lim

N→∞
E

[
f ′(φ(k′ )

aux )
]
. (11)

We will only sketch the the final step of the proof. It is based
on a careful analysis of the two-time covariance function of
the Gaussian process φ(k)

aux (see Ref. [19]),

Cφaux =
∞∑

n=2

cA,n

n−2∑
k=0

GkC f (G�)n−2−k, (12)

where

C (k,k′ )
f = lim

N→∞
E[ f (γ (k−1)) f (γ (k′−1))]. (13)

One can show by induction (starting with the initializa-
tion C (0,0)

γ = σ 2
γ ) that the variances of φ(k)

aux are constant in
time, i.e.,

C (k,k)
φaux

= σ 2
γ . (14)

Hence, using the condition (4), we obtain

lim
N→∞

E
[

f ′(φ(k)
aux

)] = 0, (15)
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which establishes the vanishing of memory terms and Gaus-
sianity of {φ(k)}K

k=1.
Hence, as the main result of our paper, we have shown that

the effective dynamics of a single node of the algorithm is
given by the stochastic dynamical equation

γ (k+1) = γ (k) + p(k+1)[φ(k+1) − γ (k)], (16)

where the temporal sequence {φ(k)}k is a Gaussian random
process. The vanishing of the response terms G also leads to a
simplification of the two-time covariances

C (k,k′ )
φ = cA,2C (k,k′ )

f = C (k,k′ )
f lim

N→∞
E[(A2)ii], (17)

where the latter equality follows from properties of the
R-transform. This result together with the fact that the bi-
nary decision variables p(k) are independent for different
times and also independent of the Gaussian process, specifies
the statistics of the single node trajectories {γ (k)}K

k=1 com-
pletely. Although the joint distribution of the random variables
γ (k) and γ (k′ ) (for any k �= k′) is non-Gaussian, the linearity of
the dynamics (16) allows for a simple recursive computation
of moments at different times in terms of the moments of
the driving Gaussian variables. For k �= k′, one obtains the
recursions

C (k,k′ )
φ = (1 − η)2C (k−1,k′−1)

φ + η2

[
C (k,k′ )

φ̃

+
k′−1∑
l ′=1

(1 − η)k′−l ′C (k,l ′ )
φ̃

+
k−1∑
l=1

(1 − η)k−lC (k′,l )
φ̃

]
,

(18)

where we have introduced the two-time expectations

C (k,k′ )
φ̃

= cA,2E[ f (φ(k−1)) f (φ(k′−1))] k, k′ > 1, (19)

C (k,1)
φ̃

= cA,2(E[ f (σγ u)])2

η
, k �= 1. (20)

We obtain similar recursions for the two-time covariances

C (k,k′ )
γ = (1 − η)2C (k−1,k′−1)

γ + η2
[
C (k,k′ )

φ

+
k′−1∑
l ′=1

(1 − η)k′−l ′C (k,l ′ )
φ +

k−1∑
l=1

(1 − η)k−lC (k′,l )
φ

]
, (21)

with C (k,0 )
γ = (1 − η)kσ 2

γ . Moreover, the variances read

C (k,k)
γ = ηC (k,k)

φ + (1 − η)C (k−1,k−1)
γ = σ 2

γ , (22)

where the latter equality follows from (14) by induction.
To analyze the convergence properties of the dynamics (1),

we consider the limit of the two-time covariances, when one
time index approaches infinity. Setting C (k)

γ ,φ

.= limk′→∞ C (k,k′ )
γ ,φ ,

one can show from the recursions (18) and (21) that

C (k)
γ = ηC (k)

φ + (1 − η)C (k−1)
γ , (23a)

C (k)
φ = ηg(C (k−1)

φ ) + (1 − η)C (k−1)
φ , (23b)

with the necessary initial values C (0)
γ = 0 and C (1)

φ = g(0).
Here, we have introduced the function

g(x)
.= cA,2E[ f (φ1) f (φ2)] (24)

for φ1 and φ2 being jointly Gaussian random variables with
covariance x and equal variances σ 2

γ . This enables us to
study the deviation between variables at time k and their
long-time limits:


(k)
γ

.= lim
k′→∞

lim
N→∞

1

N
E[‖γ (k) − γ (k′ )‖2] = 2σ 2

γ − 2C (k)
γ .

(25)
One can show that global convergence of the algorithm is
achieved under the condition

lim
k→∞


(k)
γ = 0 ⇐⇒ g′(σ 2

γ

)
< 1, (26)

independent of the probability η for an update. Following
Ref. [13], where parallel updates (P(k) = I) were analyzed, we
can show that the condition for convergence (26) coincides
with the well-known de Almedia-Thouless (AT) stability
criterion [33] of the replica-symmetric solution of Ising
models with rotation invariant coupling matrices [34, Eq.
(46)]. It is interesting to note that for g′(σ 2

γ ) � 1 the algorithm
fails to converge although the variance of γ (k) remains
constant in time.

We will now specialize to the case where only a small
number of nodes is updated. This limit is interesting for prac-
tical applications of algorithms. For simplicity, we consider
η = 1/N where a single node is updated on average. To model
such a process within our approach, we take the limit η → 0
and introduce a rescaling of time t = ηk which becomes a
continuous variable in the limit. We write (with a slight abuse
of notation) γ (t ) and φ(t ) instead of γ (k) and φ(k), etc. The
discrete recursions (1) are then replaced by the ordinary dif-
ferential equations

Ċγ (t ) = Cφ (t ) − Cγ (t ), (27a)

Ċφ (t ) = g(Cφ (t )) − Cφ (t ), (27b)

where the dots denote derivatives with respect to time t .
Linearizing the function g(x) around the fixed point, we obtain
the asymptotic solution


γ (t ) � e−(1−g′(σ 2
γ ))t (28)

for t → ∞ if g′(σ 2
γ ) < 1. This again manifests the AT line

of stability (26) as the sufficient and necessary condition for
the global convergence. In Fig. 1, we illustrate the theoret-
ical predictions of the results (27) and (28). We consider
two random coupling matrix models: the SK-model where
the couplings are independent Gaussian entries with zero
mean and the variances E[J2

i j] = β(1 + δi j )/N ; a random-
orthogonal-model [30] for which the eigenvalues of the
coupling matrix are binary ∓β with the trace-free property
tr(J) = 0 whenever N is an even number. The simulation
results are (mainly) based on single realizations of the dy-
namics but different realizations are considered for each value
of the inverse temperature β. As the model parameters ap-
proach (are) to (in) the region of dynamical instability, the
discrepancy between the theory and simulations may increase
due to the fluctuation of the realizations, e.g., for the SK
model, we illustrate the theoretical predication of (1) through
an empirical average over a number of realizations of the
dynamics, as well. On the other hand, for the second model
the theoretical results already give excellent agreement with a
single realization of the dynamics. This might stem from the
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FIG. 1. Comparison of theory and simulations for η = 1/N=10−4 and γ (t )
.= γ ( t

η ) for t
η

= 0, 1, 2, . . .: (a) and (b) are for the SK model

with h = 1. β = 1.91 gives the AT line of instability (g′(σ 2
γ ) = 1). (c) and (d) are for the random-orthogonal-model with h = 2. β = 6.70 gives

the AT line of instability. In the region of stability, γ∗ .= γ (t∗) denote stationary vectors for sufficiently large times t. Otherwise, we chose
γ∗ = γ (100). The empirical averages 〈·〉 are computed over ten realizations of the dynamics. Flat lines around 10−30 are due to the machine
precision of the computer which was used.

fact that the system shows smaller fluctuations as the random
matrix has a nonrandom spectral distribution for finite N .

We analyzed the dynamics of a message passing algorithm
for approximate inference with random sequential updates in
the thermodynamic limit. By deriving an effective stochastic
dynamics for a single node, we were able to obtain explicit
results for the asymptotic convergence. For simplicity, to
demonstrate our main ideas, we have restricted our analysis
in two ways: We considered an Ising model as a toy inference
problem. We also specialized to a simplified AMP-style algo-
rithm which starts with the proper initialization to keep the
variance of variables constant in time. With a bit more tech-
nical effort, both restrictions can be easily lifted. Our analysis
can, e.g., be extended to the common teacher-student scenario
for generalized linear data models [35]. The inclusion of more
adaptive updates used, e.g., in VAMP algorithms [21,22,24] is
also possible and will be given in a forthcoming publication.

From a theoretical point of view, we expect that most of
our analysis can be made mathematically rigorous using, e.g.,

the recent approach [23] to justify the subtraction rule (7).
There is, however, a subtle point related to the limit η = 1/N
of single node updates which might need further investigation.
The dynamical functional approach used to derive our results
is restricted to the limit N → ∞, but with the number of time
steps K kept finite. For η ∝ 1/N , we also need to increase
the number of iterations K ∝ N to have nonzero changes in
the dynamics. Although our results are supported very well
by simulations, we may try an alternative approach, where
the continuous time limit η → 0 in the dynamical functional
theory is performed before the limit N → ∞. The discrete
time decision variables would then be replaced by Poisson
events. We leave this calculation to subsequent publication but
conjecture that the resulting ordinary differential equations
would agree with (1).

This work was funded by the German Research Founda-
tion, Deutsche Forschungsgemeinschaft (DFG), under Grant
“RAMABIM” with No. OP 45/9-1.

[1] M. Mezard and A. Montanari, Information, Physics, and
Computation (Oxford University Press, Oxford, United King-
dom, 2009).

[2] J. Pearl, Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference (Elsevier, Amsterdam, Nether-
lands, 2014).

L030101-4



EXACT SOLUTION TO THE RANDOM SEQUENTIAL … PHYSICAL REVIEW E 103, L030101 (2021)

[3] J. S. Yedidia, W. T. Freeman, and Y. Weiss, IEEE Trans. Inf.
Theory 51, 2282 (2005).

[4] T. P. Minka, in Proceedings of the 17th Conference in Uncer-
tainty in Artificial Intelligence, UAI ’01 (Morgan Kaufmann
Publishers Inc., San Francisco, CA, 2001), pp. 362–369.

[5] M. Opper and O. Winther, J. Machine Learning Res. 6, 2177
(2005).

[6] Y. Kabashima, J. Phys. A: Math. Gen. 36, 11111 (2003).
[7] D. L. Donoho, A. Maleki, and A. Montanari, Proc. Natl. Acad.

Sci. 106, 18914 (2009).
[8] S. Rangan, in Proceedings of the IEEE International Sympo-

sium on Information Theory (ISIT) (Saint-Petersburg, Russia,
2011).

[9] F. Krzakala, M. Mézard, F. Sausset, Y. F. Sun, and L.
Zdeborová, Phys. Rev. X 2, 021005 (2012).

[10] M. Gabrié, E. W. Tramel, and F. Krzakala, in Advances in
Neural Information Processing Systems (IEEE, Piscataway, NJ,
USA, 2015), pp. 640–648.

[11] B. Çakmak, O. Winther, and B. H. Fleury, in Proceedings of
the IEEE Information Theory Workshop (ITW) (MIT Press,
Cambridge, MA, USA, 2014).

[12] A. K. Fletcher, S. Rangan, and P. Schniter, in 2018 IEEE In-
ternational Symposium on Information Theory (ISIT) (IEEE,
Piscataway, NJ, USA, 2018), pp. 1884–1888.

[13] B. Çakmak and M. Opper, Phys. Rev. E 99, 062140 (2019).
[14] B. Çakmak and M. Opper, J. Phys. A: Math. Theor. 53, 274001

(2020).
[15] B. Çakmak and M. Opper, J. Stat. Mech.: Theory Exp. (2020)

103303.
[16] M. Mézard, G. Parisi, and M. Virasoro, Spin Glass Theory and

Beyond (World Scientific, Singapore, 1987), Vol. 9.
[17] E. Bolthausen, Commun. Math. Phys. 325, 333 (2014).
[18] M. Bayati and A. Montanari, IEEE Trans. Inf. Theory 57, 764

(2011).

[19] M. Opper, B. Çakmak, and O. Winther, J. Phys. A: Math. Theor.
49, 114002 (2016).

[20] B. Çakmak, M. Opper, O. Winther, and B. H. Fleury, in 2017
IEEE International Symposium on Information Theory (ISIT)
(IEEE, Piscataway, NJ, 2017), pp. 2143–2147.

[21] S. Rangan, P. Schniter, and A. K. Fletcher, IEEE Trans. Inf.
Theory 65, 6664 (2019).

[22] K. Takeuchi, IEEE Trans. Inf. Theory 66, 368 (2020).
[23] Z. Fan, arXiv:2008.11892.
[24] J. Ma and L. Ping, IEEE Access 5, 2020 (2017).
[25] A. Vehtari, A. Gelman, T. Sivula, P. Jylänki, D. Tran, S.

Sahai, P. Blomstedt, J. P. Cunningham, D. Schiminovich,
and C. P. Robert, J. Machine Learning Res. 21, 1
(2020).

[26] P. Sollich and D. Barber, Europhys. Lett. 38, 477 (1997).
[27] F. Mignacco, F. Krzakala, P. Urbani, and L. Zdeborová, in

Advances in Neural Information Processing Systems 33 (MIT
Press, Cambridge, MA, USA, 2020), pp. 9540–9550.

[28] H. C. Nguyen, R. Zecchina, and J. Berg, Adv. Phys. 66, 197
(2017).

[29] D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1792
(1975).

[30] G. Parisi and M. Potters, J. Phys. A: Math. Gen. 28, 5267
(1995).

[31] M. Opper and O. Winther, Phys. Rev. E 64, 056131 (2001).
[32] J. A. Mingo and R. Speicher, Free Probability and Random

Matrices, Fields Institute Monographs Vol. 35 (Springer, New
York, USA, 2017).

[33] J. R. L. De Almeida and D. J. Thouless, J. Phys. A: Math. Gen.
11, 983 (1978).

[34] E. Marinari, G. Parisi, and F. Ritort, J. Phys. A: Math. Gen. 27,
7647 (1994).

[35] P. McCullagh, Generalized Linear Models (Routledge, Boca
Raton, Florida, USA, 2018).

L030101-5

https://doi.org/10.1109/TIT.2005.850085
https://doi.org/10.1088/0305-4470/36/43/030
https://doi.org/10.1073/pnas.0909892106
https://doi.org/10.1103/PhysRevX.2.021005
https://doi.org/10.1103/PhysRevE.99.062140
https://doi.org/10.1088/1751-8121/ab8ff4
https://doi.org/10.1088/1742-5468/abb8c9
https://doi.org/10.1007/s00220-013-1862-3
https://doi.org/10.1109/TIT.2010.2094817
https://doi.org/10.1088/1751-8113/49/11/114002
https://doi.org/10.1109/TIT.2019.2916359
https://doi.org/10.1109/TIT.2019.2947058
http://arxiv.org/abs/arXiv:2008.11892
https://doi.org/10.1109/ACCESS.2017.2653119
https://doi.org/10.1209/epl/i1997-00271-3
https://doi.org/10.1080/00018732.2017.1341604
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1088/0305-4470/28/18/016
https://doi.org/10.1103/PhysRevE.64.056131
https://doi.org/10.1088/0305-4470/11/5/028
https://doi.org/10.1088/0305-4470/27/23/011

