
PHYSICAL REVIEW E 103, L020301 (2021)
Letter

Activation function dependence of the storage capacity of treelike neural networks
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The expressive power of artificial neural networks crucially depends on the nonlinearity of their activation
functions. Though a wide variety of nonlinear activation functions have been proposed for use in artificial
neural networks, a detailed understanding of their role in determining the expressive power of a network has not
emerged. Here, we study how activation functions affect the storage capacity of treelike two-layer networks. We
relate the boundedness or divergence of the capacity in the infinite-width limit to the smoothness of the activation
function, elucidating the relationship between previously studied special cases. Our results show that nonlinearity
can both increase capacity and decrease the robustness of classification, and provide simple estimates for the
capacity of networks with several commonly used activation functions. Furthermore, they generate a hypothesis
for the functional benefit of dendritic spikes in branched neurons.
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The expressive power of artificial neural networks is well
known [1–4], but a complete theoretical account of how
their remarkable abilities arise is lacking [5–8]. In particular,
though a diverse array of nonlinear activation functions have
been employed in neural networks [5,6,9–14], our understand-
ing of the relationship between activation function choice and
computational capability is incomplete [9–11,15]. Methods
from the statistical mechanics of disordered systems have
enabled the interrogation of this link in several special cases
[11–19], but these previous works have not yielded a general
theory.

In this Letter, we characterize how pattern storage capac-
ity depends on activation function in a tractable two-layer
network model known as the treelike committee machine
(henceforth TCM). In addition to their uses in machine learn-
ing, TCMs have been used to model nonlinear computations
in dendrite-bearing neurons [20,21]. We find that the storage
capacity of a TCM remains finite in the infinite-width limit
provided that the activation function is weakly differentiable,
and it and its weak derivative are square-integrable with re-
spect to Gaussian measure. For example, the capacity with
sign activation functions diverges, while that with rectified
linear unit or error function activations is finite. We predict
that nonlinearity should increase capacity, but may reduce
the robustness of classification. These connections between
expressive power and smoothness begin to shed light on the
influence of activation functions on the capabilities of neural
networks and branched neurons.

The treelike committee machine. The TCM is a two-layer
neural network with N inputs divided among K hidden units
into disjoint groups of N/K and binary outputs [Fig. 1(a)]
[11–14,19]. For a hidden unit activation function g, a set of
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hidden unit weight vectors {w j ∈ RN/K}K
j=1, a readout weight

vector v ∈ RK , and a threshold ϑ ∈ R, its output is given as

y(x) = sgn[s(x)] for (1)

s(x; {w j}, v, ϑ ) = 1√
K

K∑
j=1

v jg

(
w j · x j√

N/K

)
− ϑ, (2)

where x j denotes the vector of inputs to the jth hidden unit. In
this model, the readout weight vector and threshold are fixed,
and only the hidden unit weights are learned. The perceptron
can thus be viewed as the special case of a TCM with identity
activation functions and equal readout weights [16,17].

Statistical mechanics of pattern storage. To characterize
this network’s ability to classify a random data set of P exam-
ples subject to constraints on the hidden unit weights imposed
by a probability measure ρ, we define the Gardner volume
[16,17]

Z =
∫

dρ({w j})
P∏

μ=1

�[yμs(xμ; {w j}, v, ϑ ) − κ], (3)

which measures the fractional volume in weight space such
that all examples are classified correctly with margin at least
κ . We consider “spherical” committee machines, in which
the hidden unit weight vectors lie on the sphere of radius
(N/K )1/2 [11–14,16–19]. As in most studies of the Gardner
volume, we consider a data set in which the components of the
inputs and the target outputs are independent and identically
distributed as xμ

jk = ±1 and yμ = ±1 with equal probability
[11–14,16–19].

We will study a sequential infinite-width limit in which
we first take N, P → ∞ with load α ≡ P/N = O(1) and then
take K → ∞ [22]. The infinite-width limit is of both theoreti-
cal and practical interest, as extremely wide networks are now
commonly used in applications [7,9,23,24]. In this limit, we
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FIG. 1. Pattern storage in treelike committee machines. (a) Net-
work architecture. (b) Capacity αc as a function of margin κ for
several common activation functions. Solid and dashed lines indi-
cate estimates of the capacity under replica-symmetric and one-step
replica-symmetry-breaking Ansätze, respectively.

expect the free entropy per weight f = N−1 log Z to be self-
averaging, and for there to exist a critical load αc, termed the
capacity, below which the classification task is solvable with
probability one and above which Z vanishes [14,16–18]. The
special case of this model with sign activation functions was
intensively studied in the late 20th century, showing that the
capacity diverges as K → ∞ [12,13,19,25,26]. In contrast,
Baldassi et al. [11] showed in a recent Letter that the capacity
with rectified linear unit (ReLU) activations remains bounded
in the infinite-width limit. Our primary objective in this work
is to identify the class of activation functions for which the
capacity remains finite.

We begin our analysis by specifying our choice of gen-
eral constraints on the activation function, readout weights,
and threshold. We will require the K → ∞ limit to be well
defined in the sense that the output preactivation s has finite
variance. In this limit, the central limit theorem implies that
the hidden unit preactivations converge in distribution to a
collection of independent Gaussian random variables [27].
Therefore, the activation function g must lie in the Lebesgue
space L2(γ ) of functions that are square-integrable with re-
spect to the Gaussian measure γ on the reals. Furthermore,
as var(s) ∝ ‖v‖2

2/K , we must have ‖v‖2 = O(
√

K ). As ‖v‖2

sets the effective scale of ϑ and κ but does not affect the zero-
margin capacity, we fix ‖v‖2 = √

K . To ensure that s has mean
zero, we set ϑ = K−1/2(Eg)

∑K
j=1 v j , where Eg = ∫

dγ g is
the average hidden unit activation. This choice maximizes
the capacity for the symmetric data sets of interest [22], and
generalizes the conditions on v and ϑ considered in previous
works [11–13,19].

To compute the limiting quenched free entropy, we apply
the replica trick, which exploits a limit identity for logarithmic
averages and a nonrigorous interchange of limits to write

f = lim
n↓0

lim
K→∞

lim
N→∞

1

nN
logEx,yZn

N,αN,K , (4)

where the validity of analytic continuation of the moments
from positive integer n to n ↓ 0 is assumed [16,18,28]. This
calculation is standard, and we defer the details to the Supple-
mental Material [22].

In this limit, the quenched free entropy can be expressed
using the method of steepest descent as an extremization over
the Edwards-Anderson order parameters qab

j = (K/N )wa
j · wb

j
[16,18,28], which represent the average overlap between the
preactivations of the jth hidden unit in two different replicas
a and b. Under a replica- and hidden-unit-symmetric (RS)
Ansatz qab

j = q, one finds that

fRS = extrq

{
α

∫
dγ (z) log H

(
κ + √

q̃(q)z√
σ 2 − q̃(q)

)

+ 1

2

[
q

1 − q
+ log(1 − q)

]}
, (5)

where H (z) = ∫ ∞
z dγ (x) is the Gaussian tail distribution

function, σ 2 = Eg2 − (Eg)2 is the variance of the activation,
and

q̃(q) = cov

[
g(x), g(y) :

[
x
y

]
∼ N

(
0,

[
1 q
q 1

])]
(6)

is an effective order parameter describing the average overlap
between the activations of a given hidden unit in two different
replicas. This expression for fRS is equivalent to that given
in Ref. [11] for ReLU activations, but we adopt a different
definition for the effective order parameter that has a clearer
statistical interpretation.

To find the replica-symmetric capacity αRS, one must take
the limit q ↑ 1 in the saddle-point equation that defines the
extremum with respect to q, as the Gardner volume tends to
zero in this limit [11–14,16,17]. As q ↑ 1, q̃ ↑ σ 2, but the
asymptotic properties of q̃ as a function of ε ≡ 1 − q de-
pend on the choice of activation function. Making the general
Ansatz that σ 2 − q̃ ∼ ε
 for some 
 > 0, we find that αRS ∼
ε
−1 [22]. Therefore, the RS capacity diverges if 
 < 1 and
vanishes if 
 > 1, while the boundary case 
 = 1 is special
in that the capacity is bounded but nonvanishing. For the spe-
cial cases of sgn(x) and g(x) = ReLU(x), this behavior was
noted by Baldassi et al. [11]. For sign, one has σ 2 − q̃ ∼ √

ε,
and αRS diverges in the infinite-width limit, while for ReLU,
σ 2 − q̃ ∼ ε, and αRS remains finite. However, Ref. [11] and
other previous studies [12,13] relied on direct computation
of the effective order parameters for all values of q, which is
not tractable for most activation functions, and does not yield
general insight.

Asymptotics of the effective order parameter. To under-
stand the asymptotic behavior of q̃(q) as q ↑ 1 for general
activation functions g, we apply tools from the theory of
Gaussian measures [29]. As g is in L2(γ ) by assumption, it
has a Fourier-Hermite series g(x) = ∑∞

k=0 gkHek (x), where
{Hek} is the set of orthonormal Hermite polynomials [22].
We note that the L2(γ ) norm of g can then be written
as ‖g‖2

γ = ∑∞
k=0 g2

k , and that g0 = Eg. To express q̃(q) in
terms of these coefficients, we recall the Mehler expan-
sion of the standard bivariate Gaussian density ϕ(x, y; q)
[30,31], ϕ(x, y; q) = ϕ(x)ϕ(y)

∑∞
k=0 qkHek (x)Hek (y), where

ϕ(x) = exp(−x2/2)/
√

2π is the univariate Gaussian density.
Then, we can evaluate the expectation in (6), yielding q̃(q) +
g2

0 = ∑∞
k=0 g2

kqk , which, by Abel’s theorem, is a bounded,
continuous function of q ∈ (−1, 1] because q̃(1) + g2

0 =
‖g‖2

γ is finite. Writing q ≡ 1 − ε, we expand (1 − ε)k in a
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binomial series and formally interchange the order of sum-
mation to obtain q̃(ε) + g2

0 = ∑∞
l=0

(−ε)l

l!

∑∞
k=l (k)l g2

k , where
(k)l = k(k − 1) · · · (k − l + 1) is the falling factorial. We rec-
ognize the sums over k as the norms of the weak derivatives
of g, which have formal Fourier-Hermite series g(l )(x) =∑∞

k=l gk
√

(k)lHek−l (x), which follow from the recurrence
relation He′

k (x) = √
kHek−1(x) [29]. Therefore, q̃ admits a

formal power series expansion in ε as

q̃(ε) + g2
0 =

∞∑
l=0

(−1)l

l!
‖g(l )‖2

γ εl . (7)

For the RS capacity to remain bounded, we merely require
that the first two terms in this series are finite, not for the series
to converge at any higher order for nonvanishing ε. Therefore,
the RS capacity is finite for once weakly differentiable acti-
vations g such that the L2 norms of the function and its weak
derivative with respect to Gaussian measure, ‖g‖γ and ‖g′‖γ ,
are finite. This class of functions is precisely the Sobolev class
H1(γ ) [29]. We provide additional background material on
H1(γ ) and weak differentiability in the Supplemental Mate-
rial [22].

Storage capacity. For any activation function in the class
H1(γ ), we find that

αRS(κ ) = ‖g′‖2
γ

σ 2
αG

( κ

σ

)
, (8)

where

αG(κ ) =
[∫ ∞

−κ

dγ (z) (κ + z)2

]−1

(9)

is Gardner’s formula for the perceptron capacity [16,22]. In
terms of Fourier-Hermite coefficients, we have σ 2 = ∑∞

k=1 g2
k

and ‖g′‖2
γ = ∑∞

k=1 kg2
k . Thus, we have ‖g′‖2

γ � σ 2, with
equality if and only if all nonlinear terms (those corresponding
to Hermite polynomials of degree two or greater) vanish.
Therefore, introducing nonlinearity always increases the zero-
margin RS capacity. However, as αG(κ ) is a monotonically
decreasing function, the capacity at large margins can be re-
duced by nonlinearity if σ < 1. We note that the zero-margin
capacity is invariant under rescaling of the activation func-
tion and hidden unit weights as g → c1g, v → c2v for some
constants c1 and c2. For finite margin, rescaling can increase
or decrease the capacity by changing σ . Thus, in the sense
of classification margin, introducing nonlinearity or rescaling
can reduce the robustness of classification.

Using this result, we can characterize the RS capacity
of wide TCMs for several commonly used activation func-
tions [22]. For a linear activation function, our result reduces
to Gardner’s perceptron capacity [16], which is expected
given the equivalence between such a TCM and the per-
ceptron in the K → ∞ limit. As the sign function is not
weakly differentiable, we recover the result that the ca-
pacity diverges [12,13,19]. ReLU is weakly differentiable,
and we recover the result of [11] that αRS = 2π/(π −
1) � 2.933 88. Considering sigmoidal activations, we find
that αRS = 2 arcsin(2/3)/π � 2.451 40 for the error function,
while αRS � 2.355 61 for the hyperbolic tangent and the logis-
tic. As an example of a nonmonotonic activation function, we
consider a quadratic, which yields αRS = 4. We plot the RS

capacity as a function of margin for these activation functions
in Fig. 1(b), illustrating how nonlinearity can reduce the large-
margin capacity while increasing the zero-margin capacity.

However, for nonlinear activation functions, one gener-
ically expects the energy landscape to become locally
nonconvex, and for replica symmetry breaking (RSB) to occur
[11–14,18,28]. The RS estimate of the capacity is therefore
only an upper bound, and one must account for RSB effects
in order to obtain a more accurate estimate [11–14,18,19,28].
To that end, we have calculated the capacity under a one-step
replica-symmetry-breaking (1-RSB) Ansatz, extending the re-
sults of earlier work [11–13] to arbitrary activation functions.
Under the 1-RSB Ansatz, the replicas are divided into groups
of size m, with intergroup overlap q0 and intragroup overlap
q1. Then, the capacity is extracted by taking the limit q1 ↑ 1,
m ↓ 0, with r ≡ m/(1 − q1) finite [11–14,28].

As detailed in the Supplemental Material [22], this cal-
culation yields an expression for α1-RSB as the solution
to a two-dimensional minimization problem over q0 and
r. Importantly, the finite-capacity condition at 1-RSB is
the same as that with RS. For functions in H1(γ ), the
resulting minimization problem must usually be solved nu-
merically, hence we give results for only a few tractable
examples. RSB does not occur for linear activation func-
tions [16–18,32]. For ReLU, we obtain α1-RSB � 2.66428 at
(q∗

0, r∗) � (0.757 16, 16.6374), which is consistent with the
result of Baldassi et al. [11] (see Ref. [33]). For erf, we obtain
α1-RSB � 2.375 00 at (q∗

0, r∗) � (0.754 63, 7.756 82). Finally,
for the quadratic, we have α1-RSB � 3.374 66 at (q∗

0, r∗) �
(0.284 52, 6.392 99). In Fig. 1, we plot the 1-RSB capacity
for these activation functions at nonzero margins. The gap
between the RS and 1-RSB results for the quadratic is larger
than that for erf or ReLU, both in the numerical value of the
capacity and in the difference between q∗

0 and q∗
1. Though the

capacities at 1-RSB are reduced relative to the RS result, their
ordering for these activation functions is preserved.

For general activation functions in H1(γ ), we can obtain
informative upper bounds on α1-RSB by considering candidate
solutions with fixed values of the interblock overlap q0. From
q0 ↑ 1, we have α1-RSB � αRS. As shown in the Supplemental
Material [22], we can also obtain an upper bound for α1-RSB

at zero margin as a function of αRS by taking q0 = 0 and
optimizing over r alone. For αRS � 5/2, these two bounds
coincide, while the q0 = 0 bound is tighter for αRS > 5/2.
In particular, for αRS � 1, this yields α1-RSB = O(log αRS).
The q0 = 0 bound allows us to define an accessible region
in (αRS, α1-RSB) space, as illustrated in Fig. 2. Our numerical
estimates for the 1-RSB capacities of ReLU, erf, and the
quadratic all lie within this allowed area, and are relatively
close to the q0 = 0 bound [22].

These bounds suggest that RSB strongly affects the ca-
pacity for activation functions with large derivative norm and
thus large αRS. This is illustrated by the example of Hermite
polynomial activation functions. For g(x) = Hek (x), we have
αRS(κ = 0) = 2k, hence one can obtain an arbitrarily large,
but finite, zero-margin RS capacity by taking k � 1. How-
ever, as shown in the Supplemental Material [22], the 1-RSB
capacity grows extremely slowly—sublogarithmically—with
degree. This result is sensible given the oscillatory nature of
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FIG. 2. The accessible region in (αRS, α1-RSB) space defined by
the q0 = 0 bound. The allowed region is shaded in gray, and the
locations of the four example activation functions for which we
estimate α1-RSB are indicated by colored dots.

high-degree Hermite polynomials, which one expects to yield
a highly nonconvex energy landscape.

Discussion. We have shown that the storage capacity of
treelike committee machines with activation functions in
H1(γ ) remains bounded in the infinite-width limit. Our re-
sults follow from a replica analysis of the Gardner volume,
with the capacity given by a simple closed-form expression
under a replica-symmetric Ansatz and a two-dimensional min-
imization problem with one-step replica-symmetry breaking.
Depending on the activation function, a fully accurate deter-
mination of the capacity would likely require higher levels
in the Parisi hierarchy of replica-symmetry-breaking Ansätze
[28]. Furthermore, it can be challenging to rigorously prove
that the capacity results obtained using the replica method at
any level of the Parisi hierarchy are correct [18,28,32,34,35].
With these caveats in mind, our results begin to elucidate
how nonlinear activation functions affect the ability of neural
networks to robustly solve classification problems.

Though our analysis focused on a regime in which the input
distribution is symmetric, inputs in both biological and arti-
ficial neural networks are often only sparsely active [36,37].
Our analysis of the RS capacity can be extended to this regime
[22], following Gardner’s [16] work on the perceptron. Pro-
vided that the input and target output distributions are not
both infinitely sparse, the condition for the capacity to remain
finite in the infinite-width limit remains the same. However,
if the activation function can be linearized about zero, the
zero-margin capacity for a symmetric target distribution de-
creases to that of the perceptron in the limit of very sparsely
active inputs. This holds, for instance, for erf or tanh, but not
for ReLU, for which the zero-margin capacity is independent
of sparsity. This example illustrates how introducing simple
yet realistic forms of data structure can affect pattern storage.
Investigating how other forms of data structure affect storage
capacity will be an important objective for future work [8,38–
40].

In addition to its use as a model system in machine learn-
ing, the TCM has been proposed as an abstract model for
computation in dendrite-bearing neurons [20,21,41]. In this

application, each hidden unit represents a dendritic unit that
integrates some set of synaptic inputs to generate a signal that
is transmitted to the soma, which in turn generates a “spike” if
the total current exceeds a threshold [20,21]. The most striking
form of nonlinearity observed in measurements of dendritic
signal processing is the generation of dendritic spikes [42,43].
Though it is difficult to argue that biological nonlinearities can
be infinitely sharp, previous works have modeled dendritic
spikes using non-weakly-differentiable activation functions
[20,21,41]. Our work therefore generates a hypothesis for the
functional benefit of dendritic spikes: Nonsmooth dendritic
nonlinearities allow the capacity to grow without bound as
the number of branches increases and to remain robustly large
even when inputs are very sparse. It will be interesting to test
this hypothesis using computational models that incorporate
greater biophysical realism [21].

The Gardner volume is agnostic to the choice of learning
algorithm used to train the weights of the network. This fea-
ture makes it a general approach to studying storage capacity,
but means that it can provide only limited insight into the
practical realizability of the extant solutions [11–14,44]. As a
result, it is challenging to directly test theories of the Gardner
volume. It is nevertheless possible to experimentally falsify
such theories; we have failed to do so [22]. More broadly, this
distinction between satisfiability and learnability, combined
with its dependence on data and focus on perfect classifica-
tion, means that the Gardner volume is one of many metrics
that should be considered in evaluating activation function
choice [9,10,36,44]. In a recent study of least-squares function
approximation by wide fully connected networks, Panigrahi
et al. [9] have shown that the speed and robustness of gradient
descent learning is related to activation function smoothness.
Their result is suggestively similar to that of this Letter,
though it is as yet unclear whether a similar link between
smoothness and trainability exists for treelike networks.

In this Letter, we have studied the activation function de-
pendence of the storage capacity of wide TCMs. This network
architecture is particularly convenient to study in the infinite-
width limit, but it is far removed from the deep networks
used in practical applications [5]. As a more realistic model,
one could consider a fully connected committee machine
(FCM), in which each hidden unit is connected to the full
set of inputs. Prior work on such networks with sign activa-
tion functions suggests that some qualitative aspects of the
behavior of TCMs should still hold true [12,13,45]. However,
FCMs possess a symmetry with respect to permutation of the
hidden units, which is broken at loads below the RS capacity
[12]. This phenomenon and the presence of correlations be-
tween hidden units complicate the study of their infinite-width
limit. Accurate determination of how FCM storage capacity
depends on activation function will therefore require further
work, in which the insights developed in this study should
prove broadly useful.
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