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Structure and isotropy of lattice pressure tensors for multirange potentials
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We systematically analyze the tensorial structure of the lattice pressure tensors for a class of multiphase
lattice Boltzmann models (LBM) with multirange interactions. Due to lattice discrete effects, we show that
the built-in isotropy properties of the lattice interaction forces are not necessarily mirrored in the corresponding
lattice pressure tensor. This finding opens a different perspective for constructing forcing schemes, achieving the
desired isotropy in the lattice pressure tensors via a suitable choice of multirange potentials. As an immediate
application, the obtained LBM forcing schemes are tested via numerical simulations of nonideal equilibrium
interfaces and are shown to yield weaker and less spatially extended spurious currents with respect to forcing
schemes obtained by forcing isotropy requirements only. From a general perspective, the proposed analysis yields
an approach for implementing forcing symmetries, never explored so far in the framework of the Shan-Chen
method for LBM. We argue this will be beneficial for future studies of nonideal interfaces.

DOI: 10.1103/PhysRevE.103.063309

I. INTRODUCTION

The study of multiphase fluids pertains a vast spectrum
of scientific disciplines, from theoretical physics to biology
and engineering [1-4]. The investigation of multiphase flows
poses a challenge that lies at the heart of fluid dynamics,
as proven by the multitude of analytical and numerical ap-
proaches encompassed by the vast scientific literature on the
subject [1,5-7]. Among these, the lattice Boltzmann method
(LBM) [7] stands out for its remarkable capability in han-
dling multiphase flows. The first pioneering applications of
LBM for the simulations of multiphase flows started to ap-
pear around 30 years ago [8—13]. Since then, various studies
have been reported in the literature, witnessing the versatility
and robustness of the methodology in simulating multiphase
flows with an ample spectrum of applications across widely
separated time and space scales [7,14,15]. Among all the
facets of the LBM methodology for multiphase flows, the
so-called “Shan-Chen” (SC) method [10,11,16,17] has un-
doubtedly marked a major contribution to the field and its
applications have experienced an increasing success in the
recent years [18-33]. In a nutshell, the method hinges on
the evolution of a lattice Boltzmann dynamics equipped with
multirange interaction forces directly computed on the lat-
tice nodes. The resulting dynamics reproduces multiphase
flows whose nonideal interfaces emerge from the underly-
ing mesoscale interactions without the need of being tracked
in time during the evolution. The early SC implementations
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feature a limited set of interaction links, typically coinciding
with the links characterizing the LBM dynamics. In the recent
years, however, some extensions have been proposed includ-
ing multirange potentials, i.e., SC forces with an arbitrary
range of interactions [19,20,34,35]. The use of multirange po-
tentials was first introduced by Shan [34] to construct forcing
schemes with the desired isotropy properties: the higher the
degree of isotropy, the larger the number of weights charac-
terizing the lattice force. Shortly after, Sbragaglia et al. [19]
showed that the methodology could be used to separately
control both bulk properties and surface tension in the context
of multiphase flows. Falcucci er al. [20] studied the conse-
quences on the surface tension of employing the multirange
pseudopotential, and in [36] the methodology was used to
deliver configurations with multidroplets and inhibited coa-
lescence. In [35], the gamut of multirange interactions was
mapped, boosting the density ratio between the coexisting
phases, reducing the spurious current magnitude, and yielding
enhanced numerical stability. The multirange approach has
also allowed to model multicomponent yield-stress fluids,
e.g., emulsions, along with their complex flowing behavior
[37-39] by introducing competing self-interactions giving
rise to an effective disjoining pressure between the surfaces
of two droplets. Colosqui et al. [40] proposed a dynamic
optimization strategy to set proper speeds of sound for the
liquid and vapor phases, thus allowing to reach high density
(up to 1 : 1000) and compressibility (up to 25000 : 1) ratios.
More recently, in [41], an alternative was proposed to tune
the surface tension without affecting the mechanical stability
of the interface. Extended forcing schemes have also proved
instrumental for implementing the thermodynamic consis-
tency of the Shan-Chen model, as it was first detailed in
[42] and further developed in [43], with both works based
on the lattice pressure tensor first detailed in [44]. The multi-
range pseudopotential approach has been applied to complex
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nonideal phenomena of technical interest as well, for exam-
ple, in the simulation of flow-induced cavitation in orifices
[45], providing robust evidence of cavitation inception. As
apparent from the available literature, the multirange approach
has been key in shedding light on pivotal multiphase ap-
plications, both from a scientific and technological point of
view. However, several interesting phenomena connected to
nonideal interfaces have never been charted, yet, such as the
curvature dependencies of the surface tension [46—49], or
others that still endure as open questions, such as nucleation
[50-52]: in such cases, the multirange may provide a valu-
able tool for both fundamental investigations and engineering
applications.

To mark a further step towards these interesting and
promising perspectives, in this work we aim to systematically
focus on the pressure tensor, whose precise knowledge is cru-
cial for an accurate characterization of all interface properties
(i.e., bulk densities, surface tension, etc.) [47]. The SC method
is based on lattice forces, hence, the pressure tensor needs to
be constructed once the latter are assigned. Over the years,
various attempts have been made to compute the pressure
tensor for the SC method. While a pioneering analysis on
the SC pressure tensor was already presented in the seminal
paper by Shan and Chen [11], it is only in the last 15 years
that the topic has attracted considerable interest. Sbragaglia
et al. [19] presented an analysis to compute the “continuum”
pressure tensor for multirange potentials. Instead of invoking
a continuum approximation, Shan [44] presented a system-
atic analysis to construct the “lattice” pressure tensors: the
crucial advantage of the lattice formulation of the pressure
tensor is that it solves the mechanical equilibrium condition
of zero divergence directly on the lattice; hence, it can be
used as a starting point to retrieve more accurate interfacial
predictions. Based on this lattice formulation, Sbragaglia and
Shan [42] drew some guidelines on the suitable choice of the
pseudopotentials to achieve thermodynamic consistency. The
lattice formulation for the pressure tensor has also been ex-
tended to multicomponent fluids [53]. In a recent paper, From
et al. [33] studied the lattice pressure tensor on higher order
lattices truncating the expansion at second order derivatives
of the pseudopotentials and analyzed the corresponding me-
chanical equilibrium conditions for a flat interface, verifying
the thermodynamic consistency along the lines of the analysis
proposed in [42]. These results have been later applied in
[54] for the calculation of the diffusion constants and contact
angles in multicomponent systems. In this paper, we delve
deeper in detail with the analysis of the tensorial structures
of lattice pressure tensors for multirange potentials. Given the
forcing schemes with some prescribed isotropy properties, it
will be shown that such isotropy properties are not exactly
mirrored in the lattice pressure tensors introduced in [44],
i.e., the lattice pressure tensor possesses anisotropic contri-
butions that are absent in the forcing. The desired isotropy
can be retrieved by proper adjustments of the multirange po-
tentials, resulting in new forcing schemes where both forces
and lattice-based pressure tensors possess the desired isotropy
properties. We stress that the present results are not concerned
with the details of the forcing implementation in the LBM.
Rather, for a given forcing scheme, the results focus on the
determination of the interactions (i.e., the weights) in order

to impose a higher degree of isotropy for the lattice pressure
tensor.

Numerical tests will be conducted to highlight the improve-
ments introduced by the new forcing schemes. In this work,
we choose to focus on the spurious currents developed near
a curved interface. We isolate the role of the new pressure
tensor isotropy conditions by proposing 4 sets of 5 weights (24
forcing directions) and comparing them to the 6th, 8th, 10th,
and 12th order forcing isotropy schemes already proposed in
the literature [19,34]. The comparison is made by “mimick-
ing” with the new schemes the previous ones, i.e., by setting
the same equation of state, flat interface profile, and surface
tension. All new schemes yield weaker and less extended spu-
rious currents. The meaning of this result is twofold: on one
hand, there is a clear computational advantage brought in by
the ability to obtain with 5 weights weaker spurious currents
than by using 10 weights; on the other hand, the results have a
clear theoretical importance since they show the existence of
a different “dimension”, that of the lattice pressure tensor, that
can be used to implement the symmetries of the forcing in a
so far unexplored way.

The paper is organized as follows: In Sec. II we review
some basic concepts and definitions of the LBM while in
Sec. III we give some technical details on the analysis of the
forcing isotropy. In Sec. IV we review the essential features
of the lattice pressure tensor and in Sec. V we present a
systematic analysis of the structure of the pressure tensor for
multirange potentials, highlighting the anisotropic contribu-
tions and proposing new strategies to cure them. In Sec. VI we
present results of numerical simulations to test the improve-
ments brought by the new forcing schemes. Conclusions will
follow in Sec. VII. The source code for the simulations can be
found on the “idea.deploy” GITHUB repository [55-63], where
a JUPYTER notebook [62] is available to reproduce the results
reported in this paper.

II. LATTICE BOLTZMANN

A brief overview of the method is here provided. Extensive
details can be found elsewhere [7,15]. The lattice Boltzmann
method (LBM) [64-66] is based on a discrete version of
the Boltzmann transport equation in which the single-particle
probability density function f(x,&,¢) is defined on the the
nodes {x} of a d-dimensional lattice, at discrete times ¢. The
velocities {§;}, with i =0, ..., N,, are discretized as well
[7,15,67], so that for each of them the probability density
function only depends on space and time f;(x,1) = f(x, §;, t).
The latter are commonly referred to as populations. The dis-
cretized velocities are chosen as vectors connecting different
points on the lattice (similarly to what is shown in Fig. 1 with
the force vectors) and feature a set of weights {w;}, such that
ZQO w; = 1: these are chosen in order to recover the isotropic
n-rank tensors from the sum of the velocity tensor products,
ie., & ...&", uptoa given maximum order. As an example,
the second order isotropic tensor can be written as

NI’
> wigrel = s, 0

i=0
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FIG. 1. Set of basis vectors {e,} (with a =1, ...,24) used to
construct the forcing schemes presented in Sec. III. (a), (b) Show the
numbers referred to lattice vectors, with the color coding for the dif-
ferent squared lengths {|e,|> = 1, 2, 4, 5, 8}. Using these vectors, one
can define fourth, sixth, and eighth order isotropic forcing schemes
[19,20,34], labeled as E®, E®, and E®, respectively.

where the prefactor ¢? is the square of the lattice sound speed,
which is specific to the given set of velocities {&;}. Greek
indices run over the vector components. In the next section we
are going to analyze in detail a similar construction applied to
the interparticles forces.

The moments of the discretized distribution function are
computed directly by summing the populations. For the first
two moments, i.e., the mass density n and the momentum
density nu, one has

N, N,
n(x.0) =Y fix.10), nxoOux.) =Y Efix.0). @)
i=0 i=0
The Boltzmann equation can be discretized over a unitary time
lapse At =1 as

filx+ &1 +1) — fix, 1) = Qi(x, 1), 3)

which is typically understood as describing two different
processes: collision on the right-hand side, conserving mass
and momentum, i.e., ) ;2 =) ;§7Q; =0, and streaming
on the left-hand side. The collision operator acts locally and
it is responsible for the local relaxation of the momenta of

the probability distribution, while the streaming operator is
responsible for the space-time propagation of the relaxed
populations along the lattice. In this work we employ the
single-time relaxation Bhatnagar-Gross-Krook (BGK) colli-
sion operator

QK 1) = _%[fi(x, HD-f0] @

which relaxes the populations towards a local equilibrium dis-
tribution fl.(eq)(x, t) at a characteristic rate given by the inverse
of the relaxation time t. The local equilibrium is chosen as the
second order expansion of the Maxwellian distribution

(eq) (eq)\2 (eq) (eq)
£ uy +(f;‘l-“ua ) Uy Uy :|’ 5)

2 4 2
e Cy 2Cs

fi(eq) — u)ln|:1 +

where we use the summation over repeated indices and omit
the space-time dependence. In the previous expression one
substitutes #*%(x, 1) with the fluid velocity computed from
the local populations as described in (2). By means of the
Chapman-Enskog expansion [7,15,64-66], it can be shown
that the discretized transport equations converge to a conser-
vation equation for the density n and to the Navier-Stokes
equation with a kinematic viscosity given by v = c(t —
1/2), and ideal gas equation of state given by p = nc?. In
order to implement the interparticles’ forcing, we adopted the
scheme proposed by Guo [15,68], according to which one
modifies the equilibrium fluid velocity and the collision term
as follows:

N,
1

(eq) ,t — a : ,t FO[ ,t , 6

uCV(x, 1) n(x,t)gé'f(x o F D ©
Qi:QgBGK)

+ 1—i wj léq-i-i(éqé-ﬁ—c%aﬁ)u(eq) F®

2t 27t et s A
(7)

which essentially represents a particular case of a multiple
relaxation time approach [15] with collisional matrix propor-
tional to the identity matrix. With this scheme, we are able
to implement the interparticles’ forces described in the next
section, which modify the equation of state allowing for the
coexistence of a liquid and a gas phase for suitable choices of
the forcing parameters. Now that the LBM implementation of
the forcing has been described, we will focus on the properties
of the forcing itself, so that all the symmetry features of LBM,
i.e., Galilean invariance, remain untouched by the following
considerations.

III. LATTICE FORCE ISOTROPY

In this section, we review the SC multiphase forcing
scheme and analyze its isotropy properties. The SC scheme
[11] is based on the definition of a body force resulting from
the interparticles’ interactions at each lattice point involving
only a limited number of neighbors. The component p of this
local force is defined as

Fl(x) = =Gy (x) Y W(le )Y (x+eel,  (8)

e,€G
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where G is a (self-)coupling constant and the function
¥(x,t) = ¥(n(x,t)) is the so-called pseudopotential, which
is a generic function of the local density, hence implicitly de-
pending on time and position. With e, we indicate the stencil
vectors which connect any given point X to its neighbors in
a finite set G, and finally with W (distinguishing them from
the weights w; of the lattice velocities) we indicate a set
of weights which only depend on the squared length of the
stencil vectors, i.e., W (|e,|?).

Given the discrete nature of this definition, one should look
at the isotropy properties of the continuum limit of the forcing.
This can be done by considering the Taylor expansion of the
lattice force

FH(x) ~ —Gciw(x)[BQW(x) D Wled el

e,€G

1 2

ot § : o LpB

+ 3‘ aaaﬂa}/W(X) gW(|e(l| )eaeae(};eg + :|’
e,€

(€))

where one can notice the summations involving the products
of an even number of basis vectors. We will now analyze in
detail the isotropy properties of these quantities, which in turn
determine the isotropy of the forcing. As a first step, we collect
the e, vectors in groups, according to their squared lengths,
ie., Gy = {e, : |e,)* = £} [although £ is not a unique label
for £ > 25 in two dimensions (2D)']. Typical requirements
are that each group G, contains vectors that are related either
by spatial parity or coordinate permutations combined with
alternate sign changes. In the following we will be using only
vectors such that £ = |e,|?> < 8 (cf. Fig. 1). Such stencil can
be employed to define fourth, sixth, or eighth order isotropy
multirange forcing that we denote [19,20,34,44] as E®, E©®),
and E® respectively. The symmetry requirements for vectors
belonging to the same group are enough to ensure that the sum
of the product of an odd number of stencil vectors will add up
to zero, i.e.,

D el el = 0. (10)
e, €G;

Hence, we introduce the 2n-indices quantities defined by the
relation

Mo 2 n
EMto =3 W (leg | elitel . el

eG (11)
— T H1eHon 1. Mon
- Eiso +Eanis0 ’

where E[)*" and E!'“/" indicate the isotropic and
anisotropic contributions respectively. Notice that the previ-

ous decomposition holds for 2n > 2 since for 2n = 2 all the

'Note that the square length might not be a unique label when the
former is large enough: in two dimensions, for example, this happens
for £ = 25 which can be obtained starting from either e,—,;s = (5, 0)
or from e,—»s = (4, 3), which, however, are not related by a spatial
parity or coordinate permutations operations. Since we will present
the details only for the stencil featuring vectors such that £ = |e,|*> <
8 (cf. Fig. 1), we will keep on using the simplified notation G,.

contributions are proportional to the Kronecker delta. The
main idea [19,34,69] is to choose the weights {W(|e,|*)} so
that only the isotropic contributions survive:

Mlefhon — ML M2n [T Y%
ER1-Hon _Eiso "= gy, APIH (12)

where the isotropy constants e, multiply the fully isotropic
2n-rank tensor AH1-# [19,34,69]. Generalizing, in two di-
mensions, the approach of [69], the anisotropic contributions
can be written as

M@n))2
EH-tom — Z Izn’k[aﬂl---M2k8M2k+l~~~M2n + perms], (13)

aniso
k=0

where 81/ is the higher rank Kronecker delta, which is
not isotropic and equals 1 only if all indices take the same
value, and the upper limit for 2k is M(n) = n — (2 + nmod 2)
with n > 2; finally, “perms” stands for all the possible inde-
pendent indices’ permutations, whose number is (2n)!/(2n —
2k)!(2k)!. The isotropy coefficients e,,, multiplying A#1-#2
and the anisotropy ones I, x, multiplying terms proportional
to §*1#2 can be generally written as combinations of the
weights:

e =y A(OW (),
l
Ly =) BG" (OW (), (14)
¢

where the coefficients A®™ and Bg’"j% depend on £ = |e,|>.
More details are reported in the Appendices E and F. In order
to obtain the weights for the sixth order isotropic forcing
E© [19,20,34] one sets I, o = 0 and Is o = 0 which are linear
combinations of {W (1), W(2), W(4)}. For the eighth order
isotropic forcing E®, one has to consider, alongside I, o = 0
and I o = 0, the conditions I3y = 0 and I3 ; = 0, which are
now combinations of {W (1), W(2), W(4), W(5), W(8)}. Sim-
ilar arguments hold for higher order isotropy.

We wish to stress that the 2n-order isotropy can only be
achieved for the tensorial structure in Eq. (11) and not for the
same structure computed for each group separately because
the isotropy conditions can only be satisfied by using linear
combinations of the weights. However, the restriction to a
single group of Eq. (11) plays a crucial role in the identi-
fication of the anisotropic terms of the Taylor expansion of
the pressure tensor (see Sec. V and Appendices E and F for
details).

IV. LATTICE PRESSURE TENSOR

Let us now review the definition of the lattice formulation
of the pressure tensor for the SC model [44]: this will be the
starting point for the study of its isotropy properties. All de-
tails will be specified for the forcing stencils reported in Fig. 1,
i.e., using five weights {W (1), W(2), W(4), W(5), W(8)} in
two dimensions. The procedure described in [44] allows us
to define the interaction pressure tensor Pl directly on the
lattice. The total lattice pressure tensor is given by summing
the latter to the kinetic pressure tensor which for LBM sim-
ply amounts to the ideal gas isotropic contribution P (x) =

n(x)c28"", hence Pl = P/’ + Ph’. Given this distinction,
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FIG. 2. (a) Forcing directions e, belonging to the G, group and
centered at the point X. Vectors starting at x are reported in solid
lines, while those ending in x are dashed. Unit area elements A,
are reported in red. (b) Different contributions to the average force
F, [see Eq. (18)] at a gas-liquid flat interface: double arrows stand
for the magnitude of the contribution specified in the adjacent ex-
pression. Notice that the contributions on the gas side are smaller
in magnitude due to smaller pseudopotential (i.e., smaller density)
values. The average force F, is the same for all directions.

gas
-

we will use the notation P*¥ for the interaction part in the
rest of the paper, adding the ideal contribution when needed.
We report a detailed review for the definition of the lattice
pressure tensor in Appendix A and briefly report here the main
points. Following [44,53] we write, in tensorial form on the
lattice, the total force crossing a given unit area element as the
pressure flux through the same element, which for each group
G, reads as

Floy® = D" Fly® ==Y P Ag, (15

e,€Gy e,€G;

where A,y = e; and A(,) = e, are the unit areas (character-
ized by their normal vectors), with e; and e, the coordinate
basis vectors [see Figs. 1(a) and 2(a)], and Q‘f(k)(x) is
the group total force crossing the area element A, while
Fa’f(k)(x) is the specific force contribution along the direction
e, [see Figs. 1(a) and 1(b)]. It is possible (see Appendix A) to

rewrite the latter as
Fl () = Fy(x) elel A% = —PI(x) A%, (16)
from which we read the definition of the lattice pressure tensor

P (x) = —F,(x) el e (17)

v
v,
We define F, as a weighted average of the norm of the force
vectors crossing the largest number of times any of the area
elements A, (cf. Appendix A). As an example, for es the
average force is given by

_ 1 1
Fs = —GCfW(Z)w(X)[EI/f(X —es)+ glﬂ(x +es):|- (18)

We report in Fig. 2(b) a sketch depicting the above expression
for all different contributions of the group £ = 2, to which es
belongs, at one node of a flat gas-liquid interface.

Now, we write the lattice pressure tensor for each group
of vectors. Starting from the single-force directions (see Ap-
pendix A for details) we can write the total sum for the groups
{G1, G2, G4, Gg} in a compact form

Ge;
Pity= 200 Y WlePwx+edelel, (19)

e,c{G1.G2}
yay GC% 2 om v
Piy =220 D Wle ) x+eeje,
eae{g4«g8}
GC? P €, e, Ly
25 Y WePw (x5 ) v (x— 5 )eke
e,€{G4,Gs}

(20)

Considering the group Gs and following [44], we define two
different contributions for the pressure tensor, namely, (5a)
including the directions starting or ending in x and (5b) for
those starting and ending on the neighbors:

Ge;
Pht = ZEWEW0 Y px+eehel @)
€,€Gs
Y Gcsz nov
P, = 1 WS)Y—1,-1¥10 + ¥-1.0¥1.1] €17€14

Gcg uoy
+ TW(5)[W—1,—1¢0,1 + Yo,—1Y1,1] €lgels

GC? nov
2 W) [Wo1¥1,-1 + ¥-1.1%0,-1] €1g€]g

2
Gc;

2 W) Y10V—11 + Vi—1¥—10] €y, (22)

+

+

where we used the shorthand notation v, , = ¥ (x + ae; +
bey) [44].

The interaction lattice pressure tensor for the multirange
SC forcing defined on the stencils in Fig. 1 can be obtained by
summing all the different contributions, i.e.,

P*(x) = P(’;j’z)(x) + P(‘j’vg)(x) + PLY(x) + PL)(x).  (23)

a

In the next section we analyze the isotropy properties of this
lattice pressure tensor using a fourth order expansion.
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V. ISOTROPY ANALYSIS AND MODIFIED FORCING
SCHEMES

We study now the continuum limit of the lattice pressure
tensor by using its Taylor expansion up to second order deriva-
tives and products of first ones. This, in turn, will yield an
analysis of the isotropy properties up to the fourth order. We
do not consider any specific solution for the weights so that
we can analyze the role of the anisotropic terms.

Starting from Egs. (19), (20), (21), and (22), and following
the procedure detailed in Appendix B, we merge together the
Taylor expansions of all the different contributions and obtain
the general form for the fourth order expansion of the lattice
pressure tensor, i.e., involving second order and products of
first order derivatives, for the E®, E©® and E® forcing
stencils

G
P — <I’lC + 02821//2>8/~Lv

+GE(ANY VY — xn |V ?)sm
+ G2 (ArYdhd "y — xrd"yrd"y)
+ G (AW dp Y — xida P dpP)S*PH,  (24)

with the constants of the isotropic contributions given by
Ay =W(Q2)+ 12W(8) + TW(5), xv = W(5)+4W(3),
Ar =2[WR2)+ 12W(@8) + 6W(5)], and xr =4[W(5)+
2W (8)]. Anisotropic contributions of derivatives contracted
with 8% appear. The latter are multiplied by the coefficients

A = %W(l) —2W(2)+6W4) —6W(5) —24W(8),
xi =2W@4) —W(S) —8W(8). (25)

Equation (24) is a general expression for the expansion of
the lattice pressure tensor for E (4), E®, and E® in tensorial
form, displaying clear information about the isotropy proper-
ties of the pressure tensor.

Now, one should ask whether the coefficients A; and x;
automatically vanish when the isotropy conditions for the
forcing are satisfied. The answer is negative. Indeed, one can
see that, for the present choice of the vectors {e,}, the fourth
order isotropy equation for the forcing, i.e., I = 0, is given
by a combination of the coefficients x; and A;:

Lio=2W(1)—-8W(Q2)+ 32W(4) — 28W(5) — 128W(8)

The last result implies that requiring the fourth order isotropy
for the lattice pressure tensor expansion, i.e., x; = A; =0,
does imply the fourth order isotropy condition for the forcing,
but not vice versa. Indeed, all multirange forcings above the
fourth order isotropy, i.e., above the single belt, suffer this
issue. However, the fourth order, or single-belt, stencil E @
automatically yields an isotropic expression of the continuum
limit of the lattice pressure tensor at the fourth order. This
happens because in the single belt case x; = 0 trivially, so
that Iy o = 4A; =0, i.e., fourth order pressure and forcing
isotropy are obtained with the same condition. This is proba-
bly the reason why the anisotropy of the pressure tensor went
unnoticed so far.

Indeed, the fact that the fourth order pressure tensor
isotropy is implemented by means of two equations, i.e.,

xr = 0and A; = 0, and not only one as for the forcing case,
i.e., Is,0 = 0, implies that, for a fixed number of weights, the
solution leading to a higher pressure tensor isotropy must also
yield a lower forcing isotropy. However, as we will show in the
next section, this delivers a reduction of the spurious currents,
rather than an increase in magnitude and extension as one
would have expected [19,20,34].

We now wish to understand what are the effects of a higher
isotropy order for the pressure tensor. To do so, we will com-
pare forcing schemes with the same values for the isotropy
constants {e;,} up to a given order, while changing the pres-
sure tensor degree of isotropy. As we discuss in the following,
this operative strategy allows to keep the bulk and interface
properties, i.e., equation of state, flat interface profile, and
surface tension, unchanged when comparing the two forcing
schemes. This will allow to better highlight the effects induced
by the pressure tensor anisotropy.

A. Mechanical equilibrium analysis

Let us start by analyzing the mechanical equilibrium con-
dition of a flat interface. Assuming that the density field n
depends on x only, we write the normal and tangential com-
ponent to the interface, i.e., P** and P*”, respectively, as

2 2
- +G ezw Gc? |:5Wd 1// <d_¢> ]’

2 dx
, Gcle, Gc3 d*y dy\?
P+ S G G+ () |

27)

with P = 0. As for the coefficients «, 8, ¥, and n we use
the same notation as in [44]. These can be expressed us-
ing the coefficients of the general expression in Eq. (24) as
follows: —()(/12 = XN + XT + XI>s ,3/12 = AN + AT + A],
n/4 = Ay, and —y /4 = xy. The mechanical equilibrium
condition, i.e., 3,P*" = 0, implies P**(x) = po for a flat in-
terface, i.e., the pressure normal to the interface must not
change from one bulk phase to the other, and through the
interface itself. We wish to stress [44,53] that, as demon-
strated in simulations, the lattice pressure tensor in Eq. (23) is
observed to be numerically constant at machine precision in
the bulk and through the interface, i.e., it exactly implements
the mechanical equilibrium condition on the lattice. Starting
from the mechanical equilibrium condition P*(x) = po and

making use of the identity ‘2;/{ = 2 7 ]//( T VN2t s possible
to write the following equation for the square of the density

profile derivative as a function of the density n:
dn\*>  24yc (" ’ Gc?
i v / dn v po — fic — s v,
dx Ge2By'? J, Petl : 2
where? Y’

”' (28)
[44] (see Appendix C for details).

=dy/dn, s = —2a/B and 24/B = 8(1 — &) /e,

2As an additional remark with respect to [44], this result can
be obtained from writing the five forcing weights {W(|e,|?)} as a
function of ¢ and the four isotropy coefficients ey, [cf. Eq. (C2)].
In order to fully recover the definitions of [44] we need to solve
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Since the density derivative is zero in the bulk phases, we
have the integral constraint

n ’ 2
/n dﬁ%[po —fic? — %W} -0, (29
where n, and n; are the densities of the bulk gas and liquid
phases. Assuming G < G, (where G, is the critical value
below which two-phase coexistence is possible), Eq. (29)
coupled to the mechanical equilibrium requirement of equal
bulk pressures [see Eq. (B2)] in both phases

Py (ng) = P} (n)) = pod"” (30)

allows to uniquely determine the values of n, and n; as func-
tions of the coupling G. As one can see, the properties of the
stencils of the multirange forcing explicitly enter in Eq. (29)
through the constant &, which also appears in the definition
of the profile derivative in Eq. (28). Hence, by matching the
isotropy constant e, and &, we obtain the same equation of
state and same density profile for the flat interface.

B. Surface tension analysis

Let us now continue with the surface tension of the flat
interface which is given by the integral

+00
o= / dx[PY(x) — P (x)]

]

dw(x>]2

+00
= —Gci(xr + Ar + 31 + A/)/ dx[
oo dx

€2y

Assuming the use of a forcing scheme for which the fourth
order forcing isotropy condition Iy = 0 is fulfilled, given
Eq. (26) it automatically follows that y; + A; = 0, i.e., the
surface tension does not depend on the anisotropy coefficients.
In other words, the anisotropies of the lattice pressure tensor
do not affect the value of o, securing its physical meaning
(and, thus, its use in practical applications, such as the contact
angle calculations [54] and spray formation and breakup [70])
for higher order stencils.

In order to complete the comparison with [44], we com-
pute the value of the combination xr + Ay, resulting in (see
Appendix C for details)

e4
Xr + Ar = ER (32)
which coincides with the result reported in [44]. Hence,
matching ey, in addition to e, and ¢ as discussed in Sec. V A,
eventually yields the same surface tension of any reference
multirange forcing.

with respect to ¢ the fourth order isotropy condition I, = 0 re-
ported in Eq. (C3) and obtain & = (6e4 — 2e,)/(6e4 + €;). We can
use this relation and compute the expressions for the constants
o =3¢ge;/2(e — 1) =e; —3eq and B = —3e,/(¢ — 1) = e; + 6ey.
On the other hand, the two remaining constants do not depend on &,
yielding n = 13e4/12 — eg/4 and y = e4/12 —e6/4 wWith n —y =
e, as in [44].

C. Macroscopic matching strategy

In order to match the forcing expansion and the bulk
and interface properties, we express {e,,} as functions of the
weights {W(|e,|?)} (see Appendix C). To do so, we employ
a groupwise parametrization of E#1#> extending the sixth
order one presented in [69] (see Appendix E for the details).

Let us now give a schematic description of the proce-
dure we adopted for defining the new forcing schemes. In
order to distinguish among the different stencils we intro-
duce a modified notation. We label by Eg‘z)Fk any higher
order stencil computed on forcing isotropy requirements
only [19,20,34,35]. Since such stencils yield a second order
isotropic lattice pressure tensor, we use P2 in the subscript,
whereas with Fk we indicate that the lattice forcing is

isotropic at the kth order. We use E }62)“, E;,SZ)Fg, E }3120} 10> and

Egzzz?'lz as target stencils, i.e., we want to “mimic” or match
them via some new sets of weights yielding a fourth order
isotropy for the lattice pressure tensor. We shall soon motivate
that these new schemes will only yield a sixth order isotropy
for the forcing. Hence, we indicate the new matching schemes
as E;,?FG, E P4)F6, Egﬁgﬁ, and ng}(j, where the superscript
now indicates which of the previously introduced stencils is
matched [19,20,34,35]. The matching is obtained by imposing
a system of linear equations of the weights:

€ =€ (Eg(;Fk)
£ = S(EI(QFk)

(a): equation of state,
(b): bulk densities,

Lig=0 (c): fourth order force, (33)
x1=0 (d): fourth order pressure,
Iso=0 (e): sixth order force,

where with the symbols e, (E g‘z) r) and e(E ffz) r) We indicate

the numerical value of these constants for the stencils Eg‘z)Fk.
The expressions for ey, €, I10, and Is o as functions of the
weights are reported in Appendix C, while x; is given by
Eq. (25). We detail the computation of ¢ for the higher order
schemes E 5,120}10 and E ;,122}12 in Appendix D, where we explic-
itly write the coefficients for the flat interface pressure tensor
as functions of the weights. Equations (33)(a) and (33)(b) are
used to match the equation of state and the bulk equilibrium
densities and flat profile; Eq. (33)(c) imposes the fourth order
isotropy for the forcing, so that Eq. (33)(d) delivers the fourth
order isotropy for the pressure tensor [see Egs. (25) and (26)];
finally, Eq. (33)(e) fixes the sixth order isotropy for the forc-
ing.

We wish to stress that it is possible to match any forcing
scheme as long as the equations are linearly independent. This
fact allows us to match the 12th order forcing isotropy stencil
E ;322}12, defined by 10 weights and 56 forcing vectors, by us-
ing only 5 weights and 24 forcing vectors. Another important
property is that this procedure yields the same value of eq4, i.e.,
the surface tension, up to E;};}lo, while for ESZZF)U a small
deviation of the order 107* is found. Indeed, a possible way
to fix the value of e4 would be to introduce one more group
of vectors, allowing for one further condition. We report in
Table I the values used to define the system of equations and
in Table II the five weights for the four new multirange models

Eﬁ)‘%, Egﬁ%, E;,lfz%, and E;,]f}%, together with those of the
E(IO)

usual stencils Eﬁfz)“, E;,SZ)FS, Par10- and E},lzzF)n. Such values
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TABLE 1. Values of the isotropy (e, and ¢€) constants for different forcing schemes along with the force and pressure isotropy conditions.
The nonzero values of x; and A; single out the stencils yielding a second order isotropy for the pressure tensor. We report in bold the values
that are set in Eq. (33), used to determine the weights for the new schemes, as reported in Table II (see Sec. V C for discussion). The asterisk
denotes that the actual value is 37 800/45 013 differing from 120/143 by 6 x 107*.

Epre Eplre Enrs Epirs  Epro Epire Epin Epirs

e 1 1 1 1 1 1 1 1
Surface tension ey, 2/5 2/5 4/7 4/7 12/17  12/17 120/143 120/143%
Flat profile e 2/17  2/17 10/31 10/31 38/89 38/89 136774/271813 136774/271813
Pressure isotropy condition A; —1/60 0 —8/315 0 0 0

xi 1760 0 8/315 0 0 0
Forcing isotropy condition Iy 0 0 0 0 0 0 0 0

Iso 0 0 0 0 0 0 0 0

can be directly inserted into any existing code implementinga ~ where the values of n, and n; are obtained by solving
two-belt SC forcing scheme. It is interesting to notice that all Egs. (28), (29), and (30). For the droplet simulations, we set
new schemes have a forcing isotropy which is always smaller L € {127,159, 191, 223, 255, 287, 319, 351}, while for the
or equal to that of the target stencil. Nevertheless, we show flat interfaces the size is fixed to L, = 100, L, =4 and the
in the next section that, considering the isotropy condition of initial profile is given by

the pressure tensor, spurious currents decrease in extent and

intensity.
1 1 w
n(x, xo, w) = = +ng) — =(n; — ng) tanh [x — (xo — —)]
VI. NUMERICAL TESTS 2 2 2
1
The following results have been obtained by implementing + E(n; - ng){tanh [x — (xo + %)] +1 ],

the methods described in Sec. II for a two-dimensional regular
square lattice of linear size L. We use the D2Q9 discrete ve-
locity set {§;} withi =0, ..., 8, for which&, =0and &, = e,
fora=1,...,8 as reported in Fig. 1(a), and cf = % In the
following, we report the forcing values in the scaled form Gc?.
Finally, in order to demonstrate the robustness of our findings, ) )
we also consider two different functional forms for the pseu-  ©Of the spatial average of the difference zbetween the com-
dopotential, namely, ¥ = exp(—1/n) and ¥ = 1 — exp(—n)  Ponents of two velocity fields, Su =LY > |u*(X,t+

o - ) _ 4. .
[10,11,19,20,44]. All droplet simulations have been run with 8? ) — w (x,1)|, at a time distance 61 = 27 5 we consider the
a size ratio L/R = 5, where R is the initial radius value. The simulation as converged when du < 107'<. All the results

initialization is performed by means of the following radial ~ have been obtained using 64-bits floating point variables for
profile: all the quantities.

Let us begin by showing that the forcing schemes pre-

n(r,R) = %(ng +ny) — %(n, — ng) tanh(r — R), (34) sented in Table II yield the same macroscopic properties, i.e.,

(35)

where x( is the center of the strip and w its width. Finally,
to fix a convergence criterion, we use the magnitude du

TABLE II. Values of the weights for different isotropy orders of the lattice pressure tensor. The values for E }62) re E fgsz)w r8» E;,lzo Y100 and

E ;,122) 12 correspond to those obtained requiring the forcing isotropy only [19,20,34] at the 6th, 8th, 10th, and 12th order, respectively, yielding a

JF
second order isotropy for the pressure tensor. The values for E;,Z) re E ;,84) rer E }'&6, and E ;,142}6 are obtained by matching the previous schemes

as described in Sec. V C.

W) W (2) W4) W () W (8) W(©9) W(0) W3) w6 W(7)
EY) 6 4/15 1/10 1/120
Ey) 6 19/60 1/15 —1/240 1/120 —1/480
E}) g 4/21 4/45 1/60 2/315 1/5040
E}) 6 4/15 4/105 —1/420 2/105 —1/336
Ey)p, — 262/1785 93/1190 7/340 6/595 9/9520  2/5355 1/7140
Epy e 58,255 4/255 —1/1020 7/255 —1/272
EVD., 68,/585 68,1001 1/45 62/5005 1/520 474095 2/4095 2/45045 1/480480 0

E(Z. 254419/1350390 —4474/675195 2237/5401560 96737/2700780 —1575/360104
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FIG. 3. Laplace law comparison for y = exp(—1/n), on the left
column, and ¢ = 1 — exp(—n), on the right one, at different values
of Gc?. The slope of the straight lines corresponds to o obtained by
integrating Egs. (28), (29), and (31) (see main text for details). Red
“x” points and blue “+” symbols represent the data for the forcing
schemes with fourth and second order lattice pressure tensor isotropy,
respectively.

surface tension ¢ and flat interface profiles n(x). Results on
surface tension are reported in Fig. 3. For the evaluation of
o, we resorted to the Laplace test: we simulate various radii,
measuring the pressure difference between the inside and the
outside of the droplet, Ap = pi, — pow. These values have
been computed according to Eq. (B2) since the gradients in

the bulk regions of the two phases are negligible. The Young-
Laplace law relates the pressure difference to the surface
tension and the radius of the droplet through the well-known
expression Ap = o /R, in two dimensions. Hence, in order
to estimate o, given the values of Ap, one needs to measure
the radius of the droplet R, which we obtain by means of the
Gibbs criterion [47], i.e., by inverting the relation? Lz(n) =
7R? nin + (L? — wR?) ngy, Where we used the average den-
sity (n) = L2 >, n(x). The points (R™', Ap) are reported in
Fig. 3 for different values of Gc? and different choices of .
Red “x” points are associated to the new fourth order pressure
tensor isotropy schemes, while blue “+” are those associated
to the higher forcing isotropy schemes [19,34]. Finally, the
slope of the lines represents the values of o obtained from the
numerical integration of Egs. (28), (29), and (31).* We first
notice that blue and red points (R~', Ap) superpose in good
agreement with the slope given by o for all forcing values
and choices of 1, demonstrating that the newly proposed

forcing schemes EE,? Fe E§’84),F6’ ng)“, and Egﬁ% yield the

same surface tension as Ef;’m, E;,sz)’FS, Egzo,ivm’ and E;,lzz}lz,
respectively.

We continue with the analysis of the flat interface profiles,
reported in Fig. 4. We analyze the relative variation of the
density profiles related to the new fourth order pressure tensor
isotropy schemes E;féf.m, E§384) 76 E;}f}@ and Egﬁ%, that we
indicate for brevity as np4, with respeét to the denéity profiles
obtained using the standard schemes E 5362), ro E 5382)_ rs E ;32 ;1 0

and E fvlzz,ivlz» labeled as np;. In the insets we report the profiles
nps for the same values of Gc?. The data highlight that for
E;,64), re and E 5,84), re the magnitude of the largest deviation is

of order 10~ (compatibly with floating point rounding®),
changing for different values of the coupling constant and .
For E ;}2 re and E Sz}@ the deviation grows, reaching a maxi-

mum value of the order 102 in the case of E 53142 )Fé' However,
such a discrepancy seems reasonable, as we are using only
5 weights to reproduce the bulk densities and flat interface
profile of E(PIZO,}IO’ defined using 7 weights, and of Egzz,)mzv
defined using 10 weights.

Now that we have numerically verified that the macro-
scopic properties are consistent across the different schemes
in a wide range of coupling values and for different choices
of ¢, we continue with the analysis of the spurious currents.
In Fig. 5 we report the plots for the spatial distribution of the
scaled velocity magnitude u(x) = |u(x)|. Each row refers to
a different degree of isotropy of the pressure tensor, fourth
and second order for first and second row, respectively. Start-

3The relation for the radius can be obtained by computing the
position of the interface yielding a vanishing adsorbance I' =
[ drinGr) — ]l + [ drin(r) — ng = 0 [47].

4The surface tension values are o ~ 0.004 58, 0.043 76, 0.099 98
(Ibu) for Gc? = —2.6,-3,1,-3.6 and ¥ =exp(—1/n), o =~
0.003 87, 0.029 04, 0.054 42 (Ibu) for Ge> = —1.4, —1.6, —1.75 and
Y = 1 — exp(—n), where “lbu” stands for lattice Boltzmann units.

SWe remark that for E(Pﬁi% and E;SZ” the exact value of the
relative deviation is compatible with the double-precision floating
point rounding, hence, the details of these results can vary according
to the implementation details, compiler, and optimization options.
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FIG. 4. Comparison of the flat interface profiles for all forcing schemes, at different values of Ge? and for different pseudopotentials,
Y =exp(—1/n) and ¥ = 1 — exp(—n). The comparison is carried out using the relative deviation of the flat interface profiles given by
1 — npy/np, where np, is the profile for the fourth order isotropic pressure tensor (reported in the inset) and np, is the profile for the second

order isotropic pressure tensor.

ing from the leftmost column we consider the cases

(6)
E P#.Fk>
E g‘)’ i E 5,1;)’ )Fk, and E ;,1#2},(. The normalization is performed

by means of the minimum u,, = min«(x) and maximum
uy = max u(x) in the whole domain, for each case. We mul-
tiply the normalized quantities by an arbitrary integer N and
then we take the integer part |-| so that only N colors appear,
with N = 9. To guide the eye, we report the center of the
droplet, which is used as the origin of the coordinates, and
the radius obtained with the Gibbs criterion. As apparent from
Fig. 5, for G2 = —3.6 and ¥ = exp(—1/n), the extension of
the spurious currents is always smaller for the new schemes.
In particular, E;gj F6 Egﬁw and ngivé have a lower isotropy
degree than the farget forcing. With respect to the previous
literature [19,20,34,35], this is a nontrivial result that displays
the role of the pressure tensor as a new “dimension” to be
exploited for the imposition of the isotropy properties. Hence,
the degree of isotropy of the pressure tensor tunes the spatial
extension of the spurious currents, for the same values of the
surface tension o and the reference (i.e., flat) interface profile.

In Fig. 6 we provide further evidence of the reduction of
the currents by displaying the average velocity profile along

the radial direction for two different choices of 1. Consider-
ing the symmetry of the velocity field, the average is taken
over an angle A6 = /4. Red thick lines are used for the
new schemes Eﬁfz’“, E;S‘f,“, ng,)m’ and E;,lf)“, while blue
thin ones for the old schemes E;f’;qm, EEJSZ)_FS, Eg;}lo,
E;}f}lz. The profiles of the new schemes stay consistently
below those of the older schemes, and especially for the case
Y = exp(—1/n), the new schemes yield the same velocity as
the old ones a few tens of lattice sites closer to the surface
of the droplet, thus demonstrating a sizable improvement.
Furthermore, we can make a direct comparison of Effz) 78

and

and E ;,]4% )FG since they are both defined on five weights: it is
clear that the new set of weights allows to obtain far weaker
spurious currents (see the caption of Fig. 5) without the need
to use an even higher order scheme (as it was done previously
with E ;,122}12), with a much higher computational efficiency.
In prévious studies [19,20,34], the intensity of the
spurious currents has been mainly characterized by
the maximum Mach number uy/c;. However, Fig. 5
shows that only a very small fraction of the system area
displays the strongest currents. In order to have a more
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FIG. 5. Maps of the normalized spurious currents intensity u = |u| for different stencils with fixed Gc? = —3.6, L = 255, and ¢ =
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given range. The spatial extension of the currents in the upper row (higher pressure tensor isotropy) is smaller than in the lower row.

informative characterization, we report in Fig. 7 the
histograms of the logarithm of the normalized velocity
magnitude u/cs, i.e., pl[log(u/cy)], for different values
of Gc? and different v, as well as the complementary
cumulative  distribution  F[log(u/cs)] = 1 — F[log(u/c,)]
(starting from 1 on the left side of the insets). This latter
quantity represents the fraction of the area of the system
where the currents are larger than a given value of u/c,. The
parameters used in Fig. 5 are analyzed in Figs. 7(a)-7(d):
thicker red lines refer to the new schemes E 1,64)’ Fé EI(DSAE, Fé
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ng, }6, and E;}Z}ﬁ while the thinner blue curves refer to the
standard ones [19,20,341 E{) 6. Ep) 1o Ey 1, and EjpY )
(see Table II). We can observe that the new schemes always
yield the smallest peak value for the histograms, i.e., the
majority of the system area is affected by smaller spurious
currents with respect to the standard case. This automatically
implies a smaller spatial extension of the currents. The insets
in Fig. 7 show that the complementary cumulative distribution
F =1 —F decreases faster for the new schemes, i.e., for a
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FIG. 6. Average velocity profiles along the radial direction for different v and Gc?. The average is taken over an angle A® = 7 /4. Thick
red and thin blue lines represent the results for the new and old schemes, respectively. The average profiles of the new schemes have a faster

convergence going away from the droplet surface.
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FIG. 7. Normalized velocity u/c, = |u|/c, histogram p[log(u/c,)] for L =255 and complementary cumulative distribution F=1-
F[log(u/c,)] for different values of G, choices of i, and forcing schemes. Data for the new fourth order isotropic pressure tensor schemes,
ie, E 5,64)‘ Fé? Efﬁf’ F6? Eﬂﬁ%, and Ef,,lfjr6 (see Table II), are reported in thick red lines while those related to the standard higher order schemes

[19,20,34], i.e., Eﬁfz)vpﬁ, E;,?m, E;,lz(?}lo, and Efvlzz,)mz (see Table II), are reported in thin blue.

given value of u/c, the area of the system containing larger
currents is sizably smaller for the new schemes than for the
standard ones. We verified that the histograms of the spurious
currents eventually converge, independently on the pressure
tensor isotropy order, for smaller coupling constants Gc2,
near the critical point. Finally, we verified that by changing
the size of the system to L = 351, while keeping fixed the
ratio between L and the initial droplet radius L/R =5, the
histogram of log(u/c,) does not change for Gcf < —3.1, for
both choices of .

In summary, with this series of numerical tests we showed
that a higher order isotropy of the pressure tensor yields spu-
rious currents that are both weaker and less spatially extended
than those emerging from the standard multirange approach
[19,20,34]. Such a result has been obtained comparing forcing
schemes that share the same lattice force continuum expan-
sion up to a given order, same surface tension and flat interface
profile, for different values of the coupling constant G¢?, and
different choices of the pseudopotential i, thus establishing
the robustness of the findings.

Computational advantage

In the light of the above discussion, we want to stress that
the new scheme E gj }6 has a significant numerical advantage

over the so-far widely adopted E ;82) rs> as well as over E }122 12

since it basically brings all the benefits of Egzz,inz defined

with 10 weights (and 56 lattice vectors), while using only
5 weights (24 lattice vectors). First of all, the number of
memory reads and algebraic operations needed by E %}6 for

comg)uting the total force is roughly half of those necessary for
E 1(,,122 r12- Furthermore, the handling of boundary conditions is
drastically simplified, needing to deal only with a two-node
thick boundary rather than four, as in the case of E;,lzz ;12’
which is extremely important for parallel implementati,ons,
where the boundaries need to be constantly exchanged.

With respect to E 538; rg» While keeping the same compu-

tational complexity, the new scheme E}lﬂ% yields a better

gain for the spurious currents than the one obtained by using
the higher order stencil E ;,]22} 12- Indeed, all the new stencils
presented in this work can easily be used in any existing code
where the forcing is implemented using five weights, simply
by substituting the proposed values. Hence, the advantages of
the present analysis are readily accessible.

VII. CONCLUSIONS

In this paper, we have reviewed the isotropy analysis of
the Shan-Chen forcing scheme [10,11,19,20,34] and gener-
alized it to the lattice pressure tensor defined in [44]. As
a first step, we fine grained the isotropy analysis to the
single group of the forcing vectors used in the multirange
models by extending the parametrization of the relevant ten-
sorial structures introduced in [69] (see Appendix E). Such
fine-grained approach, together with the treatment of mixed
vectorial structures (see Appendix B), allowed us to write
the general form of the fourth order expansion of the lattice
pressure tensor for the multirange schemes E@, E© and
E® [see Eq. (24)]. Such general expression highlights the
anisotropic contributions, allowing to define the new isotropy
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conditions for the lattice pressure tensor expansion, namely,
x1 = A; = 0 [see Eq. (25)]. In particular, we noticed that the
fourth order isotropy condition for the forcing can be obtained
by a linear combination of the pressure tensor conditions, i.e.,
Li.o = 4(x; + Arp) [see Eq. (26)]. This result has the important
consequence of making the value of the surface tension of the
flat interface independent from the anisotropic coefficients y;
and A; [see Eqgs. (26) and (31)], thus securing its physical
meaning. Finally, we designed a numerical setup capable of
keeping fixed the forcing expansion (up to the fourth order)
and the macroscopic flat interface properties (i.e., flat interface
profile and surface tension), thus isolating the role of the
pressure tensor isotrog)y. Hence, starting from the previously
proposed Eﬁfz)!%, EY) 1o E;,lzo}lo, and E%}lz multirange
schemes [19,20,34], where we indicate with P# and Fk the
isotropy order of the pressure tensor and forcing, respectively,

we obtained the new schemes E;féffﬁ, E§,84), 76> E;,AE)FG, and

Egﬁ)% (see Table II). We showed in Figs. 5 and 7 that the
higher isotropy degree for the pressure tensor yields weaker
and less spatially extended spurious currents, even when the
forcing isotropy of the new schemes is lower than that of
the old ones. The source code for the simulations can be
found on the “idea.deploy” GITHUB repository [55-63], where
a JUPYTER notebook [62] is available to reproduce the results
reported in this paper.

On a more general perspective, the difference between
the isotropy conditions of the lattice forcing and the lattice
pressure tensor can be traced back to the different algebraic
structure of their Taylor expansions: while the forcing expan-
sion only involves higher order derivatives, the pressure tensor
introduces products of lower order ones [53]. The possibility
to express the fourth order isotropy condition of the forcing as
a linear combination of the two new conditions A; = x; =0
for the pressure tensor is striking and pointing at a more fun-
damental structure underlying both lattice quantities. It would
be interesting to extend the present analysis to further orders
and check whether the new isotropy conditions for the lattice
pressure tensor would still be compatible with the forcing
ones. Indeed, the analysis of the isotropy of the lattice pressure
tensor opens up yet another “dimension” to study and control
the spurious currents, yielding a more effective reduction of
the latter at a fixed forcing isotropy order.

Finally, the possibility to isolate the anisotropic parts of the
pressure tensor lays the foundation for a systematic treatment,
in the multirange case, of the remaining isotropic compo-
nents. This is of utmost importance when bridging the lattice
Boltzmann method to other thermodynamic and mesoscopic
descriptions of the physics of multiphase interfaces [47].
Future work will be focusing on the three-dimensional gen-
eralization of the present procedure, possibly considering a
higher isotropy order for the lattice pressure tensor, as well as
the extension to the multicomponent case.
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APPENDIX A: LATTICE PRESSURE TENSOR DEFINITION

In this Appendix, we provide a detailed review for the
derivation of the lattice pressure tensor as described in [44]
and summarized in Sec. IV. We write the total force crossing
a given unit area element [44,53] as the pressure flux through
the same element, which for each group G, reads as

Floy® = D" Fly®=— D" Prex) A,

e,€G; e,€G;

(AL)

where A(;) = €, and A,) = e, are the unit areas and F/’,(x)
is the group total force crossing the area element A, while
Fa’f(k)(x) is the specific contribution along direction e,. Let us
come to the details of the calculation. A possible way to write
F, is given by computing the contributions N, ) of the
vectors e, crossing Ay multiplied by the norm of an average
force F,(x), i.e.,

Fa’f(k)(x) = Fa(X)Na!(k) e’a‘. (A2)
Hence, we need to specify both N, ) and F,(x). Let us start
from the former. We draw in Figs. 8(a)-8(c) the force vectors
intersecting the two unit area elements A, (horizontal red
line) and A,y (vertical red line), choosing, as an example,
one direction for each of the three groups G, Gs, and Gs,
respectively. We determine N, () using the following rules:
(1) if a vector e,, starting either at X + cpe;, or X — €, + cp€p
(with ¢, and e, chosen in order to guarantee the intersection),
crosses the area element anywhere along its surface, exclud-
ing its boundary, then it contributes with weight Ny)(x +
Crep, X + €4 + cpp) = Ny (X — €, + cp€p, X + cp€p) = 1; (i)
if a vector e, starts or ends at the position where A, is
centered or it only superposes along the boundary, then it
counts with weight Ny (X + cpep, X + €, + cp€p) = Ny (X —
e, + cpep, X + cpep) = 1/2. The second rule is needed to
avoid double counting the contribution of those vectors along
the same direction that are “shared” by distinct parallel area
elements (see Fig. 8). A supplementary rationalization of the
last result for the “shared” forcing vectors [44] has been given
in [53], following the pressure tensor construction of Irving
and Kirkwood [71]: the factor % follows from choosing, on
the basis of isotropy considerations, the normalization of the
Dirac delta on half of the real line as fi)oo 8(x) = % In sum-
mary, each vector parallel to a given e, and crossing the area
element A contributes to the total sum N, ), by a weight
that equals 1, if the vector crosses the area element, or % if the
vector is shared by parallel area elements, i.e., if the vector
starts or ends in the middle of the area element or simply
touches the boundary of the area. Now we can determine
the values of N, ) for the examples reported in Fig. 8. Let
us begin with es and e;3 for which the expression does not
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FIG. 8. Sketch for the computation of the number of contributions N, (, of forcing vectors crossing the area elements. The three examples
in (a), (b), and (c) correspond to a = 5, 13, and 17 (from left to right), respectively. In the middle we sketch in solid red lines the two area
elements A,y = €; and A(,) = e, while we report in dashed those parallel area elements “sharing” a given forcing vector.

depend on the choice k of the direction of the unit area element

N5 (1) = Ny (X, X + €5) + Ny (X — €5, X)
1 1

= — —_ = 1,
2 2
e e
Ni3,) = Ng(x — €13, X) +N(k)(X — §, X + %)
+ Ny (X, X + €3)
LI (A3)
T2 2 7

whereas in the case of e;; we need to distinguish the area
element directions

Ni7,(5) =Np)(X — €17, X) + Ny (X, X + e17)
+ Ny)(x —e, x —e; +e17)

FNp(x—e —er,x—e —e +ey) (A
1
- 4 - = 2,
2
N7,y = N (X — €17, X) + N (X, X + €17)
1
=2x5=1 AS
X5 (A5)

As it was noticed in [44], the sum of these values coincides
with the absolute value of the scalar product of the force
direction and the area element

Na,(k) = eZAl(xk) . (A6)

i.e., equal to ¢} and e, when crossing A(,) and Ay), respec-
tively. Note that possible sign changes in N, ) reflect the
possible choices of orientation of the area elements. We can
rewrite Eq. (A2) as

F) o (X) = Fu(x) elyeg A% = =PI (X) A, (A7)

from which one can read the definition of the lattice pressure
tensor [44]

P (x) = —Fy(x)ee. (A8)

We remark that the above definition of N, «) carries a sign
of the relative orientation of the forcing vectors and the area
element. While the vectorial nature of this sign is relevant
for the definition of the pressure tensor, the contribution of
a specific forcing vector is always assumed positive, i.e., the
sign of N, ) is the same for a specific forcing vector e,

and its opposite e; = —e,, in agreement with the construction
presented in [53].

We now make some remarks about the symmetries of the
terms in Eq. (A8). We notice that the product of the stencil
vectors on the right-hand side is invariant under axis reversal,
or parity, transformations. Hence, opposite vectors, e.g., €;
and e; = —e,, yield exactly the same contribution to the pres-
sure tensor. On top of this we also notice that every time a —e,,
appears in the pseudopotential ¥ space dependence, it can be
substituted with the opposite vector e; = —e, belonging to the
same group. Hence, when considering all the vectors of the
stencil, we need to multiply the total sum by %

Let us now define the average force F,. In order to take
into account the variation of the force vectors crossing the
area elements, we need to use an average force F,(x). In the
multirange case, one can immediately notice that the number
of contributions for a given e, may vary according to the
direction of the area element. Let us use as a starting point the
weighted sum of the crossing forces through A, along the
direction e,, i.e., the sum of the products between the weights
Nyoy(X + cpep, X + e, + cpep), and the magnitude of the force
defined between the same couple of points. For example, in
the case of e;7 one would obtain

_ 1 1
Fi7.4) = —Gch(S)W(X)[EI/f(X —e7)+ El/f(X + e|7):|
1
- 5Gc§W(5>w(x —eY(x — e +ej7)

1

ZGCfW(S)t/f(X —e; — eV (X —e — e +ep7),

_ 1 1
Fi7.u) = —GCSZW(S)%”(X)[?P(X —e7)+ Elﬁ(x + e17)}.

(A9)

A possible way to define a unique average force is to use the
weighted sum with the largest total contribution and normalize
it to the total sum of the weights. For the present case, we
select F7(x) normalizing it by |Ny7,(y| = |e4], i.e.,

Fi7(x) = Fi7,09(x). (A10)

N7,

Such a choice implies that, when considering the contribution
of the forcing direction e, crossing the surface area A [i.e.,
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F, l’f(k)(x), with k = x, y], one would obtain

Ot

Fﬁ’(},)(x) = Fi7(X)ef;e1; A = IN |F17 »(X)el
Ny
= = INo |F17 (el = Fiz gy (X)ef; sign(e]y),
o Dl
Fi; &) = Fiy(x)efzel; Al = |Nx |F17 mXel;
1\717Y - 1 = . )
= OBy el = 5 Fia (el sign(e];),
IN17,00)] 2
(A11)
hence, |Fi7,)(x)| = |F17,((x)|/2 which is consistent with

the ratio of the number of contributing vectors for the two
area elements.

The above discussion has focused on those force vectors
whose components do not have equal magnitude, or are not
proportional to the coordinate basis. However, the above con-
struction naturally applies to those vectors whose components
have the same magnitude, i.e., {G,, Gg}, since the intersecting
vectors yield the same contribution for both area elements
[Fa,n(X)| = |Fg,r)(X)], and also to the vectors proportional
to the coordinate basis, i.e., {Gi, G4}, for which the number
of crossings alternatively equals zero according to N, ) =

CalAlly;

Now, we can write the contribution to the lattice pressure
tensor P!V for a specific vector belonging to each group,
ordered according to squared norm of the group vectors £ =

lea|*:

P = Gch(l)ilf(X)[ Y(x+e)+ ;w(x - el)} efey,
1 1
P = Gch(Z)w(X)[EW(X +es)+ EW(X - es)} eses,
Gc? 1 !
P = LW(4)¢(x)[§w(x +e9) + oY (x - e9>} ey e
e L l)
2)(x+7) e,

G
%W(S)m)m —e) el

+ & %W(4)1//(

wy
Py =

G 2
+ WS 0P (x+ e elyely

GC? nov
+ 1 WOV (x —e)y(x — e +e7)ejely

G 2
+ WO —e —e)

X Y(x—e — e+ e)eels,

wy GC% JTRRY)
Py = 7 WY (x)¥(x + e13) ejzep;
G 2
+ W ()Y (x — ers) elely

4
Gc? €3 €3 v
7>w<x + 7) elsels.

+ TSW(S)w<x - (A12)

The latter quantities can be used to define the different
contributions to the full lattice pressure tensor reported in
Egs. (19)—(22) of Sec. IV.

APPENDIX B: LATTICE PRESSURE TENSOR
CONTINUUM EXPANSION

In this Appendix we provide some detailed calculations for
the fourth order continuum expansion of the pressure tensor.
Let us start from the leading order P[’(L); : one can check that the
contributions from all groups sum up to yield the second order
isotropy constant e, [cf. Eq. (C1)]

Pl = W ner = 996 o (g
o = I/f > WleaP)ehey = ==y, (B)
e, €G

If we sum this expression to the kinetic ideal gas contribution
PV (x) = n(x)c28"", we obtain the well-known expression for
the bulk pressure [10,11,34]:

G
P = (nc + Czezl/ﬂ)a/”. (B2)

Let us now analyze the second order derivative terms (indi-
cated with subscript [9%]) from the groups G;, G,, G4, and
gSa:

Py = GE*W () AP 3, 050

GC? afuv
5 (W(1) — 4W ()18 Y da 9p Y,

122% _ 2 afuv
P(4 s = 12Gc; W (8)A Y0, 0

2
3G S[4W (4) — 16W (8)18%PH 9,05,

Pl = 4Gch(5)A°"3“”1ﬂ8a8ﬁ¢

7Gc?
— TJW(S)S“ﬁ““wBaB,ﬂ[/. (B3)

These terms can be obtained by applying the results of
Sec. III and Appendix E and computing the coefficients multi-
plying the isotropic AR = §*BgHy 4 §erghy 4 §2v§P1 and
anisotropic §*#*V tensors according to D e.cC, € eePette’ =
AD () AP 4 B (£)8*PH . The expressions for the coef-
ficients read as

AD@) = > () (e)”.

e,€Gy ) (B4)
BP0 =" (&) —3AD ).
e,€G;

Similarly, one finds the terms containing the product of first
order derivatives (indicated with subscript [d9]) yielded by Gg
and Gy:
PG syia0) = —AGEIW B) AP 3,y gy

2

(BS)
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The only contributions to the expansion of the lattice pressure
tensor that require further attention are the ones related to the
shifted vectors of Gs reported in Eq. (22). Differently from
the other contributions, Eq. (22) yields an expansion where
the product of two pairs of different vectors appears, namely,

terms of the type e"‘eﬁ L €5 5. In order to extract from the lat-

ter terms the same tensorial structures appearing in E;’ﬁ we
namely, A*?*” and §*P*, we first need to define some basic
quantities in terms of the Cartesian basis vectors, i.e., e; and
e;. As a first step we express the Kronecker delta as

5% = 5,818 = 8250 + 8958 = efef + e5eh.

(B6)

Hence, by the same token, we write the rank-4 Kronecker
delta as

afuv _ a B 1 a B 1 v
8 =efelefe] +e5ese5e;.

(B7)
In order to compute the fourth order expansion of Eq. (22)

we need to manipulate the quantity 861 ez)egp e,’, where we

indicate the symmetric part of the vectors product as e(l" ey =
(ef'ey + eVel)/2. Since we want to retrieve terms related to

AP and §2B1Y e sum and subtract a few terms as follows:

Seiaezﬁ)e(l"e;)

=2(cfeh +e5e]) (' es + ehe)

=2[efel (el + ebey) — etelielel]

+2[ef el (efel + edey) — efettetel]

+2[etel (el + efel) — efelel ]
+2[e e (efe) +e5eh) — e’fefe‘f‘e’l‘] (B8)

It is still possible to perform a similar manipulation that would
finally yield the desired tensorial structure and the very same
term we started with but with opposite sign:

8eiey'el'ey) =+ 2[(efe +e5ey)(efef + eher)
—ejeye] — (efefele + e5eh e es)]

+2[(efel + ehel) (el + e5es)
—efehelel = (efefefel + eseserel)]
+ 2[(6161 +ede;

)
B o v 1k (

— e 62626

(e ey +6262)
e Tel + ezezegeg)]

+2[(e e} +ehey)(efel + e5ey)

—eyehesel — (etelelel + esebeles)]
=2(28°15P" 4 26P15%" — 45%P17)
- 8e(lae§)e§“e;), (B9)
thus, we can write the following relation:
8e\* el elVte)) = 25 8PY 4 28PRSYY — 45°PHY - (BI10)

Now, we examine the derivative expansion. Starting from
Eq. (22), we begin by selecting the terms that are proportional
to the second order derivative, bearing in mind to decompose
the vectors e;7, €3, €19, and e,y as a sum of e; and e,. Hence,

we obtain
P = Ge %W(S)e e ([e“ e’ ] + [e“ ey ])1,08 gV
s ! 263 \|€18€138 19€19 o 0p
G
45 W (S)(efef [elely] + e5 e [eheso )V dudpr

G 2
4+ W(S)ese5 ([e%e‘ﬁ] + [e‘l‘geyg])waaaw

G2
+— W(S)es% ([eloets] + [eno]) ¥ B dp v

4
3Gc?
=+ 5 YW(S)( leletel +ezeze2e2)1ﬂ3a351/f
G 2 8
ZYW(S)(e e +ezez)(e”e‘f e es)Yrd, dpyr
5Gc?
+ 5 W(S)(ele] —i—ezez)(e’l‘e1 b ey ) a0y

+ G2W (5)(8e\ ey el ey ), dp

Gc?

= W (S)BAT + 4575 — 106 0,

(B11)

Similarly, we consider the terms proportional to the product
of two first derivatives from the expansion of Eq. (22), and
finally obtain

v Ge; )
Pl = == W S)e§ (e [efyels] + &3 [elsel]) du v 0

- Gch W (5)eg (¢ [ehyet] + €] [ehoeso]) datr Op

—3GAW (5)(eSelel'el + edeb el eb)d sy

—GEW (S)(elle} + eheb)(esel + edeh ) dpy

— GAW (5)(8el el e\ e2) sy

—GEW (5)QAYPRY — §ivseh _ §ePIYYG W dgr.
(B12)

It is now possible to sum up all the contributions, i.e.,
Egs (B1), (B3), (BS), (B11), and (B12), and recover the full
expansion reported in Eq. (24).

APPENDIX C: FORCING WEIGHTS AS A FUNCTION
OF {e;,} AND &

By treating the forcing weights {W(|e,|?)} as degrees of
freedom, we can write them as functions of the first four
isotropy constants {e,,} and the parameter . We do so in
order to gain 1n51fght on the definition of the new forcing
schemes E;,Z) Fé 1384) 76 ng)Fé, dE;,]f}f}, yielding a higher
order pressure tensor isotropy. The advantage results in a
better understanding of the implications on the isotropy con-
ditions when fixing the force expansion coefficients e, and
the macroscopic flat interface properties by means of €.

We start by explicitly writing the expressions of {e,,} and
& according to the new parametrization reported in Eq. (E3)
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(see Appendix E for details):
er =2W (1) +4W(2) + 8W(4) + 20W (5) 4+ 16W (8),
es = 4W(2) + 32W (5) + 64W (8),
4 80 256
e = §W(2) + ?W(S) + TW(S)’

4 128 1024
eg = §W(2) + TW(S) + TW(8),

B 48W (4) + 96W (5) + 96W (8)

T oW (1) + 12W(2) + T2W (4) + 156W (5) + 144W (8)

(CI)

It is possible to invert this system of equations and obtain the
five weights as functions of the four isotropy coefficients and

&
W( )_ 1|: 662

18e, — 20 27eq — 9es |,
24| e = 1)+ ey es + 2/eg egi|

W) = %(16@ — 24e6 + 9es),

W) = — [(86?1) + 6es — Sey + 185 — 9e8]
W) = —m(4e4 — 15¢¢ + 9eg),

W(8) = ;16@4 — 6eg + 9es). (C2)

We can use the above transformation to rewrite in the new
variables the forcing isotropy conditions

Lo = +2W (1) — 8W(2) + 32W (4) — 28W (5) — 128W (8)

36‘2 1
—_—— = 6
21 2(62 + 6ey),
Ieo = +2W (1) — 16W(2) + 128W (4)

— 140W (5) — 1024W (8)

52 1130, 4 3060)
=——< _— _(13e
2e—1) 2 T ore)
Iso = +2W (1) + 32W(2) + 512W (4)
—2108W(5) + 8192W(8)
6382 1
= %2 (6le, — 224, + 840es — 630
1) 2( e eq + 840¢g eg),
8 176 2048
L1 =—=W2)+ —W(@G)— —W(@®)
3 3 3
= —dey + 15¢6 — 15eg, (C3)

and the pressure tensor ones

= ! 1862 + 18 1 + 57 18
—_ ey — 7e e — e s
X1 144 (8 1) 2 4 6 8
1 3662
= —— + 125¢4 — 57e¢ + 18 . C4
1 144 [(8 1) €4 €6 681| ( )

Given the condition ;o = 0, and matching both e, and ¢,
it follows that, at least for E;,4) re and E® P4 re (for which
the above equations are valid), also the value of ey, 1.e., the
surface tension, is matched. Our strategy (cf. Sec. V C) yields

the same result also for E},lfi%, whlle for E 53142 re the value of

ey differs from the target one e4 (E') P2 F12) by 1074, as reported
in Table 1. Such a discrepancy will be the subject of further
studies, and it only appears when mimicking with 5 weights
W (£) the isotropy properties of a stencil defined using 10
different weights.

Let us conclude this section by proving the relation in
Eq. (32). We only need to use the definition of the coeffi-
cients x7 = 4W(5) +8W(8) and Ar =2W(2) + 24W (8) +
12W(5), provided right after the general expansion of the
pressure tensor in Eq. (25), and compare with the definition
of e4 in Eq. (C1) obtaining

I
X1+ Ar = SI4W(2) + 32W(5) + 64W (8)] = %“ (C5)

APPENDIX D: ONE-DIMENSIONAL LATTICE
PRESSURE TENSOR

In this Appendix, we provide a few details that al-
low to quickly compute the lattice pressure tensor for a
one-dimensional interface without starting from the two-
dimensional expresswn Th1s is instrumental for computing,
in the case of E' . }10 nd E = )1712’ the values of the different
coefficients «, B, v, and n that have been pr0V1ded in Sec. V
for the case of a stencil with five weights on g Thus, we
determine the expression for ¢ (E }120 }10) nd e(E 5312 }12). Letus
start by considering a planar interface between gas and liquid
phases whose normal is oriented along the x axis. To illustrate
the key steps, let us focus on the vectors of the group G:
given the arguments in Appendix A, we only need to consider
half of the vectors of each group; moreover by symmetry, we
already know that in this case P,” = 0, for each group G;.
Hence, we only need to consider the diagonal terms of the
lattice pressure tensor We focus on P* first: all terms are
multiplied by ee}, hence, only e; contributes. Considering
that the pseudopotential only depends on x, we can follow the
construction presented in Appendix A and write the average
force as

F=-

D+y@x -1 (D1)

hence, the the contribution to P from the group G is

P(x) = —Fi(x)eje} =

D+ vy —1DI
(D2)

Let us now consider P*: all terms will be multiplied by e},e;,
so that only the direction e, contributes. However, along this
direction, the pseudopotential keeps the constant value ¥ (x)
so that we can immediately find

Py\x) = —B(x)eye; = GeXy*(x). (D3)

This construction is straightforward, and by making use of
the results in Appendix A, we can write the two diagonal
components of the lattice pressure tensor for the stencil E!?).

Let us begin with P**:
PY(x) = Gelaf™) o gV OIY (x +4) + ¥ (x — 4)]

+G2a™ o 5 U Y (x +3) + Y (x — 3)]
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+G2al™) o W O (x +2) + ¥ (x - 2)]
+Ga™ (Y + D)+ Y(x — 1]
+ GO W (x + 2 (x — 2)
+Ge2b x4+ D (x — 1)
+ G Y (x4 3P (x — 1)
+ ¢+ Dy(x—3)]
+ G W (x + 29 (x — 1)
+¥x+ Dy(x —2)], (D4)
with the coefficients given by
af™) o4 = 2W(16) +4W (17),
af™ o5 = 3W(9) + 3W(10) + 3W (13),
af™ ooy = WA +2W(5) + 2W(8) + W (13),
a™ o = sW() + W Q)+ W(5)+W(10) + W(17),
by, = 4W(16) + 8W (17),
b, = 2W(4) + 4W (5) + 4W (8) + LLw (13),
b, = 4W(16) + 8W (17),
by, = 3W(9) + 6W (10) + 6W (13). (D5)

Finally, we write P>7:

PY(x) = Gelap™) o g Oy (x +4) + ¥ (x — 4)]
+Gelaf™ o Y (x +3) + Y (x — 3)]
+Gelaf™ o Y (x +2) + Y (x — 2)]
+Ga™] o O+ 1)+ Y (x — D]
+Gay YR (x) + GeXb v (x — )Y (x +2)
+GbY ) W (x — Dy (x + 1)

+ G2 W (x + 3P (x — 1)
+y(x+ Dy(x —3)]
+ G2y [ (x + 29 (x — 1)
+y(x+ Dy (x —2)], (Do)
and the related coefficients
A"y = FWAD),
a™ 5 = W (10) + 2w (13),
af™ oo = SW(S) +2W(8) + 3W (13),
a4,y = W(2)+4W (5) + 9W (10) + 16W (17),
aly =W (1) +4W(4) + W (9) + 16W (16),
by = sWa),
byl = W(5) +4W(8) + 12W (13),
by = sW D),
by, = 2W(10) + Sw(13). (D7)

The expressions in Eqs (D4) and (D6) include all the lower
isotropy stencils as subcases. Let us now examine the Taylor
expansion of P from which we can extract the expression
for ¢ for E"'?. Let us report once again the general expression
[see Eq. (27)]

Gcle, G [ d*y dy\?
Pxx — 2 Tste g2 s z 7 -
etV [ﬁwdx2+a<dx)i|

(D8)
for which the coefficients are now given by

a = —[24W (4) + 48W (5) + 48W (8) + 144W (9)]
— [288W (10) + 352W (13) + 480W (16) + 960W (17)],
B =6W(1)+ 12W(2) + T2W (4) + 156W (5) + 144W (8)
+342W (9) 4 696W (10) + 812W (13) + 1056W (16)

+2124W(17) (D9)
so that by following the definition ¢ = —2«/8 one gets the
extended expression for €.

We also wish to check the surface tension coefficient. In
order to do so, we first report the Taylor expansion for P*7:

i Gc2e Gc? d? d 2
P)ancf—i——s 21ﬂ2+ s|:77 1p*l—]/<—w):|

2 4 [ ax dx
(D10)
and its coefficients
n =4[W(2)+TW(5) + 12W (8)]
+4[2W(10) + 2w (13) +27W (17)],
y = —4[W(5) +4W (8)]
—4[3w10)+ EW(13)+5Ww(17)].  (D11)

We notice that it is only possible to translate these combina-
tions of weights in terms of the isotropy coefficients e, and &
only for stencils up to E®: starting from E'?, the number of
weights outgrows the number of isotropy coefficients at which
order the forcing is isotropic. Using the isotropy coefficients
of the orders for which the isotropy conditions are not satisfied
only brings in linearly dependent equations, so it is not a
viable alternative.
Finally, we write the surface tension as

+00
o= / dx[P™(x) — P (x)]

Gc? oo T ay(x) T
=—-——2[B8 - 3(y — d
ot (v n)]/m X[ I ]
(D12)
from which we define the constant coefficient § = —[8 —

a+3(y —n)l/12:
6 = —1W) + 16W(2) + 18W(5) + 81W(9)]
— 1[128W (10) + S0W (13) + 256W (16) + 450W (17)].
(D13)
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We provide here the expressions of e and Iy o for E!2):
es = 4W(2) + 32W (5) + 64W (8) + 72W (10)
+288W (13) + 128W (17),
Lo = 2W(1) — 8W(2) + 32W (4) — 28W(5) — 128W(8)
+162W(9) + 112W (10) — 476W (13)

+512W(16) + 644W (17), (D14)

so that one can check that the same result as in Eq. (32) still
holds

2 4 2 (D13)
assuming that I o = 0, i.e., the fourth order isotropy condition
is satisfied.

The different expressions for the isotropy coefficients are
reported in the JUPYTER notebook [62] relative to this paper,
accessible on the “idea.deploy” GITHUB repository [55-63].

APPENDIX E: STENCIL ISOTROPY DETAILS

In this Appendix, we present the details of the derivation of
the expressions for the isotropy constants, i.e., e3,, and forcing
isotropy conditions, i.e., I, x, which have been introduced
in Sec. III as the isotropic and anisotropic contributions to
E#i-ta jn Eq. (11) and further specified in Eqs. (12) and
(13). Expressing the isotropy constants e,, as functions of the
weights, as in Appendix C, allows us to define the system
of equations whose solution is the set of weights defining
E;?Z,Fﬁ, Eﬁffﬁ, Egﬁ)pﬁ, and Egﬁ}() (see Table II), yielding a
fourth order isotropic pressure tensor. The presentation below
provides a basis for the generalization of the results presented
in this paper at higher order and in three dimensions, which
must be complemented by a parallel development of the re-
sults obtained in Appendix B relative to the product of vectors
belonging to different groups [see Eq. (B10)]. Technically, we
adopt a slightly different perspective with respect to earlier
multirange works [19,34], by generalizing (to the best of our
knowledge) the analysis reported in [69], which was limited
to the sixth isotropy order.®

Let us start from the definition of E#'-#> in Eq. (11): we
can see that a summation over all groups is used. However,
we can split the definition for each group, i.e., keeping fixed
the square norm |e,|> = ¢, so that we can write the groupwise
quantities as

My M1 12 Mon
E[t = E ettel> el (ED)

e,€Gy

for which a possible parametrization for n 2> 2 can be written
as

EZ’“"'”Z” — A(Zn)(g)Am...uzn + B;in)(g)aﬂl---MZ/x
+Béi’:)2(ﬁ)[8m”25m"'ﬂ2“ + perms] + - - -

+ B;i”_)M(n)(g)[aﬂl»»»MM(n)(SMM(n)H---M2n + perms]
(E2)

%See Egs. (3.5.5), (3.5.6), and (3.5.7) in [69].

or in a more compact form
Eéu---uzn — A(2n)(5)Ammuzn

M@n))2
+ ) BE, (@8 g1 1 perm].
k=0

(E3)

In the above expressions A#'#> is the 2n-rank isotropic
tensor [19,34,69], §*1~#> is the 2n-rank Kronecker delta
(which equals one only if all indices take the same value), and
M) =n— (2 4+ nmod?2) (notice that we use both n and 2n
in the definitions). Finally, we set the convention §**** = 1
forn>1and k =0, e.g., §#"0 =1, §#2*0 =1, and so on.
The constants A" (£) take on different values for each group
of vectors of squared length ¢ = |e,|> and they all multiply
isotropic tensors. Similarly, the coefficients 85,21’1)2,((6) depend
on the specific group and they all multiply the anisotropic con-
tributions given by the higher rank Kronecker deltas. Hence,
given Eq. (E3), it is clear that a single group of vectors cannot
be used as a basis for 2n-rank isotropic tensors because it is
not possible to eliminate the anisotropic contributions. The
solution is to use more than a group as it is done in Eq. (8),
so that the total sum of the 2n-indices quantities can be made
fully isotropic. By summing E;, over the different groups, we
single out the coefficients e;, [cf. Eq. (12) and nearby discus-
sion] multiplying the fully isotropy tensors of rank 2n, i.e.,
the isotropy coefficients, and the isotropy conditions I, ; = 0
ensuring the vanishing of the anisotropic contributions

e =Y APOW (L),

¢
b =Y B, (OW() =07 (E4)
£

We remark that Eq. (E3) only represents a definition of the
anisotropic contribution coefficients B;i"_)Zk(Z) allowing to set
their combination to zero as in Eq. (E4).

Let us now discuss the combinatorial aspect of Eq. (E3).
We remark that the present discussion assumes n > 2. The
quantity M(n) =n — (2 +nmod?2) is related to the maxi-
mum of the sum. The limit k = M(n)/2 is imposed in order
to avoid double counting the tensorial structures. This point
can be better understood by some direct examples: choosing
2n =4 we get M(2) = 0, i.e., the above sum only contains the
k = 0 element, which is indeed the case, since at fourth order
one can only have either the full isotropic tensor A® or the
higher rank Kronecker delta §¥), whose coefficients are going
to be captured by the k = 0 terms. If we consider 2n = 6, then
M(3) = 0 yielding only A® and §® in agreement with the
highest order explicitly treated in [69]. For 2n = 8 one would
get M(4) = 2, so that the sum wouldend at k = M (4)/2 = 1.
This result is compatible with the analysis reported in [19,34]
yielding two isotropy conditions for the forcing at the eighth
order.

Let us now look at the possible arrangements of an even
number of the two variables x and y in a set of 2n elements.
For 2n = 4 it is clear that only two arrangements are possible,
either {x, x, x, x} or {x, x, y, y} since the ones obtained from
the exchange x <> y, namely {y,y,y,y} and {y,y, x, x}, are

063309-19



MATTEO LULLI et al.

PHYSICAL REVIEW E 103, 063309 (2021)

expected to yield the same expressions, given the invariance
of the vectors of the group under coordinate permutations.
Hence, for the problem of finding the independent indices
arrangements, one needs to consider all those permutations
that are not trivially linked by coordinates exchange. In
the case of 2n = 6, one still has two possible arrangements
{x, x, x, x, x, x} and {x, x, x, x, y, y}, while for 2n = 8 there are
three, namely, {x, x, x, x, x, x, x, x}, {x, x, x, x, x, x, y, y}, and
{x, 2, x, %, 5.y, y, ¥}

Furthermore, we notice that, at each order 2n, all
arrangements  different from the homogeneous one
{x,x,...,x,x}, would allow at most two tensorial structures
to yield a contribution. Let us analyze again the previous
examples: for 2n =4 the combination {x,x,x, x} is such
that both A™ =3 (see [19,69]) and 6*** = 1 differ from
zero, while for {x,x,y,y} the only nonzero contribution
would be A™Y =1 since §*Y = 0. Similar arguments hold
for 2n = 6. For 2n = 8 one has three tensorial structures,
namely, A®, §®_ and §%§©®, which in Eq. (E3) are
multiplied by A®(¢), B(S)(é) and B(S)(ﬁ) respectively.
For {x,x,x,x,x,x,x,x} all three terms survive yielding
A(S)(z) ATIXXTXXX .A(S)(E) 7, 6(8)(5) Sy B(S)(E)
and BF(£) (848 4 perms) = ng)(e) (). while for
{x,x,x,x,x,x,,y} one has A®(£) Ax=0y = A®)() 511,
B () =0, and  BP(€) (878 4 perms) =
Bés)(é), where in the last term only one of the possible com-
binations survives. The last permutation {x, x, x, x, y, y, y, ¥}
yields only the term proportional to the fully isotropic tensor
A® (g) Aoy = A®(¢)31131). Thus, we can define a
system of equations to determine the coefficients A®(¢),
Bgs)(é), and Bég)(ﬂ) for any value of £, by means of Eq. (E3):
we enumerate all possible independent indices permutations
and isolate the nonvanishing terms in

L1 ,H2 Mg
E e, e, ...e,

e,€Gy
— .A(S)(E) AMHs ng)(ﬁ)(sﬂ""m
+B®(e) (8#1#28M+H 4 perms), (E5)

yielding, for each permutation, a linear equation. The system
can then be solved for the coefficients A® (¢), B (¢), and
B (0),
Let us now analyze the general case in which we select the
first 2n, indices to be equal to x and the remaining 2n — 2n, =
2n, to be equal to y, so that one would get

2 (@)™ )™
e, €5y
= AP (0)2n, — D20, — DI+ BE ()8 (2n,)
M(n)/2
Z BV, (0) [237,,.8c(2ny) + 8 (2n, — 20)],

(E6)

where dx(a) is the Kronecker delta being equal to 1 when

a=0, and Zéi")Zk (2}121‘2]() = @Z) indicates the number of

possible independent permutations of the indices in the terms
3/11 M2k 5M2A+1 e M2n .

The above arguments of symmetry under coordinate
exchange x <>y impose a lower limit 2n, > m(n) =n +
nmod 2: all indices’ permutations below this value, i.e.,
2n, < m(n), coincide, under coordinates’ exchange x <>y,
with those such that 2n, > m(n). At the lower bound, for
2n, = m(n), remembering the upper limit of the summation
M@(m)=n—(2+nmod2), one has 2n, =2n —2n, =n —
n mod 2 > M (n) so that all the Bézq”) terms disappear allowing
to compute the coefficient A®" as

+n mod 2 ¢y \n—n mod 2
> e,cq, (€)M (en)

(n+nmod2—1!!'(n—nmod?2— !

APV () = (E7)

For 2n — M(n) <
puted as

2q < 2n the coefficients Bg”) can be com-

B(Zn)(e)

2 ) e

e,€G;

A (0)2g — DIN(2n —2g — D!, (ES)

while in the limiting case 2¢g = 2n one has

BE@) = Y (e)" — AP (0)@n - D!
Eaegg‘
M(n)/2
D B (O 2y (E9)
k=1

The above equations can be solved by first computing the
value of the coefficient A®"(¢) in Eq. (E7) which in turn al-
lows to compute any of the coefficients B (Z) asin Eq. (ES8).
Once computed the above values one can ﬁnally evaluate the
remaining Bﬁ”)(ﬂ) as in Eq. (E9).

APPENDIX F: FORCING ISOTROPY COMPARISON

Let us now connect the results in Appendix E to the pre-
vious literature on the forcing isotropy [19,20,34]. Indeed, we
defined the forcing isotropy conditions {/, = 0}, according
to our new parametrization in Eq. (E4) as

Lug =Y _ By (OW(£) =01, (F1)
L

which can be explicitly written once all the coefficients
B;i")zk(ﬁ) are computed according to Egs. (E7), (E8), and
(E9). However, the above conditions do not have the
same form as those reported in [19], where the isotropy
is obtained by requiring that the sum, over all groups
Y e.cg Wlea|*)(€})*" (e;)*™, only yields isotropic contribu-
tions. Such request is expressed by the following sequence of
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ratios [19]:

e,cG e,cG

e,€G e,€G

e,cG

Z 114 (|ea |2) (62 )m(n)+2 (ez )2n—m(n)—2/ Z w (|ea |2) (62 )m(n)(ez )2n—m(n) _

Z W (|ea |2)(ez )m(n)+4(ei;)2n7m(n)74/ Z W (Ieu |2) (ez)m(n)+2(ei)2nfm(}’l)72 _

> W(lea?) @)/ Y W(leal?) (el (el)’ =

[m(n) + 11"[2n — m(n) — 3]!!
T Im(n) — 111120 — m(n) — 111

[m(n) + 3]""[2n — m(n) — 5]!!
T Im(n) + 111120 — m(n) — 31!

(F2)

2n— DH
T @n =31

e,cG

Equations in (F2) must then be linear combinations of those in (F1). Such combinations can be computed by straightforward
(although tedious) manipulations. We report now, in the same order, the isotropy conditions in Eq. (F2), expressed in terms of

the coefficients Béi’i)% of the new parametrization

> WOBS",,(€) =0, for M(n) > 0
£

2¢+1)

Each equation involves a combination of our new isotropy
conditions b,y =, Bﬁ”_)%W(Z) = 0, proving the linear de-
pendence of Egs. (F1) and (F2). In the JUPYTER notebook [62]
relative to this paper, accessible on the “idea.deploy” GITHUB
repository [55-63], it is possible to find the comparison of
Eq. (F3) against Eq. (F2) for multirange forcing schemes up
to the 14th isotropy order.

As an aside, the above analysis allows to compute the
number of equations Neq needed to satisfy the isotropy con-
ditions at the 2nth order, which is simply given by Neq(2n) =
[2n — m(n)]/2 = (n — n mod 2)/2, i.e., by the difference be-
tween the maximum values of 2n, = 2n and the minimum

(2n) (2n) _
XE:W“)[BMH(O — mqu (€)i| =0, forM(n) > 0and 2n — M(n) < 2g < 2n

(F3)

M(n)/2

> W(@)[Bﬁ”)(z) +OMn)) (24", = 2n + 1)BS,(0) + 0(M(n) —2) Y zgi"’z,{zsﬁ'”%(e)} =0.
£

k=2

(

2n, = m(n), divided by 2 since only even changes in 2n,
would yield a nonzero result. Hence, the total number of
weights Ny, required to obtain isotropy at the 2nth order is
given by the equation

I « I «
NW—1=5;[2k—m(k)]=§;(k—kmod2), (F4)

where with —1 we are indicating that one of the equations is
typically used to set the value of the second order isotropy
constant e;. This is the common practice, even though this is
not necessary from the mathematical point of view.
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