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Algorithms to generate saturated random sequential adsorption packings built of rounded polygons
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We present the algorithm for generating strictly saturated random sequential adsorption packings built of
rounded polygons. It can be used in studying various properties of such packings built of a wide variety of
different shapes, and in modeling monolayers obtained during irreversible adsorption processes of complex
molecules. Here, we apply the algorithm to study the densities of packings built of rounded regular polygons.
Contrary to packings built of regular polygons, where the packing fraction grows with an increasing number of
polygon sides, here the packing fraction reaches its maximum for packings built of rounded regular triangles.
With a growing number of polygon sides and increasing rounding radius, the packing fractions tend to the limit
given by a packing built of disks. However, they are still slightly higher, even for the rounded 25-gon, which is
the highest-sided regular polygon studied here.
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I. INTRODUCTION

Random packings are a natural model of random media,
whose properties are an active area of study due to their
fundamental and utilitarian applications [1–5]. There are a
lot of different types of random packings. The most popular
ones are random close packings (RCPs), where the process
used to form the packing is continued until packing density
stops growing. There, the neighboring particles are in contact.
RCP is mainly used in the modeling of granular matter [6–8].
However, despite the prominence of this type of packing, it
appears that the very notion of RCP is ill-defined because one
cannot simultaneously maximize packing density and packing
disorder [9]. Moreover, the packing density is sensitive to
the details of the numerical or even experimental protocol
used [10]. Another kind of packing, which has well-defined
mean packing density, is obtained using the random sequential
adsorption (RSA) protocol [11]. The packing is created using
the following iterative scheme:

(i) A virtual particle of random position and orientation
within a packing is selected.

(ii) If the virtual particle does not intersect with any of the
particles in the packing, it is added to the packing, and its
position and orientation remain fixed.

(iii) Otherwise, the virtual particle is removed and aban-
doned.

This procedure should be continued until the packing is
saturated, which means there is no place large enough to add
another object.

Although RSA history began early in the past century [12],
it was popularized by Feder, who noticed that such pack-
ings resemble monolayers built during irreversible adsorption
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processes [13]. In these processes, the molecules from a bulk
phase attach at random places to a surface (or an interface)
and form a layer. The structure of such a layer is determined
mainly by a geometrical cross-section of molecule shape
and two-dimensional surface. Therefore, adsorption layers are
well modeled by two-dimensional loose random packings
produced by the RSA algorithm. Comparing experimentally
measured characteristics to ones obtained from such model-
ing allows one to check if the assumed interactions between
the particles adsorbed and the surface influencing molecule
orientation in the layer are correct [14–17]. In such studies,
a cross-section of a complex molecule shape with a surface
is typically approximated by simple geometrical objects such
as disks, two-dimensional spherocylinders, or ellipses [18,19].
For more complex molecules, models may use several disks
[20–22]. However, this approach follows cross-sections that
are not smooth and concave, introducing unwanted steric ef-
fects. This study presents an effective method of generating
RSA packings built of arbitrary polygons with rounded cor-
ners. Such an object can model virtually any two-dimensional
cross-section used in the numerical modeling of adsorption
processes.

It is worth mentioning that besides these practical applica-
tions, RSA plays the role of one of the simplest, yet not trivial,
protocols of forming disordered packings, which account for
excluded volume effects [23–26]. Therefore, our algorithm
can also be used in this area to study the properties of a wide
range of different shapes. On the other hand, RSA cannot
be used to study other phenomena induced by the excluded
volume, e.g., phase transitions [27,28], since the system is
essentially nonequilibrium [29].

The main problem that has to be addressed by implement-
ing the RSA algorithm is its performance near saturation.
While in adsorption experiments saturated monolayers are
typically obtained in minutes, the standard approach to the
RSA algorithm becomes highly ineffective when the probabil-
ity of finding a large enough place for another particle is tiny.

2470-0045/2021/103(6)/063308(10) 063308-1 ©2021 American Physical Society

https://orcid.org/0000-0002-1191-0718
https://orcid.org/0000-0001-7008-4498
https://orcid.org/0000-0002-2498-8792
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.063308&domain=pdf&date_stamp=2021-06-14
https://doi.org/10.1103/PhysRevE.103.063308


CIEŚLA, KUBALA, AND KOZUBEK PHYSICAL REVIEW E 103, 063308 (2021)

FIG. 1. Illustrative rounded pentagon, where segments (black
lines) are replaced with (blue) spherocylinders.

Therefore, the expected number of RSA iterations needed to
draw this place is very large, which leads to the very long sim-
ulation times. Additionally, even when saturation is reached
and there is no possibility of adding a subsequent object to
the packing, the algorithm still tries to add the next randomly
placed shape, because it cannot detect that the packing is
already saturated. These problems have been solved only for
several, specific shapes, such as disks [30–32], and recently
for ellipses and spherocylinders [33], polygons [34–36], and
figures built of several disks [37]. This paper extends this list
by showing how to generate saturated RSA packings built
of polygons with rounded corners. The algorithm proposed
is tested by studying the properties of RSA packings built of
rounded regular polygons.

II. SATURATED PACKING GENERATION

First, let us note that the rounded polygon is not built
of segments but rather of spherocylinders; see Fig. 1. To
generate a strictly saturated packing built of such shapes,
we follow the idea of tracking the space where subsequent
particles can be placed [30–32,38,39]. At the beginning of the
packing generation, the whole packing is divided into disjoint
voxels. Each voxel is defined using five numbers. Three of
them are its coordinates (xv, yv, αv ), and the other two (δ,�)
denote its size. Thus, a voxel is a set of points (x, y, α) such
that x ∈ [xv − δ/2, xv + δ/2), y ∈ [yv − δ/2, yv + δ/2), and
α ∈ [αv − �/2, αv + �/2). Each point inside a voxel corre-
sponds to the center and the orientation of the trial rounded
polygon. A crucial part of the algorithm is to determine if
the given voxel contains at least one point that corresponds
to a polygon that does not intersect with any polygon already
added to the packing. If there is no such point, the voxel
becomes inactive. Note that an inactive voxel cannot become
active again because shapes added to the packing neither
vanish nor change their positions, thus there is no possibility
that in such a voxel a point corresponding to a nonintersecting
trial object will appear at further stages of packing generation.
Inactive voxels are not used in the sampling of trial objects,
which speeds up packing generation, therefore they can be
removed to lower the usage of computer memory. If all voxels
become inactive or removed, the packing is saturated, i.e.,
there is no possibility to add a new object to the packing.

FIG. 2. Division of the voxel of spatial size δ and angular size �

to eight smaller voxels of spatial size δ/2 and angular size �/2.

Note that active voxels estimate regions where new figures can
be added. The smaller the voxel size (parameters δ and �),
the better the approximation. However, voxels cannot be ar-
bitrarily small from the beginning of the packing generation
due to limits in computer memory. Therefore, typically, calcu-
lations are started with relatively large voxels. When the ratio
of unsuccessful trials of adding a new figure to the packing
exceeds some threshold value, all active voxels are divided
(each voxel into eight smaller ones; see Fig. 2), and then all
these new voxels are tested to determine if they will remain
active. The threshold value mentioned may be smaller when
there is a lot of memory available for calculations, but it
should be large when we want to avoid too frequent voxel
divisions to keep their number limited. The block diagram of
the complete algorithm that generates a saturated packing is
shown in Fig. 3. We have developed two different ways to test
whether the voxel should be marked inactive. The first one is
based on an algebraic worst-case estimation, while the second
one uses the geometric notion of excluded zones. Both are
described in the next section.

A. Voxel elimination

1. Algebraic approach

First, we notice that the spherocylinder is fully defined
using a given segment and the maximal distance between this
segment and the set of points that build the spherocylinder.
Thus, for a voxel to be marked inactive, the distance between
the segments giving two spherocylinders—one belonging to
a trial particle, and the second to a polygon already placed
inside the packing—has to be smaller than the spherocylinder
width 2r, regardless of the center and the orientation of the
trial particle inside the voxel. Therefore, first we use the
Zhang criterion [35] to determine if it is possible to avoid
these segments’ intersection. If so, we have to estimate the
minimal possible distance between them. To do this, assume
that for an object placed inside a voxel center (xv, yv, αv )
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FIG. 3. Block diagram of the algorithm that generates strictly
saturated RSA packing.

the distance between the segments is d . Due to the rotation
inside the voxel, the red spherocylinder will not move further
than 2R sin(�/2), where R is the radius of the polygon’s
circumscribed circle, and due to the translation it will not
move further than (

√
2/2)δ; see Fig. 4. Thus, if

d + 2R sin

(
�

2

)
+

√
2

2
δ < 2r, (1)

the spherocylinders have to intersect, and therefore the voxel
can be marked as inactive. Otherwise, the voxel remains active
even if it cannot host any nonintersecting polygon center,
but the above rough estimation is satisfied. However, note
that when the voxel size tends to 0, condition (1) approaches
the spherocylinders intersection condition. Therefore, for the
decreasing size of the voxels, the accuracy of sampling non-
intersecting shapes increases.

The last remaining point is to determine the distance be-
tween two nonintersecting segments. Here, we calculate four
distances from the first segment’s ends to the second and
vice versa (see Fig. 5). The smallest of these values is the
distance between two segments. Two rounded polygons do not
intersect if the distances between all their segments are larger
than 2r.

2. Geometric approach

We start by introducing the exclusion zone V of a particle
A with an origin OA for a particle B with an origin OB, which
is a subset of space, for which B overlaps A if and only if OB

lies inside V . Mathematically, it is defined as the Minkowski

FIG. 4. The illustrative red spherocylinder from a trial particle
placed in the voxel’s center and the blue spherocylinder from a
particle in the packing. The distance between these spherocylinders
varies depending on a particular point in the voxel where the trial
particle’s center is placed, and the particle’s orientation.

difference of A and B, namely

V = A − B ≡ {�a − �b : �a ∈ A, �b ∈ B}, (2)

where �a and �b represent vectors pointing from the particle’s
origin to one of its points, for A and B, respectively.

To begin with, let A and B be an arbitrary pair of sphe-
rocylinders, whose origins correspond to their geometrical
centers. We assume that the variable orientation of a trial
spherocylinder relative to some axis α is B(α). We denote the
exclusion zone of A for B(α) as V (α) [see Fig. 6(a)]. Note
that V (α) is convex because it is the Minkowski difference
of two convex sets. A voxel V can be marked inactive if
its spatial part is contained in the intersection V∩(α1, α2) of
all exclusion zones for the angles from the range [α1, α2) =
[αv − �/2, αv + �/2):

V∩(α1, α2) =
⋂

α1�α<α2

V (α). (3)

V∩ can be determined for spherocylinders using elementary
geometrical consideration, which was described in [33]. It is
illustrated in Fig. 6(b). There also exist similar constructions
for ellipses and rectangles [33,34].

FIG. 5. Determination of distance d between point p and seg-
ment ab. Point q is the orthogonal projection of the point p onto
the line containing a and b. If q is between a and b (left panel), the
distance between point p and the segment equals |pq|. Otherwise
(right panel), it equals min{|pa|, |pb|}.
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FIG. 6. (a) Illustration of the exclusion zone V (α) for two spherocylinders A, B(α). The dashed line represents A. OX denotes the origin of
the respective geometric object X . In particular, OV is the origin of the exclusion zone V (α). (b) A few exclusion zones for a spherocylinder
in the range [α1, α2) (solid lines) and the intersection of them (colored area). (c) Analogous exclusion zone construction for a shifted
spherocylinder B′. Primed symbols correspond to shifted shapes. (d) A few exclusion zones for B′. The arrows point at the centers of the
exclusion zones for end points of [α1, α2). Notice how all exclusion zones are shifted with respect to A by an angle-dependent vector −Rα�r.
(e) Illustration of approximating V ′(α) by V∩. Pink (lighter) areas represent V∩ for end points of [α1, α2), solid lines are full V ′(α), while the
green (darker) area represents the intersection of all V∩. The last one is the final exclusion zone. (f) An example voxel to be marked inactive
because it lies inside each V∩. It is equivalent to examining a “smeared” voxel V∪ and a single exclusion zone V∩. Colored areas coincide with
those from (e), while solid lines are V∩ approximating a few intermediate V ′(α).

However, the origins of spherocylinders building rounded
polygons coincide at a common point different from their
geometric centers. Let A be a fixed spherocylinder, and let
B′(α) = B(α) + Rα�r be a spherocylinder from a trial particle,
displaced from the common origin by Rα�r, where �r denotes
the displacement for α = 0, and Rα is the rotation operator.
The new exclusion zone reads [see Fig. 6(c)]

V ′(α) = A − B′(α)

= A − B(α) − Rα�r
= V (α) − Rα�r, (4)

so a voxel can be marked inactive if

V ⊂
⋂

α1�α<α2

V (α) − Rα�r. (5)

The shape of the intersection of exclusion zones is more com-
plex in this case and depends more subtly on α1 and α2 [see
Fig. 6(d)]. We can mitigate the issue by making an appropriate
approximation: we approximate all V (α) by the intersection

V∩(α1, α2):

V ⊂
⋂

α1�α<α2

V∩(α1, α2) − Rα�r. (6)

This step is illustrated in Fig. 6(e). From the construction,
this approximation does not introduce false-positive voxel
rejections. Next, we notice that this is equivalent to checking
if

V∪(α1, α2) ⊂ V∩(α1, α2), (7)

where

V∪(α1, α2) =
⋃

α1�α<α2

V + Rα�r. (8)

It means that we check if V∩(α1, α2) contains a voxel
“smeared” on an arc [see Fig. 6(f)]. Because in the case of
spherocylinders both V∩ and V∪ boundaries consist solely of
arcs and segments, the condition for voxel rejection can be
evaluated without further approximations. However, one can
also simplify it using a rectangular bounding of V∪. As both
the bounding and V∩ are convex, it is sufficient to check
whether the vertices of the bounding lie inside V∩. In either
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FIG. 7. Illustrative, small saturated random packings built of rounded equilateral triangles for r = 0.2, 1.0, and 2.0 for panels (a)–(c),
respectively. Periodic boundary conditions are used.

case, the procedure converges to the intersection criterion for
a voxel size tending to 0.

III. NUMERICAL SIMULATIONS

To test the above-described algorithms, we studied satu-
rated packings built of several rounded regular polygon types.
These polygons were built of n = 3, 4, 5, 6, 7, 8, 9, 10, 15,
and 25 segments. The circumscribed circle radius was 1 + r,
where r varied from 0.2 to 2.0 and was equal to a half-width
of spherocylinders replacing polygon segments. These shapes
were placed according to the RSA protocol on a square, whose
surface area was 106 times larger than the surface area of a
single rounded polygon. We used periodic boundary con-
ditions to decrease finite-size effects [40]. For each shape
studied, up to 100 independent random packings were gen-
erated to estimate the mean packing fraction. It allowed us
to keep statistical error slightly below 2.0×10−5, which was
enough to compare packing fractions for different shapes. We
used the algebraic approach to eliminate inactive voxels, as
in this case it was significantly faster than the second method
based on exclusion zones. The comparison of the speed of the
two approaches is presented in the latter part of the paper.

Here, it is worth noting that the speed of packing gener-
ation depends on several parameters. The crucial one is the
number of consecutive iterations without adding a particle,
which triggers voxel division. The optimal value of this pa-
rameter depends on a packing size, the shape of deposited
objects, and the maximal number of voxels (limited by avail-
able RAM), thus it is hard to estimate a priori. Too low
values of this parameter cause frequent divisions, resulting in
problems with voxel storage and extended time needed for
their analysis, while too large values cause too many unsuc-
cessful tries of adding a particle to the packing. In this study,
the first division occurred typically after 104–105 of such iter-
ations, and then, to maintain a similar average number of tries
for each voxel, we adjusted the parameter to be proportional
to the number of active voxels. However, for different shapes
or packing sizes, not studied here, we found the optimal value
of this parameter ranges from 102 up to 106.

Another parameter is the initial size of a voxel. Too small
voxels overload computer memory, while too large ones are
harder to deactivate and remove. Here we started the simu-
lation according to the standard RSA procedure. Then, after

104–105 unsuccessful consecutive tries, we initialized voxel
structure. The diagonal of each voxel did not exceed the
diameter of the circle inscribed in the studied shape. It is a
maximal spatial size that guarantees voxel deactivation after
placing a shape in it. The angular size was equal to � = 0.25.
Due to computer representation of floating point numbers,
to avoid problems with numerical precision, it is worthwhile
to use voxels of spatial and angular sizes equal to a power
of 2. Additionally, for symmetrical particles such as rounded
polygons, to reduce the total number of voxels, the range of
possible trial angles can be limited from [0, 2π ) to [0, 2π/n),
where n is the number of polygon sides.

IV. RESULTS AND DISCUSSION

A. Packing properties

Illustrative, saturated packings are shown in Figs. 7 and 8.
We first compared our results for r = 0 with those reported
in the study of regular polygons [35], and they agree within
statistical error. For example, for the regular pentagon, the
most accurate estimation of the packing fraction so far is
θ = 0.541 344 ± 0.000 072, while our simulations for a simi-
lar packing size follow θ = 0.541 190 ± 0.000 080.

From previous studies [35,41], the packing fraction for
regular polygons is the smallest for equilateral triangles: θ3 =
0.525 892 ± 0.000 064 [36], and it grows with the increasing
number of polygon sides, approaching the packing den-
sity of disks θd = 0.547 067 ± 0.000 003 [40]. Interestingly,
for rounded polygons, the opposite behavior is observed;
see Fig. 9. Even for relatively small rounding, the packing
fractions observed are higher than θd . For example, in the
case of rounded equilateral triangles, the packing fraction
of disks was reached around r = 0.075. For pentagons and
r = 0.2, we observed θ5(0.2) = 0.550 279 ± 0.000 016. For
other shapes studied, density θd was exceeded for r � 0.4.
This is surprising, as according to the image in Fig. 8, rounded
decagons for r = 1 are visually almost indistinguishable from
disks. Here, even for rounded 25-gons with r = 2, the packing
fraction is 0.547 269 ± 0.000 016, which exceeds the packing
fraction of disks by a value over ten times larger than the
statistical error. It shows that the local minimum of the pack-
ing fraction in a shape space predicted for the most symmetric
shape [42,43] is really narrow. Moreover, for moderate to
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FIG. 8. Illustrative, small saturated random packings built of (a) rounded pentagons, (b) heptagons and (c) decagons for r = 1.0. Periodic
boundary conditions are used.

high rounding, the highest packing fraction is observed for
equilateral triangles and in general it decreases with the in-
creasing number of polygon sides.

Having fitted quadratic function around the maximum, we
found that for rounded triangles the highest packing fraction is
expected near r3 = 0.68 and equals θ3,max ≈ 0.577, while for
rounded squares and pentagons r4 = 1.24, θ4,max ≈ 0.555 and
r5 = 0.98, θ5,max ≈ 0.556, respectively. For other polygons,
the maximum is too wide to precisely estimate its position.

To summarize, for moderate to large rounding, the densi-
ties of packings built of rounded regular polygons are higher
than the density of disks’ packing. On the other hand, the
densities of packings built of regular polygons are smaller
than this value. Rounding helps to achieve denser packings be-
cause it lowers the average excluded area blocked by a single
shape. This area is measured by the parameter B2 of the virial
expansion [44]. For convex anisotropic figures, it has a simple
form,

B2 = 1 + P2

4πSP
, (9)

where P is the perimeter and SP is the surface area of the
figure. One can check that the rounding growth lowers B2. The
value of B2 is significant at the beginning of packing genera-
tion when shapes are typically far away from each other. The

shape with the lowest value of B2 = 2 is the disk. On the other
hand, elongated shapes may form denser packing than disks if
they are aligned in parallel. RSA favors such an alignment
close to the saturation limit, where neighbors restrict possi-
ble orientations of subsequent objects. Competition between
these two effects results in the densest RSA packing being ob-
served for slightly elongated figures, with relatively small B2

and parallel alignment [33,45,46]. For this reason, the densest
packing among all studied here is built of rounded equilateral
triangles. It is worth noting here that a similar reasoning
applies to other kinds of random packings. For example, for
three-dimensional random close packings, the highest pack-
ing fraction is observed for moderately anisotropic ellipsoids
[47,48] or spherocylinders [49,50].

The obtained data show another interesting effect: contrary
to the general trend, the packing fractions for rounded squares
are smaller than for rounded pentagons. Moreover, for small
rounding, the packing fraction for rounded polygons with an
odd number of sides grows faster than for even-sided rounded
polygons (see the tables in Appendix). On the other hand,
for larger rounding, it also decreases slightly faster. For ex-
ample, for r = 2, the packing fractions are equal to 0.9868,
0.9988, and 0.9976 of their maximal values for rounded trian-
gles, squares, and pentagons, respectively. For convenience,
all packing fractions measured are collected in the tables
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(b)

FIG. 9. The dependence of the packing fraction on the radius of rounding for the equilateral triangle (a) and other regular polygons (b).
Dots correspond to the mean packing fractions calculated from generated random packings, and lines are a guide to the eye. The dashed line
in panel (b) corresponds to the packing fraction of disks θ = 0.547 067.
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FIG. 10. (a) The dependence of dθ/dt on t for rounding radii giving the highest packing fractions. (b) The dependence of the power-law
exponent d on r for a selection of studied shapes. Gray dashed lines highlight d = 2 and 3. Moreover, the inset shows how d varies when
performing [t/100, t] fits with different t for the same rounding radii as in (a).

in Appendix. For increasing roundness, all regular polygons
approach the shape of a disk. Therefore, it is worth check-
ing whether it is reflected in the kinetics of packing growth.
For most isotropic and anisotropic shapes [32–34,45,51–53]
and for a large enough number of iterations, the difference
between saturated and instantaneous packing fractions obeys
the power law

θ − θ (t ) = At− 1
d , (10)

known as the Feder law [13]. There, θ ≡ θ (∞), t = NSP/S
is the so-called dimensionless time, invariant under scaling
of the system, N is the number of iterations, SP is the area
of the particle, and S is the area of the box. Parameter d is
traditionally identified with the number of particle degrees
of freedom [54], which agrees with the results for most two-
dimensional shapes [32–34], but seems to be violated for most
three-dimensional ones [52,53].

The parameter d for the shapes studied is shown in
Fig. 10(b). It is determined using a linear fit to [t/100, t] for
large t on a dθ/dt (t ) log-log plot [Fig. 10(a)]. The values
of d are within the (2.5, 3.0) range, and, in general, they
decrease slightly with the growth of the number of sides or r.
Interestingly, even for 25-gons with maximal r, the deviation
from d = 2 is prominent, even though they are practically
indistinguishable from disks (Fig. 8). This high sensitivity of
d to even a minute anisotropy was also observed for sphero-
cylinders, ellipses [46], and dimers [55].

B. Algorithm efficiency

As there were two independent voxel elimination schemes
provided, it is interesting to determine which one is more effi-
cient. The effectiveness of voxel elimination depends, among
other factors, on how well the maximal exclusion zones (3)
are approximated, and, as a result, how many voxels are
eliminated during the early stage. Although the algebraic ap-
proach does not explicitly utilize the excluded volume notion,
it emerges due to the intersection criterion examined for the
voxel. The exclusion zones given by the two algorithms, for
the same particle and voxel angle ranges, with voxel size
tending to 0, are shown in Fig. 11. In this case, due to very

rough estimations, the algebraic approach gives an exclusion
zone of a smaller area than the second algorithm. Neverthe-
less, the former leads to over a three times faster packing
generation despite a higher number of voxels before each
division (Fig. 12). On the other hand, the geometric approach
seems to be much more versatile, as it can be applied not only
to objects built of spherocylinders but also to other shapes
built of any figures, for which we know the recipe to construct
the exclusion zone, e.g. ellipses.

Finally, we compare the algorithm developed and the clas-
sical version of RSA (see Fig. 13). The plot presents the
dependence of �θ = (θ − θ (t ))/θ on the simulation time
t . Our algorithm generates one strictly saturated packing in
164 s, whereas the packing generated by the classical RSA
after almost 5 days of computations still had regions large
enough to place over 1000 additional figures. The reason for
such a high inefficiency is that for a nearly saturated packing
the regions in (x, y, α) configuration space not covered by

(a) (b)

FIG. 11. Exclusion zones in the algebraic approach (a) and the
geometric approach (b) for the rounded equilateral triangle. The
black area is the particle. The red and yellow areas correspond to
exclusion zones for the second particle’s orientations α = 0 and
α = π/3, respectively. The orange area estimates the exclusion zone
for the whole range [0, π/3]. Note that the exclusion zone (b) is
not symmetric. It is due to approximating voxel arcs by rectangular
boundings whose shape depends not only on the central angle but
also on both end points.
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FIG. 12. The dependence of the time needed to generate 100
different packings built of rounded pentagons on the packing size
for the algebraic and geometric approaches. Dots are the data, and
solid lines are power fits t = 0.055S0.95 and 0.15S0.94 for geometric
and algebraic approaches, respectively.

exclusion zones are so small that they may require a huge
number of iterations to be sampled. In the presented case,
this number is of the order of 1020 and it grows exponentially
with the packing size [56]. As the shape of the exclusion
zones, especially in the angular direction, is very intricate,
standard methods are insufficient [39]. Note the steps in the
black line. They correspond to the voxel division, analysis,
and elimination phase of the algorithm. In this particular case,
there were 21 such phases, and they took 79 s, which is almost
half of the total packing generation time. The packing size
was 106, and the initial spatial size of each voxel was 0.5,
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FIG. 13. The dependence of the relative distance to saturation for
a large packing (S = 106) built of rounded pentagons on time for
classical RSA and the algorithm presented here using the arithmetic
approach to eliminate voxels. The inset shows the same data for the
presented algorithm, however in a linear timescale.

while the initial angular size was π/10. Voxels were split
after approximately 4×104 consecutive unsuccessful tries of
adding a figure to the packing. All the above tests were run on
a computer equipped with 4-core Intel i7 920 CPU running at
2.67 GHz and 12 GB of RAM.

V. SUMMARY

We described a two-variant algorithm for generating
strictly saturated RSA packings built of rounded polygons. It
is based on tracking the space where adding the next particle

TABLE I. Mean saturated packing fractions for rounded regular polygons. Numbers in parentheses correspond to standard deviations of
the mean value at the two last digits. Values marked with an asterisk were taken from [35].

r θ (n = 3) θ (n = 4) θ (n = 5) θ (n = 6) θ (n = 7)

0.00 0.525820(66)∗ 0.527594(70)∗ 0.541344(72)∗ 0.539060(95)∗ 0.541959(124)∗

0.05 0.541286(21)
0.07 0.546035(20)
0.08 0.548162(20)
0.10 0.551992(20)
0.15 0.559522(17)
0.20 0.564874(17) 0.543589(19) 0.550279(16) 0.545123(18) 0.546400(18)
0.40 0.574829(17) 0.549994(20) 0.553867(16) 0.547837(17) 0.548346(17)
0.60 0.577150(17) 0.552872(19) 0.555341(16) 0.549193(17) 0.549326(17)
0.64 0.577225(16)
0.68 0.577248(17)
0.72 0.577221(17)
0.80 0.577007(18) 0.554087(19) 0.555864(17) 0.549923(16) 0.549819(16)
1.00 0.576024(17) 0.554606(19) 0.555934(16) 0.550291(18) 0.550067(17)
1.10 0.554715(15)
1.20 0.574733(16) 0.554740(18) 0.555780(16) 0.550487(17) 0.550169(17)
1.24 0.554735(17)
1.30 0.554732(16)
1.40 0.573389(16) 0.554683(17) 0.555522(17) 0.550558(17) 0.550195(17)
1.60 0.572054(17) 0.554501(17) 0.555222(17) 0.550567(18) 0.550175(16)
1.80 0.570783(17) 0.554299(18) 0.554912(17) 0.550534(17) 0.550125(16)
2.00 0.569605(16) 0.554103(17) 0.554598(17) 0.550449(16) 0.550051(16)
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TABLE II. Mean saturated packing fractions for rounded regular polygons (continuation). Numbers in parentheses correspond to standard
deviations of the mean value at the two last digits. Values marked with an asterisk were taken from [35].

r θ (n = 8) θ (n = 9) θ (n = 10) θ (n = 15) θ (n = 25)

0.0 0.542328(98)∗ 0.544059(89)∗ 0.54426(12)∗ 0.545942(17) 0.546655(16)
0.2 0.545730(19) 0.546609(17) 0.546347(17) 0.546784(17) 0.546941(17)
0.4 0.547279(19) 0.547775(18) 0.547308(18) 0.547204(17) 0.547094(17)
0.6 0.548102(17) 0.548366(18) 0.547814(17) 0.547430(17) 0.547181(17)
0.8 0.548560(17) 0.548670(18) 0.548089(16) 0.547551(17) 0.547224(17)
1.0 0.548803(17) 0.548828(18) 0.548267(18) 0.547618(17) 0.547250(17)
1.2 0.548930(19) 0.548896(18) 0.548320(16) 0.547651(17) 0.547265(17)
1.4 0.549004(17) 0.548914(17) 0.548353(16) 0.547671(17) 0.547270(17)
1.6 0.549020(17) 0.548903(17) 0.548359(16) 0.547671(17) 0.547269(17)
1.8 0.549034(19) 0.548882(18) 0.548329(16) 0.547667(17) 0.547269(17)
2.0 0.549011(19) 0.548843(17) 0.548329(16) 0.547659(17) 0.547269(16)

is possible. The algorithm was used to determine the densities
of saturated packings built of regular rounded polygons. The
highest packing fraction was obtained for the rounded equi-
lateral triangle of the rounding radius equal to approximately
0.7 of the side length. Its value is 0.577 248 ± 0.000 017.
With the increasing number of polygon sides, the packing
fraction approaches the density of a packing built of disks,
θd = 0.547 067 ± 0.000 003, but even for a packing built of
25-gons, the density θ25(r = 2) = 0.547 269 ± 0.000 016 is
slightly higher than that. It means that even unnoticeable
changes in figure shape may lead to different RSA packing
fractions.

The method presented can be used to study the theoretical
properties of random packing, and it can effectively model
monolayers arising in irreversible adsorption processes of a
large variety of different adsorbates.

The source code of the implementation of the described
algorithm is available in Ref. [57].
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APPENDIX: NUMERICAL DATA

Tables I and II present the data obtained from numerical
simulations.
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