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Quantum chaos, equilibration, and control in extremely short spin chains
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The environment of an open quantum system is usually modelled as a large many-body quantum system.
However, when an isolated quantum system itself is a many-body quantum system, the question of how large
and complex it must be to generate internal equilibration is an open key-point in the literature. In this work, by
monitoring the degree of equilibration of a single spin through its purity degradation, we are able to sense the
chaotic behavior of the generic spin chain to which it is coupled. Quite remarkably, this holds even in the case of
extremely short spin chains composed of three spins, where we can also reproduce the whole integrable to chaos
transition. Finally, we discuss implications on quantum control experiments and show that quantum chaos reigns
over the best degree of control achieved, even in small chains.
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Introduction. Quantum technologies may outperform clas-
sical systems for processing information, but this depends on
the ability to precisely control a complex many-body quantum
system [1,2]. Furthermore, since the system is, in general, not
isolated but in touch with its surrounding, it is also critical
to know how to deal with the detrimental effects from the
environment. As a consequence, a huge amount of research
has been devoted to understand what does “in touch” and
“surrounding” exactly mean in this context [3–6].

A common hypotheses is to consider the environment
as a much larger quantum system than the one of interest.
However, depending on how well isolated the open quantum
system is, the timescales introduced by the coupling to the out-
side world can be much slower than the ones dictating internal
equilibration [7]. In fact, many of the experiments that are
done today consist of working on a few well-isolated qubits
and executing controlled operations on some of them [8–18].
In this scenario, one might wonder whether the set of qubits
that are not being controlled, by interacting with the qubits
that are, may affect controllability in the same sense that a
large environment usually does. Therefore, the question of
how small and simple this intrinsic environment could be to
generate internal equilibration and thus affect controllability
is absolutely relevant [19–27], not only from a fundamental
point of view, but also from the experimental side.

Unless a correct understanding and efficient characteriza-
tion of these complex many-body quantum systems is first
developed, the ultimate goal of controlling its full dynam-
ics will always remain unattainable. In this context, great
progress has been made in the study of ubiquitous properties
associated with the nonequilibrium dynamics of many-body
quantum systems, such as equilibration [28,29] and ther-
malization [7,30–34], where quantum chaos plays a major
role [35–38]. These works are usually restricted to the limit of
high-dimensional Hilbert spaces, where the energy spectrum

*Corresponding author: mirkin@df.uba.ar

is large enough to assure a proper characterization of quantum
chaos through spectral measures. It is clear that this is not
possible in the opposite limit, where the many-body quantum
system is not sufficiently large. Are there any vestiges of
quantum chaos at this particular limit? The answer to this
question is one of the main motivations of our work.

In this Letter, we study to what extent we can extract
information about the chaoticity of a large spin chain by
sensing a much smaller one with a simple probe. With this
purpose, we consider a single spin connected to a generic spin
chain and monitor the degree of equilibration of the reduced
spin system at the limit of infinite temperature through its
purity degradation. Under this framework, we show almost
an exact correspondence between the degree of equilibration
suffered by the probe and how much chaos is present within
the dynamics of the chain, i.e., the more chaos the more
equilibration. Quite remarkably, this allows us to reconstruct
the whole integrable to chaos transition even in the case of
extremely short spin chains composed of three spins. The fact
of finding robust vestiges of quantum chaos in such small
quantum systems constitutes the main result of our present
work. We believe that the implications of our findings are
essentially two. First, since our method does not require a
diagonalization over huge Hilbert spaces nor to determine a
whole set of symmetrized energy eigenstates [39–41], it con-
stitutes a novel and easy way of sensing the chaotic behavior
in complicated many-body quantum systems, which may be
of experimental interest due to its simplicity [42–46]. Second,
we argue that this result has relevant implications in quantum
control experiments. As we show at the end of our work,
the optimal fidelities achieved for a simple control task over
the reduced system strongly depend on the chaotic behavior of
the chain. In other words, the degree of control is subordinated
to the degree of chaos present, even if the spin chain is small.

For concreteness, in the main text we restrict our study
to a particular spin chain, but the same analysis can be ex-
tended to very different systems [47–54], as we show in the
Supplemental Material [55]. The system under analysis has
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no well-defined semiclassical limit and consists on a one-
dimensional (1D) Ising spin chain with nearest neighbor (NN)
interaction and open boundary conditions, described by

H =
L∑

k=1

(
hxσ̂

x
k + hzσ̂

z
k

) −
L−1∑
k=1

Jk σ̂
z
k σ̂ z

k+1, (1)

where L refers to the total number of spin-1/2 sites of
the chain, σ̂

j
k to the Pauli operator at site k = {1, 2, . . . , L}

with direction j = {x, y, z}, hx and hz to the magnetic field
in the transverse and parallel direction, respectively, and fi-
nally Jk represents the interaction strength within the site
k and k + 1. In general, we will consider equal couplings,
i.e., Jk = 1 ∀ k = {1, 2, . . . , L − 1}, situation where the sys-
tem has a symmetry with respect to the parity operator �̂.
Parity is defined through the permutation operators �̂ =
P̂0,L−1P̂1,L−2 . . . P̂(L−1)/2−1,(L−1)/2+1 for a chain of odd length
L (the even case is analogous). This implies that the spanned
space is divided into odd and even subspaces with dimen-
sion D = Dodd + Deven (Dodd/even ≈ D/2). However, since in
a realistic scenario couplings may be different due to some
experimental error, we will also analyze the case with different
values for Jk and show the robustness of our result. With
respect to the initial conditions, we will consider an initial
pure random state as |ψ (0)〉 = |ψ1〉 |ψ2〉 . . . |ψL〉, where each
spin at site k initially points in a random direction on its Bloch
sphere

|ψk〉 = cos

(
θk

2

)
|↑〉 + eiφk sin

(
θk

2

)
|↓〉, (2)

with θk ∈ [0, π ) and φk ∈ [0, 2π ). Note that this ensemble
of initial states maximizes the thermodynamic entropy and
is equivalent to a situation of infinite temperature [56]. This
assumption is important since the whole spectrum will be
equally contributing to the dynamics [55]. From now on, we
will take as the reduced system the first spin of the chain and
consider the rest as an effective environment. For example, a
case with L = 3 represents a single spin acting as an open
system and coupled to an effective environment of only two
spins. This may sound too simple but we remark that a recent
experiment was able to capture chaotic behavior on a 4-site
Ising spin chain by measuring out-of-time ordered correlators
(OTOC’s) [39,57] on a nuclear magnetic resonance quantum
simulator [45].

To fully characterize the integrable to chaos transition, the
standard procedure requires the limit of a high-dimensional
Hilbert space and the separation of the energy levels ac-
cording to their symmetries [58–60]. This may demand huge
numerical effort or even be quite laborious to implement
experimentally. Within all the standard chaos indicators in
the literature, in this work we will restrict ourselves to the
so-called distribution of min(rn, 1/rn), where rn refers to the
ratio between the two nearest neighbor spacings of a given
level. By taking en as an ordered set of energy levels, we can
define the nearest neighbor spacings as sn = en+1 − en. With
this notation, we can measure the presence of chaotic behavior
through [61–63]

r̃n = min(sn, sn−1)

max(sn, sn−1)
= min(rn, 1/rn), (3)

FIG. 1. (a) Time evolution of the probe in the Bloch sphere,
considering a small chain of L = 6 spins and both integrable ( hz =
0.0, orange squares) and chaotic (hz = 0.5, violet circles) regimes.
The initial state is a pure random state for each spin. The rest of
the parameters are set as hx = 1, Jk = 1 ∀ k = {1, 2, . . . , L − 1} and
T = 100 (in units of J−1). (b) Purity of the probe for the same set
of parameters as (a). The temporal average is shown as a dashed
line. (c) Time fluctuations of the purity (averaged over 50 different
initial states) as a function of system size in both regimes. Fluctu-
ations are defined as δ(P) =

√
〈P(t )2〉 − 〈P(t )〉2, where the interval

t ∈ [50, 100] (in units of J−1) was considered [55].

where rn = sn/sn−1. As the mean value of r̃n [min(rn, 1/rn)]
attains a maximum when the statistics is Wigner-Dyson
(IWD � 0.5307) and a minimum when is Poissonian (IP �

0.386), we can normalize it as

η = min(rn, 1/rn) − IP

IWD − IP
. (4)

The parameter η quantifies the chaotic behavior of the
system in the sense that η → 0 refers to an integrable dynam-
ics while η → 1 to a chaotic one. While η is based on the
spectral properties of the entire system, is useful only in long
chains [55] and requires to analyze separately even and odd
subspaces, we will show that by studying the equilibration
dynamics of a single spin we will be able to reconstruct the
whole structure of the regular to chaos transition, even in the
case of extremely short spin chains and without resorting to
any classification according to the energy level symmetries.

In Fig. 1(a) we summarize the main idea of our work. We
are interested on how a single spin acting as a probe of a
small chain behaves in the typical regimes where the same
spin chain, but much larger, is known to be either integrable
or chaotic. With this purpose, we solve the Schrödinger equa-
tion for the whole small system ρ(t ) and then trace over
the environmental degrees of freedom, focusing on the pu-
rity of the reduced density matrix ρ̃(t ) of the first spin of
the chain (P (t ) = Tr[ρ̃2(t )]). Since the purity of the probe
is fully determined through its Bloch vector 
r = (rx, ry, rz ),
where ri(t ) = Tr[σiρ̃(t )]∀i ∈ {x, y, z} (i.e., P (t ) = 1/2[1 +
|
r(t )|2]), its long-time dynamics is strictly related to the de-
gree of equilibration of the whole set of local observables
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A = {I, σx, σy, σz}. This subsystem equilibration should be
understand as lim

t→∞ Tr(ρ̃(t )Ô) = Tr(ρ̃∞Ô) ∀ Ô ∈ A, where ρ̃∞
is the equilibrium state of the probe [28,29]. If the spin chain
is large enough, under the assumption of infinite temperature,
we have ρ̃∞ = I

2 , which implies Tr(σiρ̃∞) = 0 ∀i ∈ {x, y, z}
and thus P∞ = 1/2.

From Fig. 1(b) we can qualitatively see that, while in the
chaotic regime the long-time dynamics washes out the purity
of the system, leading to a state of almost maximum uncer-
tainty, this is not the case for the integrable regime, where at
long times it oscillates periodically around a mean value much
greater than 1/2. It is clear that fluctuations are much smaller
in the chaotic regime, despite the spin chain analyzed in Fig. 1
is quite short (L = 6). Also, while fluctuations strongly decay
with system size in this regime, they do not in the integrable
case, as it is shown of Fig. 1(c). With respect to the short-
time decay, associated with decoherence, it is similar in both
regimes [64]. For this reason, we will focus on the long-time
regime, where some degree of equilibration takes place even
in extremely short chains, as we shall see.

Having this qualitative picture in mind, we now intend to
measure the degree of equilibration in a more quantitative
way. To do so, we will focus again on the purity degradation
of our reduced spin system ρ̃(t ), by defining an averaged

purity as P = 1

N

∑N
i=1 (

1

T

∫ T
0 Tr[ρ̃2

i (t )]dt ), where we first

make a temporal average over the purity of a particular ρ̃i(t ),
defined by a given random initial state, and then we repeat
this procedure for N different initial random states, to finally
perform a global average over all realizations. Let us remark
that since we are interested in studying the transition to chaos
as a function of a certain parameter, to compare the averaged
quantity P with the chaos measure introduced in Eq. (4), we
define a normalized averaged purity as

PNorm = P − min (P )

max (P ) − min (P )
(0 � PNorm � 1), (5)

where min (P ) and max (P ) are the minimal and maximal val-
ues obtained when sweeping over the parameter range. With
this definition, we have now all the necessary ingredients to
pose the following question: How does the purity degradation
of the reduced system behaves as a function of the degree of
chaos present in the rest of the chain? To address this issue,
in Fig. 2 we plot the spectral chaos indicator η for a large
chain composed of L = 14 spins (D = 16384) together with
the averaged purity PNorm of the reduced system for different
sizes of the total spin chain, both as a function of the magnetic
field hz.

Interestingly, the behavior of the averaged purity of the
probe is quite similar regardless of the length of the envi-
ronment. In fact, there is a well-distinguished area in all the
curves where the purity degradation is maximal. By com-
paring with the curve given by 1 − η, we can see that this
region coincides almost perfectly with the region where chaos
reigns, i.e., (1 − η) → 0. Quite remarkably, this is true even
when the system is extremely short (D = 8), where we can
observe a precise correspondence with the exception of a
small deviation near hz ∼ 0.5. This deviation can be smoothed

FIG. 2. Main plot: PNorm for the probe considering different sizes
of the environment together with the chaos parameter 1 − η, both
as a function of the magnetic field hz. For computing PNorm, 50
different realizations over random initial states were considered.
For the calculation of 1 − η, a chain composed of L = 14 spins
(D = 16384) was selected and only the odd subspace was taken
into account (Dodd ≈ 8192). Parameters are set as T = 50, hx = 1
and Jk = 1 ∀ k = {1, 2, . . . , L − 1} with the exception of the violet
crossed curve where Jk ∈ [0.5, 1.5] ∀ k = {1, 2, . . . , L − 1}. The plot
begins at hz = 0.01. Inset plot: Same as the main plot but without
normalizing the averaged purity (i.e., P).

by either taking more realizations over different initial states
or slightly increasing the size of the environment by one spin.

Various implications emerge from the analysis of Fig. 2. In
the first place, by using one spin as a probe and studying its
purity dynamics, we were able not only to sense the chaotic
behavior present in the full system, but also to reconstruct
the whole integrable to chaos transition with a great degree
of correspondence in comparison to other standard indicators
of chaos. However, while the usual methods require a full
diagonalization and classification of eigenenergies according
to their symmetries within huge dimensional subspaces [55],
we obtained the same results without requiring the above and
even in much smaller subspaces. Moreover, the average over
different realizations of the purity proved to be robust not only
to the size of the environment, but also to whether we consider
equal couplings or even a random set of Jk modeling some
hypothetical experimental error (see violet crossed curve in
Fig. 2). Our result evidences that when a small fraction from
a large chaotic system is selected, some trace of the universal
nature of the large system survives.

Keeping in mind the results presented so far, let us now
examine the following hypothetical situation: Consider an ex-
perimental scenario where a given spin chain is well-isolated
from the external environment and where some particular
spin of this chain can be externally controlled. For instance,
consider a time-dependent Hamiltonian

H =
L∑

k=1

(
hxσ̂

x
k + hzσ̂

z
k

) −
L−1∑
k=1

Jk σ̂
z
k σ̂ z

k+1 + λ(t )σ̂ z
1 , (6)

where λ(t ) is a control field that can be experimentally tuned.
Thus, you may want to implement some particular protocol
over the spin you are able to control. For example, consider a
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FIG. 3. Main plot: Optimal fidelities for a population transfer
protocol as a function of hz. The dashed curve is for L = 6 spins
and the solid for L = 9. Interaction parameters are set as T = 20,
hx = 1 and Jk ∈ [0.5, 1.5] ∀ k = {1, 2, . . . , L − 1}. The initial state
is |0〉 for the first spin and random for the rest of the system [see
Eq. (2)]. Only one realization was considered. Inset (a): Optimal
fidelities for an entangling protocol between the first two spins of
the chain. Parameters are set as L = 6, T = 20, hx = 1, and Jk =
1 ∀ k = {1, 2., . . . , L − 1}. The initial state is random for each spin
and only one realization was considered. Inset (b): Optimal fidelities
of the main plot as a function of the chaos parameter η.

population transfer protocol, where the first spin of the chain
has to be addressed from the initial state |ψ (0)〉 = |0〉 to the
final target state |ψtarg〉 = |1〉. Or maybe you are interested
in generating a maximally entangled state between the first
two spins of the chain, i.e., |ψtarg〉 = 1√

2
(|00〉 + |11〉). To do

so, the time-dependent control field λ(t ) must be optimized to
maximize the fidelity F = |〈ψ (T )〉ψtarg|2 at a final evolution
time T . In light of the results we presented before, you may be
wondering the following question: Is the maximum degree of
control achievable subordinated to the degree of chaos present
within the noncontrolled environmental spins?

To answer this question, we consider the control function
λ(t ) as a vector of control variables λ(t ) → {λl} ≡ 
λ, i.e.,
a field with constant amplitude λl for each time step. By
dividing the evolution time T into nts equidistant time steps
(l = 1, 2, . . . , nts), the optimization was performed exploring
several random initial seeds and resorting to standard opti-
mization tools [65,66]. In Fig. 3 we plot the optimal fidelities
achieved for both the population transfer and entangling pro-
tocols, as a function of hz and for different lengths for the total
spin chain.

Interestingly, we can conclude from Fig. 3 that the optimal
fidelities achieved for these simple but paradigmatic protocols

are very sensitive to the degree of chaos that is present within
the rest of the spin chain. In fact, from the main plot and from
the inset in Fig. 1(a) we can see that the optimal fidelities
behave quite similarly to the chaos parameter 1 − η, as a
function of the magnetic field hz (see Fig. 2). Accordingly, in
the inset of Fig. 3(b) we plot the optimal fidelities obtained in
the main plot but now as a function of the degree of chaos
associated to the specific strength of the magnetic field hz

(see again Fig. 2). By doing this, it is clear that the more
chaos, the worse control. This last statement clearly relates
to what we were discussing before, in the sense that a greater
degree of chaos is also associated with a stronger equilibra-
tion. Therefore, this means that the noncontrolled system is
acting as an effective environment for the spins that are being
actively controlled and we argue that even in the case where
this effective environment is small, its dynamics should be
carefully tuned in order to minimize equilibration and thus
improve the degree of control over the reduced system that is
being addressed.

Concluding Remarks.The goal of this work was to study the
interplay between equilibration, quantum chaos, and control
in the limit of a small isolated many-body quantum system.
In this context, by monitoring the long-time dynamics of a
spin connected to a generic spin chain, we found that its
purity degradation can be used as a probe to sense the chaotic
behavior of the chain under the limit of infinite temperature.
By showing that a greater degree of equilibration is associated
with a more chaotic region, we were able to reconstruct the
whole integrable to chaos transition even in the case where
the full system was merely composed of three spins. This
was done without any consideration of the conserved sym-
metries of the system, which is another important advantage
with respect to previous methods considered in the literature.
The fact of finding robust vestiges of quantum chaos in such
small quantum systems is of fundamental interest but also
has practical implications in quantum control experiments.
By considering simple but paradigmatic protocols over a spin
subject to a control field that can be experimentally tuned, we
showed that the best control achievable is a function of the
degree of chaos present within the full system of which it is a
part. Consequently, in realistic experiments where a control
task is sought over a reduced part of a system that is not
necessarily large but that nevertheless presents signatures of
quantum chaos, the interaction parameters must be carefully
adjusted to avoid the chaotic regime and thus achieve a better
performance of the control.
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