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technique for arbitrary radiative intensity of graded-index media
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The generalized source term multiflux method (GSMFM) combined with Runge-Kutta ray tracing technique
is developed to calculate arbitrary directional radiative intensity of graded-index media. In this method, the
finite volume method is employed to solve source terms along the curved ray path determined by the Fermat
principle. Runge-Kutta ray tracing technique is adopted to obtain the ray trajectory numerical solution in graded-
index media. And the GSMFM is used to solve radiative intensity to be expected. One-dimensional and two-
dimensional radiative heat transfer problems are investigated to verify the performance of this method. The
numerical results show that the accuracy of the GSMFM is close to that of backward Monte Carlo (BMC)
method, while the efficiency of GSMFM is much higher than that of the BMC. Therefore, the GSMFM developed
can be considered as a promising method to solve arbitrary radiative intensity in graded-index media.
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I. INTRODUCTION

Due to the heterogeneity of composition, density, and
temperature distribution of semitransparent media, the refrac-
tive index of a media may be a function of spatial position
[1,2]. The rays propagating inside the medium with graded
refractive index (GRI) are not straight lines, but curved lines
determined by the Fermat principle [3]. With the development
of relevant technical researches, radiative heat transfer (RHT)
in semitransparent media with GRI has attracted considerable
attention, and many experts and scholars have begun to carry
out related studies. Compared with uniform refractive index
(URI), RHT process in semitransparent media with GRI be-
comes more complicated, which means the solution of RHT
would be more difficult. There are two main reasons: (i) the
volumetric characteristic and path characteristic of RHT in the
participating media; (ii) the light travelling along the curved
path in the medium [4,5]. Due to the complexity of RHT
process in semitransparent medium with GRI, there is no
method can solve this problem perfectly at present. Therefore,
how to solve RHT is still a very active field with great demand.

During the last three decades, a considerable effort of in-
vestigation has been focused on the RHT in semitransparent
with GRI. For instance, Siegel et al. [6] took the lead in
the study of RHT problems inside the GRI medium in 1993
and analyzed the effects of GRI on RHT in the scattering
multilayer regions. After that, Abdallah et al. [7,8] done a
lot of work on the solution of RHT problems in GRI me-
dia, and they developed a curved ray-tracing technique to
solve the quasi-steady RHT problems and coupled radiation-
conduction problems in the media with GRI. Lemonnier
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et al. [9] derived the formulation of radiative transfer equa-
tion (RTE) in both conservative and nonconservative forms
with GRI and adopted the discrete ordinates method to solve
one-dimensional RHT problems. Xia et al. [10] developed a
curved Monte Carlo method to solve the RHT in an absorbing
and scattering medium with arbitrary refractive index distri-
bution and studied the effects of optical thickness, refractive
index distribution and boundary characteristics on tempera-
ture and radiative heat flux. Liu et al. [11–13] introduced finite
element method and discontinuous finite element method to
solve steady and transient RHT which avoid the complicated
and time-consuming computation of curved ray trajectories.
Sarvari et al. [14] developed a multigrid Monte Carlo method
(MCM) to solve RHT in multidimensional GRI media with
diffuse-specular-gray boundaries and comparison with bench-
mark solutions showed that the method is accurate. Wang
et al. [15] proposed a modified MCM to solve transient RHT
in a one-dimensional scattering medium with GRI and the
computational efficiency is improved greatly by introducing
time shift and superposition principle. Wu et al. [16] adopted
integral equation method based on exact ray paths to solve
RHT in a slab at radiative equilibrium and in an isothermal
slab. Cheng et al. [17–20] extended the distributions of ratios
of energy scattered or reflected (DRESOR) method to solve
the RHT problems in medium with GRI. However, the most
methods mentioned above can only obtain integral radiative
quantities or several radiative intensities in very limited direc-
tions and can’t solve arbitrary directional radiative intensity
accurately and flexibly, which can’t meet requirement of prac-
tical engineering [21].

According to the authors’ best knowledge, it is rather lim-
ited to calculate arbitrary radiative intensity accurately and
quickly based on the existing methods, especially for the
radiative transfer problems in GRI medium. The backward
Monte Carlo (BMC) method based on radiation distribution
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factors [22] can calculate radiative intensity accurately, but
time-consuming ray tracing process is unavoidable, especially
involving variable properties and complex boundaries. The
DRESOR method based on MC model [18] can solve radiative
intensity accurately, but MC calculation takes a lot of time
and the formulations of DRESOR are complex, especially in
complex shape and boundary conditions, which would limit
its application. Our groups developed an integral equation
method based on radiation distribution factors (RDFIEM) [4]
can solve arbitrary radiative intensity in the semitranspar-
ent media with GRI. However, the calculation of radiation
distribution factors (RDF) database of RDFIEM is very time-
consuming and the RDF database need to be recalculated
once the physical properties change. Therefore, there is still
a substantial requirement to develop efficient and accurate
numerical techniques to solve arbitrary radiative intensity of
semitransparent media with GRI.

With this idea in mind, the generalized source term multi-
flux method (GSMFM) coupled with Runge-Kutta ray tracing
(RKRT) technique is developed for arbitrary radiative inten-
sity solution in semitransparent media with GRI in present
research. This method takes into account both calculation
accuracy and calculation efficiency compared with existing
numerical methods. The remaining of this paper is orga-
nized in the following sequence. The mathematical theory
and comprehensive formulation of the GSMFM for radiative
intensity solution in the semitransparent GRI media is given
in Sec. II. One-dimensional and two-dimensional cases are
investigated to demonstrate the performance of the GSMFM
in Sec. III. The main conclusions and remarks are provided in
Sec. IV.

II. THEORETICAL MODEL

A. The mathematical expression of GSMFM

As shown in Fig. 1, an arbitrary multidimensional semi-
transparent medium with GRI is considered. The light ray
goes along a curved path determined by the Fermat principle.

FIG. 1. The physical model of light transmission in medium with
GRI.

The corresponding RTE is given by [23]

n2 d

ds

[
I (r,�)

n2

]
= −(κa + σs)I (r,�) + n2κaIb

+ σs

4π

∫
4π

I (r,�′) �(�,�′)d�′, (1)

and the corresponding boundary condition can be directly
imposed as follows [24]:

Iw(�) = n2
wεwIb,w + 1 − εw

π

∫
nw ·�′<0

Iw(�′)|nw · �′|d�′,

(2)
where I is the radiative intensity; Ib is the blackbody radiative
intensity; Iw is the radiative intensity at boundary wall; n
represents the refractive index; s is the arc length; r denotes
the position vector; � indicates the direction of radiative in-
tensity; κa is the absorption coefficient; σs is the scattering
coefficient; � means the scattering phase function; π is the
circumference rate; ε is the emissivity; nw is the unit outer
normal vector at boundary wall.

Along the curved ray path, the RTE can be written as

d

ds

[
I (s,�)

n2

]
+(κa + σs)

I (s,�)

n2
= S(s), (3)

where S(s) represents the generalized source item which can
be expressed as

S(s) = κaIb(s) + σs

4π

∫
4π

I (s,�′)
n2

�(�′,�)d�′. (4)

The integral form of the solution of Eq. (3) can be written
as [3]

I (s,�)

n2
= I (s0,�)

n2
0

exp

[
−

∫ s

s0

(κa + σs)ds

]

+
∫ s

s0

S(s′) exp

[
−

∫ s

s′
(κa + σs)ds

]
ds′. (5)

From the above formulations, it can be seen that the key
problem is to solve the generalized source term which is
the basis of calculating radiative intensity. The Finite vol-
ume method (FVM), as a mature and reliable method, is
selected to calculate generalized source terms. In the Cartesian

FIG. 2. The physical model in Cartesian coordinate system.
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coordinate system shown in Fig. 2, the radiative intensity is a function of variables x, y, z, θ , and ϕ. The RTE can be expressed
in a divergence form as [25]

� · ∇I (r,�) + 1

2n2 sin θ

∂

∂θ
{[I (r,�)(ξ� − k)] · ∇n2} + 1

2n2 sin θ

∂

∂ϕ
{I (r,�)[s1 · ∇n2]} + (κa + σs)I (r,�)

= n2κaIb + σs

4π

∫
4π

I (r,�′)�(�,�′)d�′, (6)

where

� = iμ + jη + kξ = i sin θ cos ϕ + j sin θ sin ϕ + k cos θ, (7a)

s1 = −i sin ϕ + j cos ϕ. (7b)

The piecewise constant angular quadrature is employed to treat the two angular redistribution terms of Eq. (6). One appropriate
closure relation based on the step schemes (setting the downstream surface intensities equal to the upstream center intensities)
is selected to treat the relation between the intensities on the cell surfaces and the cell center intensities. The final discretized
equation of RTE in a three-dimensional medium with GRI can be expressed as [25][ Np∑
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×
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. (8)

where ni is the refractive index at the ith surface; np is the refractive index of ith cell; Ai is the surface area of cell; Di is
the direction cosine integrated over control solid angle; χθ and χϕ are the coefficients of the discretization equation; �V is the
volume of control volume; �� is the control solid angle; �̄ is the averaged scattering phase function. This is a general finite
volume formulation of RTE in arbitrary three-dimensional medium with GRI. It is applicable for any type of volume cell shape
(structured or unstructured). Equation (8) is employed to calculate the incident radiative intensity of source terms as shown in
Eq. (4), and then the numerical integration of the source term can be discretized as

S(s) = κaIb(s) + σs

4π

NL∑
i=1

I (s,�i )

n2
s

�
(
�i,�

)
��i, (9)

where NL is the number of discrete directions. The final math-
ematical formulation of GSMFM can be described as follows:

Ia
i

n2
i

= Ia
i−1

n2
i−1

exp [−(κa,i + σs,i )�si] + Si

(κa,i + σs,i )

×{1 − exp [−(κa,i + σs,i )�si]}, i = 1, ..., N,

(10)

where �si is arc length between adjacent nodes. It should
be noted that the computational speed and accuracy of the
GSMFM would be slightly lower than those of FVM. This
is because GSMFM is based on the FVM which is employed
to solve source terms. The GSMFM includes source term
calculation and integral calculation, which causes GSMFM
have a little larger numerical error and take a little more time
than FVM.

Another problem is the determination of integral path (i.e.,
the solution of ray path). The rays propagating inside the

medium with GRI are curved lines determined by the Fermat
principle. Unfortunately, the analytical solution of ray trajec-
tory can’t be obtained in most cases. The numerical solution of
ray trajectory is usually employed to describe the light trans-
mission. The detailed description of a numerical calculation
of the ray tracing would be given in the next section.

B. Ray tracing procedure

In gradient index media, the refractive index is a function
of spatial coordinates. The Fermat principle holds that the
optical path of an actual ray between any two points is shorter
than that of any curve connecting the two points. The corre-
sponding ray equation is

d

ds

[
n(r)

dr
ds

]
= gradn(r), (11)
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FIG. 3. The flowchart of GSMFM for calculating radiative
intensity.

where n(r) is a function of coordinates, not the arc length s;
grad is gradient operator.

The Runge-Kutta ray tracing (RKRT) method is used to
calculate ray trajectory. The RKRT ray tracing technique was
developed by Sharma et al. [26,27] in 1980s. This method is
widely used because of its high precision and simple calcula-
tion. First, the position matrix R and ray vector T is introduced
here [28],

R = [x, y, z]T, (12)

T = dr
dt

= n(r)
dr
ds

= n(r)[μ, η, ξ ]T, (13)

where μ, η, ξ are the cosine values of the ray vector respecting
to the x, y, and z axis, respectively; t is a new variable that is

FIG. 4. Physical geometry of one-dimensional slab medium.

FIG. 5. The radiative intensity with different step sizes of Runge-
Kutta ray tracing.

defined as [28]

t =
∫

ds

n(r)
. (14)

Then, the matrix D is defined as [28]

D = n(r)∇n(r) = 1

2
∇n(r)2 = 1

2

[
∂n2

∂x
,

∂n2

∂y
,

∂n2

∂z

]T

. (15)

Finally, the standard ordinary differential equation is ob-
tained as follows [28]:

T′ = D. (16)

The Runge-Kutta formulas are employed to calculate the R
and T, and they can be expressed as [28]

k1 = �tD(Rn),

k2 = �tD(Rn + �t /2Tn + �t /8k1), (17)

k3 = �tD(Rn + �tTn + �t /2k2),

Rn+1 = Rn + �t /6(6Tn + k1 + 2k2),
(18)

Tn+1 = Tn + 1/6(k1 + 4k2 + k3),

where �t is the step size, indicating the increment of t ; k =
1, k = 2, and k = 3 are the intermediate variables. The ray
trajectory in semitransparent media with GRI can be obtained
by using Eqs. (17) and (18).

FIG. 6. The radiative intensity of different optical thicknesses.
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TABLE I. The average calculation time of BMC and GSMFM
for each radiative intensity.

Method Time for τL = 0.1 Time for τL = 1 Time for τL = 10

BMC 9.765 × 10–2 s 1.406 × 10–1 s 1.410 × 10–1 s
GSMFM 1.444 × 10–3 s 1.722 × 10–3 s 1.667 × 10–3 s

III. SOLUTION AND DISCUSSION

The mathematical theory of radiative intensity and ray tra-
jectory calculation has been given in the last section. To better
show the whole calculation process, a flowchart of GSMFM
is illustrated in Fig. 3. In this section, various cases (including
one-dimensional and two-dimensional radiation problems)
are investigated to demonstrate the performance of GSMFM
and all the calculations run on an Intel Core i7-3770 PC with
a Pentium (R) D (3.40 GHz)CPU with 16.0 GB RAM.

A. Solution of one-dimensional RHT problems

1. Radiation calculation in pure absorbing medium

As shown in Fig. 4, one-dimensional slab with GRI is con-
sidered. In this case, the slab is assumed to be a pure absorbing
medium with thickness L. The upper and lower boundaries
are opaque, diffuse, and gray walls whose emissivities are ε0

and εL, respectively. The temperatures of the bounding walls
are T0 and TL, and the temperature of medium between the
boundary walls varies with the coordinate z. The absorption
coefficient κa is uniform over the slab. The refractive index
distribution within the medium is set as

n(z) = 1.2 + 0.6(z/L). (19)

The GSMFM is applied to solve this one-dimensional
problem in which the temperature of medium between the
boundary walls varies from T0 to TL linearly. The radiative
intensity (dimensionless form expressed as ψ = π I/σT 4

0 ) at
the center of the upper boundary is calculated. Here, the ef-
fects of step size of Runge-Kutta ray tracing on calculation
results of radiative intensity are analyzed first. Because the
stability of the GSMFM mainly depends on the discretization
error which is determined by the step size of Runge-Kutta ray

FIG. 7. The temperature distributions in semitransparent
medium with GRI.

FIG. 8. The radiative intensity of different temperature
distributions.

tracing in numerical integration. The optical thickness is set
as τL = 1 and the wall temperature are set as T0 = 1000 K and
TL = 1500 K, respectively. The calculation results of radiative
intensity are shown in Fig. 5 from which it can be seen that
step size has an important influence on calculation results of
GSMFM. When the step size of Runge-Kutta ray tracing is
too large (such as �t = 0.01), there is a serious deviation
in the calculation results. With the decrease of step size, the
calculation results tend to be stable. When the step size is
reduced to 0.00001, the calculation results of GSMFM are
almost unchanged. In other words, the influence of discretiza-
tion error can be ignored and the calculation result is stable
when the step size is small enough. Therefore, the step size
�t = 0.00001 is adopted in the following cases.

The calculation results for different optical thicknesses are
shown in Fig. 6 from which it can be seen a perfect agreement
between GSMFM and BMC, and the maximum relative error
is only 0.18%. This observation shows that the accuracy of
GSMFM is very close to the BMC. It can be also noted that
there is a “jump” behavior of a continue line. There are two
main reasons for this observation: (1) temperature profiles
and (2) refractive index profiles. Because the ray propagates
along the curve determined by Fermat principle in gradient
index medium, there is a critical zenith angle θcr which causes
a “jump” in the radiative intensity profile. When the zenith
angle θ < θcr, the starting point of the integral path lies in
the lower boundary whose temperature is 1000 K. When the
zenith angle θ > θcr, the starting point of the integral path

FIG. 9. The radiative intensity of different scattering albedos.
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FIG. 10. The radiative intensity for anisotropic scattering medium.

lies in the upper boundary due to the total reflection, and
temperature of upper boundary is 1500 K. Therefore, there is
a jump in the radiative intensity profile. Moreover, the smaller
the optical thickness, the more obvious this phenomenon is.
Because the smaller the optical thickness, the greater the
contribution of the boundary to the radiative intensity. The cal-
culation time is different as shown in Table I. The calculation
time of BMC (the ray number is selected as 106) is nearly two
orders of magnitude longer than that of GSMFM (including
the time of FVM for calculating generalized source term).
Therefore, the precision of GSMFM is very close to that of
BMC, and the efficiency is much higher than that of BMC.

Not only the optical thickness but also the temperature
distribution affects the radiative intensity. Three temperature
distributions as shown in Fig. 7 are selected and optical
thickness is set as τL = 1. The calculated results of radiative
intensity are presented in Fig. 8. It can be seen that tem-
perature distribution has a large effect on radiative intensity.
Radiative intensity increases with increasing of zenith angle
for linear increasing temperature distribution within medium
[namely, T1(z)], while radiative intensity decreases with in-
creasing of zenith angle for linear decreasing temperature
distribution within medium [namely, T2(z)]. There are peak
and trough in radiative intensity distribution for sinusoidal
temperature distribution within medium [namely, T3(z)]. All

FIG. 11. Physical geometry of two-dimensional medium with
GRI.

FIG. 12. The radiative intensity of different optical thicknesses.

simulated results of GSMFM agree with those of BMC, which
shows the GSMFM we developed is accurate.

2. Radiation calculation in absorbing-emitting-scattering medium

The scattering of medium would change the direction of
thermal ray propagation, which makes the radiative trans-
fer process more complicated. The calculation of RHT in
absorbing-emitting-scattering medium with GRI is difficult
but necessary. Therefore, radiation calculation in absorbing-
emitting-scattering medium is studied in this section. The
physical model as shown in Fig. 4, the optical thickness is set
as τL = 1, the temperature of medium between the boundary
walls varies form T0 = 1000 K to TL = 1500 K linearly, and
wall emissivity of the both boundaries are set as ε0 = εL = 1.
Figure 9 gives the simulation results for different scattering
albedos and it can be observed that radiative intensity calcu-
lated by GSMFM are consistent with those of BMC, and the
maximum relative error is 0.56% for ω = 0.1, 0.52% for ω =
0.5 and 0.76% for ω = 0.9, respectively. This proves that the
GSMFM is very accurate, even if the scattering characteristics
of the medium are considered.

In this case, the anisotropic scattering medium with single
scattering albedo ω = 0.5 is studied by the GSMFM and
the other parameters including GRI, optical thickness, wall
emissivity and temperature distribution are the same as those
of the last case. The scattering phase function is assumed to be
� = 1 + b cos θ cos θ ′ (b = 1 represents forward scattering
and b = −1 represents forward scattering). The calculation
results are shown in Fig. 10 from which it can be seen that
the results obtained by the GSMFM agree with those of BMC
very well, and the maximum relative error is less than 3.17%.
This observation indicates that the GSMFM is accurate for
solving the radiative transfer in anisotropic scattering media.
Figures 9 and 10 show that scattering characteristic has a
significant influence on radiative transfer and the GSMFM
is a promising numerical method to solve arbitrary radiative
intensity in absorbing-emitting-scattering medium with GRI.

TABLE II. The average calculation time for different optical
thicknesses.

Method Time for τL = 0.1 Time for τL = 1 Time for τL = 10

BMC 1.598 s 1.221 s 0.352 s
GSMFM 4.744 × 10–2 s 4.763 × 10–2 s 4.192 × 10–2 s
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FIG. 13. The radiative intensity along different zenith angles.

B. Solution of two-dimensional RHT problems

1. Radiation calculation in pure absorbing medium

In this section, two-dimensional RHT problems in semi-
transparent medium with GRI are studied. The physical model
is shown in Fig. 11. The cross-sectional area of the media
is Lx × Ly, the medium is assumed to be gray and the four
boundaries are blackbody wall with temperature Tw1, Tw2, Tw3,
and Tw4. The radial refractive index distribution is adopted and
can be expressed as

n(x, y) = nref [1 − a2(x2 + y2)/H2]0.5, (20)

where nref = 5 and a = 0.66.
The radiative intensity at the center of top boundary is

calculated as shown in Fig. 11. The medium is assumed to
be pure absorbing medium, the temperature of medium is
set as Tg = 1000 K, and the four boundaries are assumed to
be cold boundaries (namely, Tw1 = Tw2 = Tw3 = Tw4 = 0 K).
Figure 12 gives the radiative intensity distribution (θ = 90◦)
for different optical thickness. It can be seen that the results
of the GSMFM agree with those of BMC very well and the
maximum relative error is only 0.15% for τH = 0.1, 0.25%
for τH = 1, and 0.72% for τH = 10, respectively. The com-
putational time are shown in Table II from which it can be
found that the time of GSMFM is far less than that of BMC.
This observation indicates that the GSMFM we developed
not only has high precision, but also has high efficiency.
Figure 13 shows radiative intensity distribution along different
zenith angles (θ = 30◦, 60◦, and 90◦) in which the optical
thickness is τH = 1. It can be observed that radiative intensity
distributions are similar. And for the same circumferential
angle, the larger the zenith angle is, the smaller the radiative
intensity is.

FIG. 14. The radiative intensity of different scattering albedos.

TABLE III. The average calculation time for different scattering
albedos.

Method Time for ω = 0.1 Time for ω = 0.5 Time for ω = 0.9

BMC 1.600 s 1.627 s 1.837 s
GSMFM 6.556 × 10–2 s 9.033 × 10–2 s 8.002 × 10–2 s

(a)

(b)

(c)

FIG. 15. Temperature distributions: (a) T = Tg +
Tg

4

√
(x/H )2 + (y/H )2, (b) T = Tg + Tg

4

√
( x

H − 1
2 )

2 + ( y
H − 1

2 )
2
, and

(c) T = Tg + Tg

4 sin( πx
H ) cos( πy

H − 1
2 ).
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FIG. 16. The radiative intensity of different temperature
distributions.

2. Radiation calculation in absorbing-emitting-scattering medium

The absorbing-emitting-scattering medium with GRI is in-
vestigated in this case and the physical model is the same as
the last case. The optical thickness is set as τH = 0.1, isotropic
scattering is selected, and the other parameters are the same
as those of last case. Figure 14 shows the calculated radiative
intensity for different scattering albedos. No observable dif-
ference could be observed between the results of the GSMFM
and BMC, which proves that scattering characteristic has no
effect on the accuracy of the GSMFM. The computational
time for different scattering albedos are shown in Table III
from which it can be found that the time of GSMFM is far
less than that of BMC. This observation indicates that the
GSMFM we developed take high precision and high efficiency
into account. It can be also noted that scattering albedo has
a remarkable effect on the radiative intensity distribution.
With the increase of scattering, the radiative intensity distri-
bution becomes more uniform. Thus, scattering characteristic
of medium is an important factor for RHT and it is necessary
to study radiative intensity calculation in absorbing-emitting-
scattering medium with GRI. Another case considers effect
of temperature distribution on radiative transfer. The optical
thickness is set as τH = 0.1, the single scattering albedo is
ω = 0.1, and other parameter settings remain the same. Three
different temperature distributions as shown in Fig. 15 are

selected and the corresponding radiative intensity distribution
is shown in Fig. 16. Comparison of calculated results between
GSMFM and BMC shows that GSMFM is a promising nu-
merical method with high accuracy.

IV. CONCLUSIONS

The GSMFM combined with Runge-Kutta ray tracing
technique is developed to calculate arbitrary directional ra-
diative intensity of graded-index media. The FVM as a
preprocessing method to solve the source terms simplifies the
integration process of the RTE, and the GSMFM is employed
to solve arbitrary directional radiative intensity. Hence, the
main advantage of GSMFM is to get rid of angle discretization
and break through the limitation of fixed direction discretiza-
tion schemes. One-dimensional and two-dimensional cases
show that the accuracy of the GSMFM is very close to that
of BMC, while the efficiency is higher than that of BMC.
The optical thickness and single scattering albedo have almost
little effects on the accuracy of the GSMFM. And tempera-
ture distribution has a significant effect on radiative intensity.
Therefore, the GSMFM developed can be considered as a
promising numerical method in various radiative research
fields. Further study will focus on extending the method to
the computation of RHT in nongray media in the practical
engineering applications.
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