
PHYSICAL REVIEW E 103, 063215 (2021)

Molecular dynamics investigation of the stopping power of warm dense hydrogen for electrons
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A variety of theoretical models have been proposed to calculate the stopping power of charged particles in
matter, which is a fundamental issue in many fields. However, the approximation adopted in these theories
will be challenged under warm dense matter conditions. Molecular dynamics (MD) simulation is a good way
to validate the effectiveness of these models. We investigate the stopping power of warm dense hydrogen for
electrons with projectile energies ranging from 400–10000 eV by means of an electron force field (eFF) method,
which can effectively avoid the Coulomb catastrophe in conventional MD calculations. It is found that the
stopping power of warm dense hydrogen decreases with increasing temperature of the sample at those high
projectile velocities. This phenomenon could be explained by the effect of electronic structure dominated by
bound electrons, which is further explicated by a modified random phase approximation (RPA) model based on
local density approximation proper to inhomogeneous media. Most of the models extensively accepted by the
plasma community, e.g., Landau-Spitzer model, Brown-Preston-Singleton model and RPA model, cannot well
address the effect caused by bound electrons so that their predictions of stopping power contradict our result.
Therefore, the eFF simulations of this paper reveals the important role played by the bound electrons on stopping
power in warm dense plasmas.
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I. INTRODUCTION

The stopping power for charged particles in matter is a fun-
damental problem in numerous pivotal fields, such as medical
radiation therapy [1–3], space exploration [4], astrophysics
[5,6], DNA damage [7–9], and inertial confinement fusion
(ICF) [10–13]. The energy deposition behavior of the hot
electrons in the dense target is the key physical process in
the fast ignition scheme of ICF. Considering that the warm
dense matter (WDM) state is a typical state of materials in
ICF [14–20], it is of great significance to study the energy
deposition process of hot electrons in warm dense hydrogen
[21–24].

A series of theoretical works have been carried out to ex-
plore the influence of various physical effects on the stopping
power for charged particles under different conditions. The
development of theoretical models of stopping power can be
divided into two categories: one is the model developed based
on collision concept, such as Landau-Spitzer (LS) model
[25,26] and Li-Petrasso model (LP) [23], which is suitable
for the thermal and fully ionized plasmas where collisions
between particles are weak and dominated by the small an-
gle scattering process. The other is based on the dielectric
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response function of the plasma to the charged particles like
random phase approximation (RPA) model [27–29]. Recently,
there are also models that combine the two-body collision
and dielectric response, such as Brown, Preston, and Single-
ton (BPS) [30] model, in which the Lenard-Balescu kinetic
equation and Boltzmann equation of pure Coulomb scattering
are used to describe the long-distance collective excitation
and short-distance hard collision of the plasma, respectively.
However, different theoretical models have different ranges of
applications. Considering the complexity of the warm dense
state, the applicability of various theoretical models under
the warm dense state needs to be verified by experiments or
numerical simulation methods.

The previous experimental works on the stopping power
for charged particles mainly focus on the incidence of ion
beams in solids [31–33] and plasmas [34–38]. The time-of-
flight (TOF) method with a semiconductor detector [39] is
widely used for the measurement of the stopping power for the
charged projectiles. However, only a few preliminary experi-
ments have been reported until recently that study the energy
loss of electrons in a gaseous target [40,41]. For instance,
the mass stopping power for low-energy electrons traveling
in gaseous H2, which is unavailable straightforward in experi-
ments, is obtained via intermediate measurements of electron
energy loss spectra, which has to be artificially corrected for
instrumental transmission effects [40]. So far, there is still a
lack of accurate experimental data on the stopping power of
warm dense plasmas for electron.
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With the development of computational techniques, many
kinds of numerical simulation methods have been proposed
to improve the calculation of interactions of charged parti-
cles with matter, including time-dependent density functional
theory (TD-DFT) in a real-time form [42–48], particle-in-cell
(PIC) [1,21,49,50] and molecular dynamics (MD) [51–53]. In
the high-temperature region of WDM, conventional TD-DFT
methods need to include a large number of occupied eigen-
states, which may cause huge computational costs [43,47].
An orbital-free version of TD-DFT [43,47] may partially re-
live this difficulty since only charge density of the electrons
is involved but it may give an inaccurate estimation to the
electron density of unionized or partially ionized states due
to lack of electronic shell structures [54], which will influ-
ence the prediction of the electronic stopping power. The PIC
simulation describes the dynamics of macroparticles, which
represent many real particles with one model particle, rather
than that of real particles. The collision between macroparti-
cles needs to be described by a specific model. Therefore, the
effectiveness of the stopping power predicted by PIC depends
on the accuracy of the selected collision model [55–57]. The
dynamical collision process between real particles can be
simulated by the MD method, which directly solves the New-
tonian equations of molecular motion without taking other
assumptions except for the interaction potential between par-
ticles. Nevertheless, Coulomb catastrophe will occur in the
MD simulations when we employ a target that contains both
ions and electrons in a classical Coulomb system. Therefore,
the previous classical MD works [52,58] can only consider
the stopping power in a purely classical repulsive Coulomb
system (e.g., an electron gas target). A recently published
work [59] confirmed that collisions between electrons and
ions have a significant impact on the transport features of
electrons and ions. Therefore, it is necessary to consider the
combined effect of ions and electrons in the system for the
investigation of stopping power.

Compared with the classical Coulomb potential, the elec-
tron force field (eFF) potential can not only consider the entire
contribution of electrons and ions in the sample plasmas to
the stopping power, but also address the effects of electronic-
structure-related processes, such as molecular dissociation,
electronic excitation, and ionization. The eFF method is a
further development of the wave-packet molecular dynamics
(WPMD) [60], which is actually a widely accepted simula-
tion method in the field of the warm dense plasmas. Many
representative works using the eFF method can show the
effectiveness of this method in dealing with the problem of
warm dense matter [61]. The eFF method is excellent for prac-
tical nonadiabatic electron dynamics simulations of materials
under extreme conditions and gave an excellent description
of the shock thermodynamics of hydrogen from molecules
to atoms to plasma [62], as well as the electron dynamics
of the Auger decay in diamondoids following core electron
ionization [63]. In addition, eFF was successfully applied
to nonadiabatic processes such as dynamic shock Hugoniot
[64], and exoelectron emission due to fracture in silicon [65].
Qian Ma et al. [66] investigated temperature relaxation with
the method of eFF where the quantum effects of electronic
degeneracy, delocalization, and quantum collisions are de-
scribed naturally. The temperature-relaxation rates obtained

by eFF agree with the experimental results. Therefore, the eFF
method is suitable for the study of the stopping power of warm
dense matter to charged particles.

A systematical investigation of stopping power for elec-
trons in warm dense hydrogen was conducted with nonequi-
librium molecular dynamics simulations using eFF potential
in this work. At the investigated projectile-energy ranges from
400–10000 eV, it is shown that the stopping power decreases
with increasing temperature of the sample, which contradicts
the prediction given by most of the models extensively ac-
cepted by the plasma community. Meanwhile, the stopping
power curves are found to be insensitive to the variation of
temperature when the sample temperature is relatively low
(T < 1 eV), which may be related to the molecular struc-
ture under low-temperature condition. Besides, the stopping
power process of projectile electrons with low energy is also
discussed in Appendix A. It is found that some low-energy
(E0 < 100 eV) projectile electrons may be trapped in the
Coulumb field of the ions when the speed of the electrons is
lower than the capture velocity of the potential field, which
implies that the attraction potential of the ion to the electron
will make the electron scattering trajectory exhibit completely
different characteristics from that in a pure repulsive system.

The rest of this paper is organized as follows. The com-
putational details of eFF simulation and the other theoretical
models are introduced in Sec. II. Section III discusses the
results of our simulation and Sec. IV concludes the entire
work with a short summary.

II. COMPUTATIONAL DETAILS

A. eFF method

All eFF simulations in this work are performed using the
eFF implementation included in the MD code LAMMPS [67].
The eFF method describes ions as classical charged particles
and electrons as floating Gaussian wave packets by simplify-
ing the electronic wave function to the form of

�(r) ∝ exp

{
−

[
1

s2
− 2ps

s

i

h̄

]
(r − x)2 − i

h̄
px · r

}
, (1)

where s represents the size of wave packets, x is the center
position of the wave packet, and ps and px are corresponding
momenta of s and x. The equation of motion in eFF could
be derived by substituting Eq. (1) into the time-dependent
Schrödinger equation. Due to the simplification of electronic
wave function, the eFF method makes it possible to simulate
the dynamics of large-scale quantum systems.

A problem of the current eFF model is that the size of wave
packet will be overspreading at high temperature [52], which
weakens the scattering cross section of the electron. To avoid
the wave packet spreading problem of projectile electrons, the
constrained eFF (CEFF) method [66,68] is applied on the pro-
jectile electrons. When the size of the Gaussian wave packet
for an electron is larger than its de Broglie wavelength, CEFF
will impose a harmonic constraint on the motion equation
of s to prevent further expansion of such wave packet. The
comparison of the energy relaxation rate shows that the results
predicted by CEFF are more consistent with the experimental
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FIG. 1. The schematic diagram of the setup for eFF simulations.

results compared with the results of other theoretical models,
which further proves the effectiveness of this scheme.

A scheme similar to the TOF method in experiments is
used to simulate the stopping power problem in this work,
which is different from the scheme used in the previous works
[52,58]. In the previous MD simulations, the projectile par-
ticles moved in a periodic system and stayed in the sample
throughout the whole simulation process. When counting the
energy loss of an projectile electron, the electron may be
accelerating or decelerating in the Coulomb potential field
of the target particle, so the calculated energy loss cannot
be considered as the final energy loss of the particle. Only
when the projectiles penetrate through the sample and do
not interact with the sample particles, the calculated stopping
power can not be affected by the potential field of the sample,
as measured by the experiments.

In order to eliminate the influence of the potential field of
the sample on the results, a sample with a finite thickness is
selected in our simulations, and a long flight distance is set
after the sample, as illustrated in Fig. 1. The energy loss of the
projectile is calculated when the particles penetrate through
the sample and moves far away from the sample so that the
stopping power obtained can be independent of the poten-
tial of sample. However, the limited thickness of the sample
brings about the problem of boundary effects, which does not
exist in the periodic system. Considering that the boundary ef-
fect is only significant in a thin layer near the boundary, whose
characteristic thickness is of the order of mean interatomic
distance, the influence of the boundary effect on the result can
be ignored when the thickness of the entire sample is much
larger than the thickness of the boundary layer. Meanwhile,
the thickness of the sample should not be too large to ensure
that most of the projectiles can penetrate through the sample.
The Wigner-Seitz radius of hydrogen atoms is rs = 3.1722
bohr in our simulation, corresponding to a density of solid
hydrogen ρ = 0.085 g/cm3. Therefore, the thickness of the
entire sample is set to 102 bohr, which is more than 30 times
of rs.

The simulation box has a size of 255 bohr (x) ×255 bohr
(y) ×1530 bohr (z) and the sample plasmas are confined in
a thin region (0 < z < 102 bohr) with two reflecting wall.
Periodic boundary conditions are adopted along the x and y
directions, and two reflecting wall are used for all particles
at both ends of the z axis to prevent particles from escaping
the simulation box. The sample hydrogen plasma contains
50000 protons and 50000 electrons, and the masses of protons

and electrons are set to mi = 1.00794 amu and me = 0.00055
amu, respectively. The cutoff radius of the interaction poten-
tial in the simulations is set as rcut = 15 bohr, which is about
five times of the rs and large enough to ensure the convergence
of the calculation results.

The initial configuration of target plasma uses a simple
cubic lattice to uniformly place hydrogen molecules in the
sample area. Each hydrogen molecule is composed of two
hydrogen nuclei and two electrons with opposite spins. The
initial distance between the two hydrogen nuclei is set to
1 bohr, and the initial position of the two electrons is the
midpoint of the line connecting the two hydrogen nuclei.
The initial value of s and ps for all target electrons are set
as 1 bohr and 0 bohr/fs, respectively. In order to achieve
the thermodynamic equilibrium of the system at the target
temperature we set, the ion temperature in the target was
controlled with a rescale method. The electron temperature
will reach equilibrium through the energy relaxation between
the electron and the ion.

The stopping power of the target for each projectile elec-
tron can be calculated as

−dEi

dx
≈ −�Ei

�z
= Eiz(0) − Eiz(t )

�z
, (2)

where Eiz is the component of kinetic energy of projectile
electron with index i along axis z, Eiz(t ) and Eiz(0) is the
final and initial value of Eiz, and �z is the thickness of the
target. The mean stopping power −dE/dx of the target can
be obtained by the statistical average of a large number of the
stopping power of projectile electrons.

In order to save computational resources, each simulation
contains 100 projectile electrons. Initially, 100 electrons are
distributed in the area of z ∈ [−2, 0] bohr and two reflective
walls are used to confine them in this area. The mean dis-
tance between two projectile electrons is about 25 bohr and
the interaction between these electrons is very weak, so the
difference between the result obtained in our simulations and
that obtained in the case with single projectile electron is very
small. After the sample plasma reaches the thermodynamic
equilibrium condition, an initial velocity is applied to all the
projectile electrons and the reflective constraint on them is
removed, so that the projectile electrons can inject into the
sample plasmas. In addition, for samples with the same state,
we have performed several repeated calculations using differ-
ent random number seeds for the initial velocity distribution,
to ensure that the uncertainty of the average stopping power
obtained is within an acceptable range.

The temperature of target plasma is set to be 0.1 eV, 0.4 eV,
1 eV, 2 eV, 4 eV, and 10 eV and the corresponding plasma
parameters are listed in Table I. The coupling parameter �ee

corresponds to the ratio of the interaction potential energy
to the thermal energy and the definition expression can be
written as [69]

�ee = e2

ae

√
(kBT )2 + E2

F

, (3)

where ae = ( 4πne
3 )−1/3 is the Wigner-Seitz radius of the elec-

trons in the target, EF = h̄2

2me
(3π2n)2/3 is the Fermi energy, in

which n is the electron number density. The value of �ee in our
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TABLE I. The value of coupling parameter �ee, degeneracy pa-
rameter �, and WDM parameter W of the target plasmas with
different target temperature.

T (eV) �ee � W

0.1 10.99 0.13 0.015
0.4 5.56 0.27 0.085
1 3.52 0.45 0.25
2 2.55 0.74 0.55
4 1.65 1.20 0.85
10 0.79 2.33 0.71

simulations ranges from 0.79–10.99, covering the range from
weak coupling to strong coupling. The degeneracy parameter
is defined as

� = kBT

EF
, (4)

and the WDM parameter W of sample is defined as

W (T, p) = S(�ee)S(�) (5)

as the definition in Ref. [70], where S(x) = 2
x+x−1 .

The energy range of projectile electrons is set from 400–
10000 eV. When the speed of the projectiles is much greater
than the thermal motion speed of the particles in the sample,
the dynamic effect of the sample particles is not significant
and the stopping power of the entire sample for projectiles is
close to the effect of a static potential field, so the MD simula-
tion is unnecessary. On the other hand, the projectile electrons
cannot penetrate through the target if its initial energy is too
small and the calculation of the stopping power cannot be
preformed. To illustrate these situations, the dynamic features
of projectile electrons with low speed (10 eV ∼ 100 eV) are
discussed in Appendix A.

The cutoff radius for pair interactions is set to be 51 bohr,
which is 15 times more than the Wigner-Seitz radius of hydro-
gen atoms and meets the requirement of convergence. Each
simulation has a different and a relatively small time step
�t = 10−5 fs ∼ 10−6 fs to ensure the quasicontinuity of the
particle trajectory, especially at the moment of collision.

B. RPA model and LDA correction

In this work, the calculated stopping powers of eFF are
compared with that of BPS model [30], RPA model as well
as a corrected version of RPA model via local density ap-
proximation (LDA). The RPA model based on homogeneous
electron gas at a fixed density gives the Lindhard electronic
stopping power SRPA

e [71] with the velocity v is expressed as

−dE

dx

RPA

(v) = SRPA
e (v)

= 2Z2

πv2

∫ ∞

0

dq

q

∫ qv

0
dωIm[−ε−1(q, ω)], (6)

where the charge number Z of the moving electron equals
1. The RPA dielectric function [71] emerging in Eq. (6) at

a given momentum/energy transfer q/ω is written as

ε(q, ω) = 1 − 1

π2q2

∫
dk

f (p + k/2) − f (p − k/2)

k · q − ω − iη
, (7)

with the Fermi distribution function f (k) = 1/{exp[(k2/2 −
μ)/T ] + 1}, an infinitesimal number η, chemical potential
μ, as well as the electronic temperature T . A local-density
approximation (LDA) method [72] combined with RPA model
is further introduced in order to evaluate the stopping power
provided by core electrons for a projectile electron. This ap-
proximation assumes that the electronic stopping power of a
real inhomogeneous material can be determined by the spatial
average over the Lindhard electronic stopping power SRPA

e
evaluated at the local density ρ(r), i.e.,

−dE

dx

LDA

(v) = SLDA
e (v) = 1

�

∫
�

drSRPA
e (ρ(r), v) (8)

with the volume �, and the position r. With this approx-
imation, the electronic stopping power contributed by the
ultrahigh electronic density of core electrons near the nuclei
can be qualitatively addressed.

The local densities ρ(r) are provided by the finite-
temperature density functional theory (FT-DFT) based on the
ionic configurations extracted from first-principles molecular
dynamics (FPMD) simulations after equilibrium. For higher
temperatures (T � 4 eV), the extended FPMD (ext-FPMD)
and DFT are adopted to overcome the difficulty of too many
electronic states demanded by the traditional DFT method
[73]. The FPMD and FT-DFT simulations are carried out us-
ing a revised QUANTUM ESPRESSO package [73,74], containing
64 ions in a cubic box with ρ = 0.085 g/cm3. A canonical
system of constant NVT is adopted with the time step of ionic
motion varying from 0.15–1 fs depending on the temperature
of the system. The projected augmented wave [75] pseudopo-
tential is employed with a core cutoff radius rc = 0.9 bohr.
The �-point sampling of the Brillouin zone is used in the cal-
culations, together with the exchange-correlation functional of
Perdew, Burke, and Ernzerhof [76], and a plane wave cutoff
energy of 70 Ry. 320 bands are explicitly included with the
top 200 used to determine the effective potential energy [73].
After initial equilibrium, eight configurations are selected
randomly for further FT-DFT calculation to obtain ρ(r). To
ensure the accuracy, a norm-conserving pseudopotential are
used in the calculations with a cutoff radius of 0.6 bohr, and
a plane wave cutoff energy of 80 Ry, as well as a 2 × 2 × 2
shifted k-point mesh to resolve the Brillouin zone.

C. BPS model

The BPS method for the stopping power of weakly coupled
plasma to charged particles is given by

dE

dx
=

∑
b

(
dEb,S

dx
+ dE<

b,R

dx
+ dEQ

b

dx

)
. (9)

The first term dEb,S

dx represents the classical short-distance hard
collision contribution, which is derived from the Boltzmann
equation. The second term

dE<
b,R

dx is the classical long-distance
collective excitation contribution, which is derived from the

Lenard-Balescu kinetic equation. The third term dEQ
b

dx is the
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FIG. 2. Profiles of H-H RDF in warm dense hydrogen under
different temperature. The inset is used to show the peak feature of
the RDF corresponding to the hydrogen-hydrogen bond under low
temperature conditions. The solid red line, the dashed black line, the
short-dot dark-cyan line, the dash-dot purple line, the dash-dot-dot
dark-blue line, and the short-dash gray line correspond to the case
with the target temperature of 0.1 eV, 0.4 eV, 1 eV, 2 eV, 4 eV, and
10 eV, respectively.

quantum correction to the classical part. The subscript b de-
notes the ions in the plasma. Detailed expressions for each
term are clearly presented in Ref. [30], and thereby, we will
not show them in this work for briefness. Here, we would like
to point out that (i) in the BPS model, the electrons and ions
are considered as classical particles, which obey the Maxwell-
Boltzmann distribution; (ii) the quantum correction becomes
significant when the quantum Debye wavelength becomes
larger than the classical minimum approaching distance; and
(iii) the BPS model is only suitable for the weakly coupled
plasmas.

III. RESULTS AND DISCUSSIONS

The stopping power of warm dense hydrogen for projec-
tile electrons is investigated at a same density of solid H2,
but different temperatures to cover a wide range of coupling
parameters of WDM. Before discussing the stopping power, it
is necessary to analyze the electronic and ionic structures of
hydrogen targets in the simulated conditions, which, shown
as follows, will significantly affect the later estimations of
stopping powers. Here, the radial distribution function (RDF)
of hydrogen ions gHH (r) and the size distribution function
of target electronic wave packets f (s) are illustrated, respec-
tively, in Figs. 2 and 3 in order to qualitatively describe the
degree of molecular dissociation and electronic excitation in
the sample plasma at different temperature.

As shown in Fig. 2, the peak structure near r = 1.5 bohr of
gHH (r) corresponds to the bond length of hydrogen molecules
and the height of this peak can qualitatively reflect the dissoci-
ation degree of hydrogen molecules in the system. It is found
that the height of the peak in RDF decreases as the sample
temperature increases. The height of the peak of hydrogen
molecule is very large in the sample at T = 0.1 eV, indicating

 0.01
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FIG. 3. The size distribution of electronic wave packet f (s) in
the target at varying temperature. From top to bottom are the red line,
the black line, the dark-cyan line, the purple line, the dark-blue line,
and the gray line, corresponding to the distribution under the target
temperatures of 0.1 eV, 0.4 eV, 1 eV, 2 eV, 4 eV, 10 eV, respectively.

a low degree of molecular dissociation. When the sample
temperature is higher than 1 eV, the peak of molecular feature
disappears on the curve of RDF, indicating that the hydrogen
molecules are completely dissociated.

The distribution of the target electronic wave packet sizes
in Fig. 3 shows that the sizes of the electrons is mostly con-
fined inside the average intermolecular distance at low system
temperatures (T < 1 eV), indicating that most of the electrons
occupy localized states. As the temperature of the sample
increases, the sizes of the electron wave packets show a broad-
ening trend, indicating that more and more target electrons are
in excited states.

The calculated stopping power of hydrogen plasmas at
solid density and different temperatures are shown in Fig. 4.
First of all, it can be seen that, at any simulated temperature,
the value of stopping power −dE/dx shows a monotonous
decrease as the increase of projectile electron energy from
400–10000 eV. This phenomenon shows qualitative agree-
ment with experiment carried out by Munoz et al. [41], where
the stopping power of H2 to projectile electron is measured
at incident energies from 50–5000 eV and the maximum
value of stopping power is found at the projectile energy
of about 100 eV. In addition, the stopping power predicted
by various theoretical models in the projectile energy range
of 400–10000 eV also shows that the stopping power de-
creases monotonously with respect to the projectile energy,
as illustrated in Fig. 5. That is to say, the monotonous trends
predicted by the eFF method are consistent with the results
obtained by both experiments and theoretical models. The rea-
son for this trend can be explained as, the scattering angle of
the collision between projectile electrons and target particles
decreases and the scattering cross section becomes smaller, as
the projectile energy increases, so that the momentum transfer
in the collision process becomes smaller.
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FIG. 4. The mean stopping power −dE/dx of warm dense hy-
drogen to electrons as a function of projectile electron energy. The
solid red line with solid circle points, the black dashed line with
square points, the dark-cyan short-dot line with hexagon points, the
purple dash-dot line with triangle points, the dark-blue dash-dot-dot
line with rhombus points, and the gray dashed line with five-pointed
star points correspond to the case with the target temperature of
0.1 eV, 0.4 eV, 1 eV, 2 eV, 4 eV, and 10 eV, respectively.

The effect of sample temperature on stopping power is also
explicitly displayed in Fig. 4. It is found that, at relatively low
temperatures in the range of 0.1–1 eV, the stopping power is
not sensitive to the variation of temperature. However, with
plasma temperature further increasing from 1–10 eV, there is a
noticeable reduction in the stopping power, which means that
the temperature becomes a major factor. These two findings
provided by eFF simulations contradict the predictions given
by most of the other theoretical models broadly used for
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FIG. 5. The stopping power of warm dense hydrogen obtained
with (a) LDA corrected RPA calculation, (b) RPA model, and (c) BPS
model. The solid red line, the dashed black line, the short-dot dark-
cyan line, the dash-dot purple line, the dash-dot-dot dark-blue line,
and the short-dashed gray line correspond to the case with target tem-
perature of 0.1 eV, 0.4 eV, 1 eV, 2 eV, 4 eV, and 10 eV, respectively.

weakly coupled plasmas starting from homogenous systems.
Particularly, we present the calculated results of stopping
power via the BPS model and the one-component RPA model
in the same conditions, as shown in the Figs. 5(b) and 5(c).
In each model, the projectile electron is treated as a classical
negative point charge and the hydrogen target is assumed to be
fully ionized. It is clearly shown that, in both of BPS and RPA
models, the stopping power increases with the sample temper-
ature increasing, which is contrary to the results obtained by
our eFF simulations.

Under different sample plasma temperatures, the scattering
cross section during particle collision will be different, which
will eventually affect the stopping power. The collision scat-
tering cross section of the sample electron to the projectile
electron can be affected by two factors, one is the strength
of the interaction between the two particles, and the other
is the relative velocity of the two particles. (i) When the
relative velocity of two particles is the same, the stronger the
interaction potential, the larger the scattering cross section. (ii)
When the interaction potential is determined, the greater the
relative velocity of the two particles, the smaller the scatter-
ing cross section. This is why the stopping power decreases
monotonously with the increase of projectile energy.

Here, we will discuss how the temperature affects these
two factors in the eFF simulations, thereby affecting the col-
lision scattering cross section. Under the description of the
eFF method, the interaction potential energy between two
electrons is in the form of

Vee = 1

4πε0

∑
i �= j

1

ri j
Er f

⎛
⎝

√
2ri j√

s2
i + s2

j

⎞
⎠, (10)

where ri j is the distance between two electrons, and si and
s j are the wave packet size of the two electrons. As the tem-
perature of the system increases, the mean size of the sample
electronic wave packet becomes larger and the interaction
between the projectile and target electron becomes weaker,
which will reduce the scattering cross section and lead to a
decrease in stopping power.

At the same time, the increase in the sample temperature
will also increase the mean relative velocity in the collision,
thereby reducing the scattering cross section. However, we
note that according to the plasma theory, the rise of temper-
ature mainly reduces the plasma collision cross section of the
sample rather than the collisional cross section between the
projectile and the target. Since the energy of the projectile is
much larger than the kinetic energy of the sample particle in
our eFF simulations, the increased temperature of the target
we consider here has a negligible effect on the relative colli-
sion velocity between the projectiles and target electrons.

Above all, the difference in the target electron wave packet
size distribution at different sample temperatures results in a
different strength of the interaction potential, which makes
the stopping power show a negative correlation with temper-
ature in our eFF simulations. A recently published work [77]
proposed a theoretical model to calculate the stopping power
for protons propagating through plasmas. The result predicted
by this model shows that the stopping power will decrease as
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FIG. 6. The mean stopping power curve of the target to electrons
at a target temperature of 10 eV, where the electronic masses in sim-
ulations are set to 0.00055 amu (real electron mass me, represented
with the black solid line with square points) and 0.0055 amu (ten
times real electron mass 10me, represented with the red dash line
with circle points), respectively.

the target temperature increases, which is consistent with our
result obtained with eFF.

The next phenomenon that needs to be explained is why
the stopping power curves do not change significantly with
temperature when the sample temperature is in the range of
0.1–1 eV. As mentioned earlier, the interaction between pro-
jectile electrons and target electrons will increase due to the
smaller wave packet size of the target electrons, as the target
temperature decreases. However, the interaction between the
electrons and ions in the sample will also be enhanced at the
same time, and a stable molecular structure will be formed
under the low temperature, as shown in Fig. 2. The corre-
sponding physical picture is that the target electrons are tightly
bound to the ions, which is equivalent to increasing the effec-
tive mass of the target electrons during the collisions. When
a light high-speed particle collides with a heavy particle, the
light particle will bounce away with almost no loss of kinetic
energy. The final result is that the amount of energy transferred
from the light particle to the heavy particle during the collision
will be very small. This is why the stopping power contributed
by ions in the sample is much smaller than the contribution of
electrons. Therefore, as the sample temperature decreases, the
energy transfer efficiency of each effective collision between
the projectile electron and the target electron will decrease due
to the increase in the equivalent mass of the target electron,
which ultimately leads to a decrease in the stopping power of
the target.

In order to verify the influence of electron mass on stop-
ping power, we calculated the stopping power of hydrogen
plasma with electron mass ten times the real electron mass,
and the other conditions are the same as the case with a
sample temperature of 10 eV, as illustrated in Fig. 6. It can
be found that the stopping power of the sample with heavier
electrons is significantly lower than that of the sample with

lighter electrons, which proves that the electron mass in the
sample can significantly affect the value of stopping power.

The competitive balance of these two mechanisms makes
the change of stopping power with temperature in the low-
temperature range insignificant. As the temperature further
rises beyond 1 eV, the electrons break free from the bondage
of the ion so that the balance is broken and the temperature
dependence of the stopping power appears.

In addition, the BPS model is only suitable to the weakly
coupled plasmas. The coupling parameter of warm dense H
considered in this work ranges from 0.57–57, which means
most of the plasma states considered here are beyond the
scope of application of the BPS model. This may also be a
reason for the significant difference between the results of the
BPS model and the eFF simulations. On the other hand, the in-
teraction between particles and the correlation effect between
electrons and ions are ignored in the one-component RPA
model. These effects are critical physics properties of WDM,
which determine the transport properties and the energy de-
position mechanism of charged particles in WDM. However,
a modified interaction potential in Eq. (10) is employed in
the eFF method, which could partially consider these special
properties of WDM. Therefore, the difference between the
results of the RPA model and the eFF simulation may be
understandable. This also indicates that the bound electrons
in WDM play important roles on the energy deposition of
charged projectiles.

In summary, in the eFF simulation, sample temperature
affects the strength of the interaction between electrons and
electrons, or that between electrons and ions, through chang-
ing the electronic structure and molecular structure of the
target, thereby determining the target’s stopping power to
electrons. Both RPA and BPS models do not include the inho-
mogeneous effects of electronic structure, so their calculated
stopping power and the calculation of the eFF method show
different trends.

In order to further evaluate the effect of electronic struc-
ture on stopping power provided by bound states, we thus
introduce a correction of local-density approximation (LDA)
[72] to the Lindhard electronic stopping power model based
on RPA dielectric response [71]. This approximation assumes
that the electronic stopping power of a real material can be
determined by the spatial average over the RPA stopping
power of homogenous electron gas evaluated at the microlocal
density, so that the electronic structure of bound states is
roughly introduced through inhomogeneous electron-density
distribution obtained by DFT calculations with the LDA
exchange-correlation functional. This LDA method merely
gives a qualitative prediction to the contribution of bound
electrons to the stopping power since it always overestimates
this contribution compared with a more precise TD-DFT
method [72]. The calculated result of the LDA method is
shown in Fig. 5(a). It can be found that the stopping power
decreases as sample temperature increases, which show the
same trends as the results obtained by the eFF simulations.
This result further proves the effectiveness of the eFF method
to calculate the stopping power of warm dense plasma, and
on the other hand, it also shows that the electronic structure
has a very important influence on the stopping power of warm
dense plasma.
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Comparing Figs. 4 and 5, it can be found that another obvi-
ous difference between the stopping power curves of eFF and
the predictions of the theoretical models is that the stopping
power curves obtained by the theoretical models have greater
decline slope. The main reason for this difference is that the
wave packet sizes of the projectile electrons in eFF simu-
lations were constrained with its corresponding de Broglie
wavelength, as mentioned in the computational details. A
larger projectile energy corresponds to a smaller de Broglie
wavelength, so the wave packet sizes of projectile electrons
is also smaller. According to the interaction formula Eq. (10),
a smaller projectile electron wave packet size will enhance
the interaction between the projectile electron and the target
electron, which has a positive effect on the improvement of
the stopping power and leads to a decrease in the slope of the
stopping power curve.

Different from the description in the eFF method, the pro-
jectile electrons are treated as classical point-charged particles
in the previous theoretical models, and the quantum wave
effect is not considered. Therefore, a different slope of the
stopping power curve is obtained by these theoretical models.
This difference between simulation and theoretical results re-
minds us that the quantum effect of projectile electrons will
have a impact on the stopping power, especially when the
de Broglie wavelength of the projectile electrons is close to
the Wigner-Seitz radius of the target, e.g., the stopping of
low-speed electrons in high-density target. For WDM, the
quantum effect of projectile electrons may have an important
influence on the stopping power and needs to be considered in
the construction of a more sophisticated theoretical model.

We have investigated the stopping power models for solid
targets through a large amount of literature. Although the
influence of bound state is considered, these models usually
do not consider the influence of target temperature on stopping
power [78], such as SRIM [79], Casp [80], etc. Therefore,
there are also limitations in calculating the stopping power
of warm dense plasmas. In addition, according to our inves-
tigation and the introduction of related review article [78],
only a small number of codes for these theoretical models are
available on the internet, such as SRIM and Casp. Meanwhile,
these models can only calculate the stopping power of target
on the ion beam, so they are not suitable for the problem
considered in this work.

IV. CONCLUSION

Different from the hot plasma state and the cold condensed
state, a unified approximate model to simplify the properties
of the warm dense state is still in the early stages [81], which
makes the research on the stopping power of the warm dense
plasma full of challenges. In this work, the stopping power
of warm dense hydrogen for electron is studied using eFF
method, which could take the dynamic effects of electronic
structure into consideration and avoid the Coulomb catastro-
phe in the classical Coulomb system, so that the stopping
power contributed by both ions and electrons in the sample
can be considered at the same time. It is found from the
eFF simulations that the stopping power of warm dense hy-
drogen decrease as the sample temperature increases, which
is contrary to the prediction of various theoretical models

extensively used for weak-coupling plasmas. Further analysis
and the calculation results of the LDA method prove that the
reason for this difference is that the change of the electronic
structure at different temperatures has an important effect on
the stopping power of warm dense hydrogen, which is not
considered in the previous theoretical models. In addition,
the existence of molecular structure under low-temperature
conditions increases the effective mass of target electrons
during the collision process, which in turn leads to a de-
crease in energy transfer during the collision process. The
effect of molecular structure and electronic structure form a
competitive relationship, resulting in insensitivity of stopping
power to temperature changes in the low-temperature range.
In the fast-ignition scheme of ICF, if our goal is to deposit
more energy in the warm dense fuel, our results will lead to
a disappointing prediction, since the temperature rise of the
fusion fuel caused by the deposition of electron energy will in
turn reduce the efficiency of energy deposition.

The situation considered in this work is the stopping pro-
cess of single electron in WDM, rather than that of coherent
electron beams. There will be more complex phenomena in
the stopping power of the electron beam, such as return cur-
rents, self-generated magnetic fields, and various instabilities
[21,24]. Considering the electron stopping in a more practi-
cal case such as fast ignition of ICF, the collective effect of
the electron beam will lead to a significant difference in the
energy transport process compared to the situation of single
electron, which should be considered in a further investigation
of stoping power of WDM on electrons.
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APPENDIX A: STOPPING POWER TO PROJECTILE
ELECTRONS WITH LOW ENERGY

Except for the cases of incident electrons with energies
from 400–10000 eV, we have performed eFF simulations for
the stopping power of warm dense hydrogen to electrons with
initial energy range from 10–100 eV. Due to the large stopping
power and small initial projectile energy, the penetration depth
of incident electrons is very small and most of the electrons
cannot penetrate the sample. Therefore, the method of calcu-
lating stopping power with Eq. (2) is no longer applicable.
The average energy loss during the entire period when the
projectile electron energy drops from the initial energy to zero
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FIG. 7. The penetration depth distribution of projectile electrons
f(z). The target temperature is T = 1 eV. (a) and (b) correspond
to the case whose projectile electron energy is 10 eV and 100 eV,
respectively.

can be estimated from the penetration depth of the projectile
particles as

−dEi

dx
≈ E0

li
, (A1)

where −dEi/dx is the mean stopping power of the sample
to a projectile electron with index i, E0 and li are the initial
energy the penetration depth of electron i. Figure 7 shows the
penetration distribution of projectiles with incident energies
of 10 eV and 100 eV in warm dense hydrogen at sample
temperature T = 1 eV. The average stopping power calculated
with Eq. (A1) to the incident electrons with initial energy of
10 eV and 100 eV is 350.3 MeV/cm and 484.5 MeV/cm,
respectively. This result indicates that the stopping power has
a maximum value in the range of the projectile energy from
10–400 eV, which is consistent with the previous experimental
results in gaseous H2 [41], although the thermodynamic state
of the target is different. Therefore, both experiments and
eFF simulations have confirmed that there is a Bragg peak
structure similar to ions during the energy loss process of
electrons in matter.

The stopping power for low-speed projectile electron at
different target temperature is calculated with Eq. (A1) and
listed in Table II. It shows that the stopping power in
high-temperature target is much smaller than that in low-
temperature target, which shows the same trend with the result

TABLE II. The stopping power calculated with Eq. (A1) for low-
speed projectile electron in target at different temperature. Ep is the
projectile energy, T is the target temperature, and −dE/dx is the
stopping power. The unit of stopping power −dE/dx is MeV/cm.

Ep(eV)/−dE/dx/T(eV) 0.1 0.4 1 2 4 10

10 840.3 748.9 350.3 324.8 209.4 154.6
100 414.4 463.0 484.5 487.0 335.8 244.5
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FIG. 8. Phase diagram of several captured electrons. The target
temperature is T = 1 eV. (a) and (b) correspond to the case whose
projectile electron energy is 10 eV and 100eV, respectively.

obtained in the theoretical work of Archubi et al. [81], whose
projectile particle is proton and target materials is Si, C, and
Fe. The consistency of the trends is helpful to cross validate
the effectiveness of the eFF method and the unified theoretical
model proposed by Archubi et al.

In addition, it can be found from Table II that for low-
temperature target (0.1 eV and 0.4 eV), the stopping power
of projectile electron with E0 = 10 eV is higher than that with
E0 = 100 eV, while for high-temperature targets (T � 1 eV),
the stopping power of faster projectile electron is lower. This
comparison indicates that as the temperature of the target
plasma increases, the Bragg peak of the stopping power on
electron will shift to the direction of higher projectile energy.

In addition, five low-velocity projectile electrons are ran-
domly selected in the simulations and the phase trajectory of
these electrons in the warm dense hydrogen target are illus-
trated in Fig. 8. It can be seen that the phase trajectory shows
an obvious characteristic of circular motion for these projec-
tile electrons with low initial energy. The circular motion of
projectile electrons indicates that the dominant mechanism of
its motion is the Coulomb attraction field provided by the ions
in the target. We can regard this phenomenon as the capture
process of projectile electrons by target ions and the capture
velocity could be estimated by the similar derivation process
to solving the first cosmic velocity in astrophysics. In various
theoretical models, since the mass of ions is much greater
than that of electrons, the main contribution of stopping power
always comes from electrons and the contribution of ions is
negligible. However, this capture phenomenon in the low-
velocity range indicates that the stopping power of ions will
play a leading role in the low-velocity range.

APPENDIX B: COMPUTATIONAL DETAILS OF
ELECTRON FORCE FIELD

The electron force field is a theoretical model based on a
simplified solution to the time-dependent Schrödinger equa-
tion. In the eFF method, the electronic wave function of
electrons is approximately described as spherical Gaussian
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wave packets whose position x and size s vary over time:

�(r) ∝
∏

j

exp

{
−

[
1

s2
− 2ps

s

i

h̄

]
(r − x)2 − i

h̄
px · r

}
,

(B1)
where px and ps is the conjugate momentum of x and s. The
semiclassical Hamilton equations of motion for x and s are
derived [82] by substituting the wave packet form into the
time-dependent Schrödinger equation, which leads to

ṗx = −∇xV, px = meẋ,

ṗs = −∂V

∂s
, ps = 3

4
meṡ,

(B2)

with V = Vii + Vie + Vee + EKE + EPauli. The time derivatives
are denoted as dots overhead in Eq. (B2). Here, Vii, Vee, and Vie

represent the screened electrostatic interactions between all
pairs of ion-ion, electron-electron, and ion-electron, respec-
tively. EKE and EPauli are the electronic kinetic energy of the
Gaussian wave packet and Pauli repulsion energy, which ac-
count for quantum mechanical effects of electrons. Each type
of energy term can be expressed by the following expressions:

EKE = 1

2

∑
i

∫
|∇ψi|2dV =

∑
i

3

2

1

s2
i

Vii =
∑
i< j

ZiZ j

Ri j

Vie = −
∑
i, j

Zi

∫ |ψ j |2
Ri j

dV = −
∑
i, j

Zi

Ri j
Erf

(√
2Ri j

si

)

Vee =
∑
i< j

∫ |ψi|2|ψ j |2
xi j

dV =
∑
i< j

1

xi j
Erf

⎛
⎝

√
2xi j√

s2
i + s2

j

⎞
⎠

EPauli =
∑
σi=σ j

E (↑↑)i j +
∑
σi �=σ j

E (↑↓)i j

where σ denoting the spin of the electrons, Erf(x) is the error
function, which is defined as Erf(x) = 2√

π

∫ x
0 e−u2

du. E (↑↑)
and E (↑↓) are the Pauli potential functions:

E (↑↑)i j =
(

S2
i j

1 − S2
i j

+ (1 − ρ)
S2

i j

1 + S2
i j

)
�Ti j

E (↑↓)i j = ρS2
i j

1 + S2
i j

�Ti j,

where �T is a measure of the kinetic energy change upon
antisymmetrization, and S is the overlap between two wave
packets:

�Ti j = 3

2

(
1

s̄2
i

+ 1

s̄2
j

)
− 2

[
3
(
s̄2

i + s̄2
j

) − 2x̄2
i j

]
(
s̄2

i + s̄2
j

)2

Si j =
(

2

s̄i/s̄ j + s̄ j/s̄i

)3/2

exp

(
− x̄2

i j

s̄2
i + s̄2

j

)
,

where ρ = −0.2, x̄i j = 1.125xi j , and s̄i = 0.9si.
The specific form chosen for Pauli potential distinguishes

eFF from methods such as wave packet molecular dynamics,
which can not produce stable molecule structure and can not
describe the EOS of dense hydrogen accurately. The three uni-
versal parameters in the Pauli potential function are obtained
through optimization. For more theoretical and technical de-
tails about the eFF method, please refer to Ref. [83].
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