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Behavior of information flow near criticality
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Recent experiments have indicated that many biological systems self-organize near their critical point, which
hints at a common design principle. While it has been suggested that information transmission is optimized
near the critical point, it remains unclear how information transmission depends on the dynamics of the input
signal, the distance over which the information needs to be transmitted, and the distance to the critical point.
Here we employ stochastic simulations of a driven two-dimensional Ising system and study the instantaneous
mutual information and the information transmission rate between a driven input spin and an output spin. The
instantaneous mutual information varies nonmonotonically with the temperature but increases monotonically
with the correlation time of the input signal. In contrast, there exists not only an optimal temperature but also
an optimal finite input correlation time that maximizes the information transmission rate. This global optimum
arises from a fundamental trade-off between the need to maximize the frequency of independent input messages,
the necessity to respond fast to changes in the input, and the need to respond reliably to these changes. The
optimal temperature lies above the critical point but moves toward it as the distance between the input and
output spin is increased.
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Most, if not all, living organisms need to respond to
changes in their environment. Examples include bacteria
searching for food, animals trying to catch prey, or birds in
flocks trying to coordinate their motion. In all these cases,
the flow of information, be it via an intracellular biochemi-
cal network, an intercellular neural network, or between the
individuals within the group, is vital to function. Moreover,
in all these examples not only the reliability of information
transmission is important but also the speed and the distance
over which the information needs to be transmitted.

Recent experiments indicate that many biological systems
self-organize at their critical point. Examples are the flocking
behavior of starlings [1], signal percolation within a bacterial
community [2], or neural networks [3]. A hallmark of all
these systems is that they process information that is in the
dynamics of an input signal—a raptor [1], an electrochemi-
cal signal [2], or a neuronal stimulus [3]—by mapping that
input onto an output signal—a direction of the birds’ course,
halting cell growth, or a neuronal response, respectively. To
characterize this information transmission capacity [4], we
need to understand how these systems process time-varying
signals. Moreover, as an information measure we need the
information transmission rate [5–7] or the transfer entropy
[10], which takes into account both the reliability and the
speed of information transmission.

The observation that very different systems self-organize
near the critical point hints at a common design principle [11].
The Ising system is, because of its generic properties, ideally
suited to address this question. In fact, the role of criticality
in information transmission in the Ising system has been stud-
ied extensively [12–16]. It has been shown that the mutual

information between pairs of neighboring spins exhibits a
sharp peak near the critical point [12,13]. Additionally, the
transfer entropy [10] between pairs of neighboring spins
peaks at the critical point while a global transfer entropy
measure peaks above it [14]. However, all these studies con-
sider information transfer between spins in Ising systems
that are in thermodynamic equilibrium. They do not address
the question how the system processes time-varying signals,
which, moreover, can drive the system out of thermodynamic
equilibrium.

Here we consider a two-dimensional (2D) Ising system that
needs to process a time-varying input signal. The input signal
S is a spin, the input spin, which is flipped according to a
stationary random telegraph process with a timescale τs. Its
dynamics can thus be regulated independently of the remain-
ing spins, which is controlled by the temperature. The input
signal will drive the system out of equilibrium, and because
this signal is stationary, our system is in a stationary nonequi-
librium steady state. The output signal X is another spin, the
output spin, which is located at a distance d away from the
input spin, see Fig. 1. The input and output signals produce
the random variables S, X ∈ {+1,−1} at each point in time,
respectively. Because the information is propagated from the
input to the output spin via the other spins, the dynamics of
the output are distinctly non-Markovian [7]. Consequently, we
need to recognize the history of the input and output signal in
characterizing the information flow between them.

To characterize information flow, not only the mutual in-
formation [12,13] and the transfer entropy [14] have been
employed but also various decompositions thereof [15–20].
Yet none of these studies have considered the information
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FIG. 1. We consider an Ising system containing N × N spins
with periodic boundary conditions. One spin is chosen to be the
input spin and is flipped according to a stationary random-telegraph
progress. We measure the information transmission from the input to
the output spin, positioned a distance d along the diagonal from the
input; d in units of the distance between two neighboring spins along
the diagonal.

transmission rate or the multistep transfer entropy [10], which
take the full history of the input into account. This is critical,
because correlations in the input and output signal will affect
information transmission.

To characterize information transmission, we study two
measures: the instantaneous mutual information Iinst and the
information transmission rate IR. The measure Iinst (S; X ) is the
mutual information between the stationary input and output
signal at a single point in time:

Iinst (S; X ) = H (S) − H (S|X ), (1)

where H (S) is the Shannon entropy of the input signal and
H (S|X ) is the Shannon entropy conditional on the output
signal. The instantaneous mutual information has been used
to study information transmission in intracellular signaling
networks [21–25]. In contrast to the mutual information stud-
ied by Matsuda et al. [12], which characterizes the statistical
mutual dependence between pairs of spins in an equilibrium
system, Iinst (S; X ) quantifies the dependence between the in-
put spin S and the output spin X of our driven system; 2Iinst (S;X )

can be interpreted as the number of distinct mappings between
input and output that can be distinguished reliably [26]. The
quantity Iinst (S; X ) depends on the input timescale τs and the
response time τr of the system, which is determined by the
temperature.

While the instantaneous mutual information Iinst (S; X )
quantifies how accurately the input spin is mapped onto the
output spin, it does not quantify the rate of information trans-
mission. The latter is determined not only by the accuracy
of the input-output mapping but also by the rate at which
independent “messages” are transmitted through the system.
Autocorrelations within the input and the output signal lower
the information transmission rate. To take these correlations
into account, we study the information transmission rate,

which is defined as the rate at which the mutual information
I (SL; XL ) between the trajectories of the input and output
signal increases [6]:

IR = lim
L→∞

I (SL; XL )

L
= lim

L→∞
H (SL ) − H (SL|XL )

L
, (2)

where SL = [S(t1), S(t2), . . . , S(tn)] and XL =
[X (t1), X (t2), . . . , X (tn)] are spin trajectories of duration
L = (n − 1)δt , containing n subsequent spin states S (X ) at
successive time points ti = (i − 1)δt , with δt the elementary
time step of the dynamics [7]. To capture the autocorrelations
in the input and output signal, the trajectory lengths have to be
longer than the longest timescale in the problem, L > τs, τr ;
IR then properly takes into account the history of the input
and output spin, in contrast to the one-step transfer entropy.
Indeed, in general, IR differs from Iinst/δt precisely because of
the correlations in input and output. Since in our system the
output signal does not feed back on the input, IR is equivalent
to the multistep entropy [5,7].

In order to evaluate the effects of the dynamics and criti-
cality on information flow, we will study both measures as a
function of the input correlation time τs, the temperature T ,
the distance d between the input and output spin, and the sys-
tem size. We are mainly interested in temperatures higher than
the critical temperature Tc, since for lower temperatures the
system freezes down in the ferromagnetic phase, drastically
slowing down information transmission. We will show that the
nontrivial interaction between the diverging correlation length
and the diverging response time near the critical point causes
the information flow to be optimal close to, but not at, the
critical point. The optimal temperature is determined by the
distance over which the information needs to be transmitted
and the size of the system.

Consider a 2D Ising system of N × N spins with pe-
riodic boundary conditions and no external magnetic field.
The Hamiltonian of the system, with spin configuration σ =
σ1, . . . , σN 2 and σi ∈ {+1,−1}, is H (σ ) = −J

∑
〈i, j〉 σiσ j ,

where J is the coupling parameter and the sum is taken over all
nearest neighbors. For isotropic coupling, the critical temper-
ature is kBTc/J = 2.269 [27]. Following Barnett et al. [14], we
use discrete-time Glauber spin-flip dynamics [28]. We define
the response time τr as the timescale over which sponta-
neous fluctuations in the undriven system relax to equilibrium,
as measured via the two-point time correlation function of
the input and output spin [29]. Entropies are measured in
nats.

The information transmission rate is notoriously difficult
to compute, because the state space of the input and out-
put trajectories rapidly diverges with their length. We have
therefore considered not only relatively small systems, but
also developed the following scheme: To limit the size of the
state space, we introduce a sampling interval �t such that the
trajectory length L = (n − 1)�t . We ensure that L is longer
than the input and output correlation time such that I (SL; XL )
increases linearly with L and the information transmission rate
IR is independent of L (see Ref. [7]). We then compute, for
long-enough L, IR = IR(�t) for a range of �t values, where
we verify that the entropy histograms are sampled accurately,
using the Bayesian entropy estimator of Nemenman et al.
[30]. We then extrapolate IR(�t ) to the quantity of interest,
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FIG. 2. The instantaneous mutual information Iinst (S; X ) as a
function of the input correlation time τs and temperature T .
(a) Iinst (S; X ) increases monotonically with τs until it reaches a
plateau, Iinst,∞(S; X ), which is equal to the static mutual informa-
tion (dashed line). The plateau value Iinst,∞(S; X ) increases as T
decreases. However, for small τs, when τs is on the order of the
response time τr , Iinst (S; X ) does not rise monotonically with de-
creasing temperature. This is more clearly seen in panel (b): There
exists an optimal temperature Topt that maximizes Iinst (S; X ) for a
given τs; moreover, Topt decreases when τs increases. The optimal
temperature arises from a trade-off between responding rapidly and
reliably. Vertical dashed line denotes critical temperature. The size
of the system is 5 × 5, and the distance between input and output
spin is d = 2. Figure S8 of Ref. [7] shows that the results do not
qualitatively change for a 10 × 10 times larger system.

IR(�t → δt ), where δt is the elementary time step of the
Glauber dynamics; to verify this extrapolation procedure, we
have also recomputed IR(�t ) for a number of extrapolated �t
values (see Ref. [7]).

Figure 2 shows the instantaneous mutual information
Iinst (S; X ) between the input and output signal separated by
a distance d = 2 as a function of the input correlation time
τs and temperature T in an Ising system of 5 × 5 spins.
The instantaneous mutual information rises with the input
correlation time τs [Fig. 2(a)], because this gives the system
more time to respond to changes in the input signal and hence
more time to correlate the output with the input signal. For
large τs → ∞, the instantaneous mutual information reaches
a plateau value Iinst,∞(S; X ) that corresponds to the static
mutual information, which is the mutual information between
the output spin and the input spin when the latter is held fixed
indefinitely for each realization S = 1,−1. The static mutual
information increases as the temperature is decreased, because
decreasing the temperature lowers the thermal noise in the
transmitted signal.

Figure 2(b) shows that for a given correlation time τs of
the input signal, there exists an optimal temperature Topt that
maximizes the instantaneous mutual information Iinst (S; X ).
Increasing the temperature raises the thermal noise in the
signal, which tends to lower the instantaneous mutual infor-
mation. On the other hand, increasing the temperature also
reduces the response time τr . This allows the system to more
accurately track the input signal, which tends to raise the in-
stantaneous mutual information between the input and output
signal. The interplay between these two effects gives rise to
an optimal temperature Topt (τs) that maximizes the instanta-
neous mutual information, Imax

inst (τs). This optimal temperature

FIG. 3. The information transmission rate IR as a function of
the input correlation time τs and temperature T . (a) For a given
temperature T , there exists an optimal τs that maximizes the infor-
mation transmission rate IR, Imax

R ; it arises from a trade-off between
maximizing the frequency of independent inputs and responding
reliably. The figure also shows that Imax

R initially rises with T , but
then decreases, which is highlighted in panel (b): There exists an
optimal temperature Topt that maximizes Imax

R . Vertical dashed line
denotes critical temperature. System size is 5 × 5, and the distance
between input and output spin is d = 2. Lines are truncated at high
τs for large T , because it becomes exceedingly difficult to get good
statistics in this regime.

decreases as the input correlation time τs is increased, because
the latter gives the system more time to respond to the changes
in the input. Moreover, the maximum instantaneous mutual
information Imax

inst (τs) rises with τs, not only because increasing
τs raises Iinst by itself, but also because the lower optimal
temperature Topt (τs) reduces the thermal noise in the signal.

Figure 3(a) shows the information transmission rate IR as
a function of the correlation time of the input signal τs for
different temperatures T . While, for a given temperature, the
instantaneous mutual information Iinst increases monotoni-
cally with the input correlation time τs [see Fig. 2(a)], the
information transmission rate IR exhibits an optimal τs that
maximizes IR. When τs is too short, the signal is changing
faster than the output can respond to, which decreases IR by
increasing the conditional entropy H (SL|XL ) [see Eq. (2)]. On
the other hand, for large τs time is wasted when the output has
been correlated to the input yet is waiting for the signal to
change again; indeed, the entropy of the input signal H (SL )
decreases as τs is increased, which tends to lower IR [see
Eq. (2)]. This interplay causes the information transmission
rate to have a maximum at an optimal input timescale τ

opt
s . The

value of τ
opt
s decreases with temperature, because at higher

temperatures the system can respond more rapidly to changes
in the input signal.

Figure 3(b) shows the maximum value of the informa-
tion transmission rate IR at the optimal input correlation time
τ

opt
s , Imax

R ≡ IR(τs = τ
opt
s ), as a function of the temperature T .

Clearly, there exists an optimal temperature that maximizes
Imax
R . This is in marked contrast to the maximum value of

the instantaneous mutual information, obtained for τs → ∞,
Iinst,∞, which increases monotonically with decreasing tem-
perature [see Fig. 2(a)]. The optimum in Imax

R arises from the
trade-off between a faster response at higher temperatures,
which allows for a more rapidly varying input that increases
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FIG. 4. The optimal temperature that maximizes the information
transmission rate IR decreases as the distance d over which the
information is transmitted increases. The figure shows for different
values of d the maximum value of IR, Imax

R , obtained by optimizing IR

over the input correlation time τs [see Fig. 3(a)], as a function of the
temperature T . It is seen that Imax

R decreases as d is increased, while
the optimal temperature moves closer to the critical temperature,
denoted by vertical dashed line. The system size is 10 × 10.

H (SL ), and less thermal noise in the transmitted signal at
lower temperatures, which reduces H (SL|XL ) [Eq. (2)]. The
reason Imax

R peaks above the critical temperature Tc is that the
response time rapidly increases near Tc, thereby decreasing
the amount of information that can be sent through the system
per unit amount of time.

So far we have kept both the distance d between the input
and output spin constant, as well as the system size. We
now systematically vary these parameters. Figure 4 shows the
maximum information transmission rate Imax

R , obtained by op-
timizing over τs (see Fig. 3), as a function of temperature T for
different values of d in a 10 × 10 Ising system. The transmis-
sion rate decreases as d is increased, because the correlations
between spins become weaker as the distance between them
becomes larger. More interestingly, the optimal temperature
that maximizes Imax

R moves closer to the critical temperature
when d is increased. When the distance d between the input
and output spin is increased, the correlation length must be
increased in order to maintain the correlations between them.
This can be achieved by bringing the system closer to the
critical point.

Critical effects are stronger in systems of larger size. Close
to Tc, the response time of our system increases up to sixfold
when the system size is increased from 5 × 5 to 10 × 10
spins. This makes it beneficial for information transmission
to move the system further away from the critical point when
the system size is increased at constant d . Compare the case
of d = 2 in the 5 × 5 system in Fig. 3 to that of d = 2 in
the 10 × 10 system in Fig. 4: While Imax

R decreases because
of the larger response time in the larger system, the optimal
temperature that maximizes Imax

R increases from Topt ≈ 2.5
to Topt ≈ 2.6 to mitigate the effect of the larger response

time, which tends to reduce the information transmisison
rate.

The increase in the correlation length and the correlation
time when the system is moved toward the critical temperature
have opposite effects on information transmission. Moreover,
these effects are more pronounced for larger systems, di-
verging in the thermodynamic limit. These two observations
explain, as described above, why the optimal temperature
Topt that maximizes the information transmission rate moves
toward the critical temperature Tc when the distance d be-
tween the input and output spin is increased in a system of
constant size (Fig. 4), yet away from it when the system size
is increased at constant d (cf. Figs. 3 and 4). This raises
the question how Topt changes as d is scaled together with
the system size, which, as renormalization group theory in-
dicates, is also the relevant finite-size scaling question for
this problem. We have therefore also performed simulations
for d = 6 and N = 15. The optimal temperature that max-
imizes information transmission decreases from Topt ≈ 2.53
for (d = 2, N = 5), to Topt ≈ 2.44 for (d = 4, N = 10), and
Topt ≈ 2.38 for (d = 6, N = 15) (see Fig. S10 [7]). We em-
phasize that these system sizes are small, but computing Imax

R
becomes rapidly harder for larger systems. Nonetheless, our
results do hint that Topt moves toward Tc in the thermodynamic
limit. In the SI, we discuss this question further; here we
also study another quantity, the lagged mutual information
[7].

In summary, the information transmission rate IR is a dy-
namic quantity that depends on the input correlation time τs,
the response time τr , and the reliability of the response. In-
creasing τs gives the system more time to respond to changes
in the input, which tends to enhance the reliability of the
response, yet also reduces the frequency of independent in-
put messages, which decreases IR. Increasing the temperature
decreases τr , which enhances the rate at which information
can be transmitted, yet also increases the thermal noise, which
reduces the reliability of the response. The information trans-
mission rate thus exhibits an optimal input correlation time
and an optimal temperature, which arise from a fundamental
trade-off between the need to maximize the input frequency,
the necessity to respond fast to changes in the input, and the
need to respond reliably to these changes. The optimal tem-
perature depends on the distance between the in- and output
spin and the size of the system. The optimal temperature is
close to yet above the critical point, although our results hint
it moves toward the critical temperature in the thermodynamic
limit.

Our results may help to explain why a number of bio-
logical systems appear to be tuned close to a critical point
[1–3,31] and, more generally, will be relevant for understand-
ing information transmission in these systems. For example,
our results predict that increasing the interaction strength be-
tween the components of a system, be it between proteins in
a biochemical network (between, e.g., the receptor and the
kinase CheA in the bacterial chemotaxis system [32]), cells
in a bacterial community, or birds in a flock, will on the
one hand increase the reliability of information transmission,
yet on the other hand also increase the response time of the
system, giving rise to an optimal strength that maximizes the
information transmission rate. In fact, these principles likely
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pertain to systems outside the biological realm. Last, many
systems, including biological systems, are high dimensional.
Since the response time does not depend on the dimensionality
of the system while correlations decay faster with distance in
higher dimension, we conjecture that in higher-dimensional
systems the optimal temperature is closer to the critical
point.
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